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Abstract

Let ((S, τ1, τ2),B) be a bornological bispace, where τ1 and τ2 are collections of subsets of a set S such that (S, τ1) and (S, τ2)
are spaces alongside a bornology B. This paper extends boundedness concepts across bispaces. A property involving a
(τ1, τ2)-characteristic function is introduced. It is shown that the existence of a (τ1, τ2)-characteristic function requires S to
be weakly locally bounded, B to be τ1-open and τ2-closed, and to have a countable base.
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1. Introduction

The generalization of topological spaces has evolved in various directions. One significant extension is the σ-space intro-
duced by Alexandroff [1], where the requirement for arbitrary unions of open sets to be open was relaxed to include only
countable unions. Other researchers further modified these conditions; see, for example, [3, 8]. In bitopological spaces,
a set X is equipped with two topologies P and Q. Such spaces naturally arise from quasi-metrics, where two different
topologies are induced by sets based on quasi-metrics. Kelly [5] expanded the study of bitopological spaces by introduc-
ing various separation properties and generalizing classical topological results. Subsequently, Pervin [9], Reilly [10], and
others further investigated these properties. Levine [7] introduced the concept of semi-open sets in topological spaces.
Later, Lahiri and Das [6] extended this concept to Alexandroff spaces; eventually, they generalized bitopological spaces to
bispaces and studied their properties.

Bornological spaces are a key concept in functional analysis and topology, offering a generalized framework for studying
bounded sets. Defined via a bornology — a collection of sets that represents the concept of boundedness — these spaces
extend traditional ideas of boundedness beyond the scope of standard topological methods. They are particularly useful in
the context of locally convex spaces, duality theory, and the study of continuous linear functions. Moreover, bornological
spaces play a significant role in the theory of distributions, where they facilitate the handling of the intricacies associated
with generalized functions. A well-articulated explanation of bornological concepts can be found in S.T. Hu’s paper [4].

In the study of topology and functional analysis, the concept of bornological spaces plays a pivotal role, particularly when
dealing with two topologies and bounded sets. A bornological bispace, denoted as ((S, τ1, τ2),B), introduces an additional
layer of complexity alongside a bornology B, where τ1 and τ2 are collections of subsets of a set S such that (S, τ1) and
(S, τ2) are two spaces. This structure is instrumental in understanding the interplay between boundedness and topological
properties across different spaces.

This paper investigates a bornological bispace ((S, τ1, τ2),B) with a property (∗) and a (τ1, τ2)-characteristic function,
where the property (∗) is stated as follows: given a subset P of S and a τ1-open set Q such that τ2-cl(P ) ⊆ Q, there exist a
τ1-open set G and a set F such that

τ2-cl(P ) ⊆ G ⊆ τ2-cl(F ) ⊆ Q.

It is shown that the existence of such a characteristic function is equivalent to the following three conditions: (i) the space
S must be weakly locally bounded, (ii) the bornology B must be τ1-open and τ2-closed, and (iii) B must possess a countable
base.
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2. Preliminary definitions and results

We begin this section with a succinct review of the key terms and concepts related to spaces, bispaces, and boundedness.

Definition 2.1 (see [1]). A set S is called an Alexandroff space, or σ-space, or simply a space, if a collection F of subsets of
S is specified that satisfies the following axioms:

(i) The intersection of a countable number of sets from F belongs to F .

(ii) The union of a finite number of sets from F belongs to F .

(iii) The void set ∅ belongs to F .

(iv) The set S belongs to F .

Sets of F are called closed sets. Their complementary sets are called open sets. It is clear that instead of closed sets in the
definition of the space, one may put open sets, subject to the conditions of countable summability and finite intersectional-
ity, and the condition that X and ∅ should be open. The collection of all such open sets is sometimes denoted by τ and the
space by (S, τ). Note that a topological space is a space, but in general, τ is not a topology, as can be easily seen by taking
S = R and τ as the collection of all Fσ sets in R.

Definition 2.2 (see [1]). To every set M in a space (S, τ), we associate its closure M , defined as the intersection of all closed
sets containing M .

In general, the closure of a set in a space is not a closed set.

Definition 2.3 (see [1]). The interior of a set M in a space (S, τ) is defined as the union of all open sets contained in M and
is denoted by τ − Int(M), or Int(M) when there is no confusion about τ .

In general, the interior of a set in a space is not an open set.

Definition 2.4. Let (S, τ) be a space and x ∈ S. A subset N of S is said to be a τ -neighbourhood of x if there exists an open
set G such that x ∈ G ⊆ N . The collection of all τ -neighbourhoods of x is called the τ -neighbourhood system at x.

Definition 2.5. Let (S, τ) be a space. A nonempty collection B(x) of τ -neighbourhoods of x ∈ S is called a τ -neighbourhood
base for the τ -neighbourhood system at x if and only if for every τ -neighbourhood N of x, there exists a B ∈ B(x) such that
B ⊆ N .

Definition 2.6 (see [6]). A space (S, τ) is said to be bicompact if every open cover of it admits a finite subcover.

Definition 2.7 (see [5]). A set S equipped with two arbitrary topologies P and Q is called a bitopological space, and is
denoted by (S, P,Q).

Definition 2.8 (see [6]). Let S be a nonempty set. If τ1 and τ2 are collections of subsets of S such that (S, τ1) and (S, τ2) are
spaces, then S is called a bispace, and is denoted by (S, τ1, τ2).

It is important to note that the bispace (S, τ1, τ2) becomes a bitopological space when τ1 and τ2 are topologies on S.

Example 2.1 (see [2]). Let S = [0, 2], and let {Ui} be the collection of all countable subsets of irrational numbers in [0, 1].
Consider τ1 as the collection of all sets of the form Ui ∪ {

√
3} together with S and ∅; and τ2 as the collection of all sets

Ui together with S and ∅. Since the uncountable union of countable sets is uncountable, (S, τ1, τ2) is a bispace but not a
bitopological space.

In order to apply the idea of boundedness to the case of a general topological space, Hu [4] developed the concepts of
a bornology and a bornological space. A bornology on a set S is a collection B of subsets of a set S that satisfies all the
following conditions:

(i) B covers S, that is S =
⋃
{B : B ∈ B};

(ii) B is stable under inclusions, that is, if A ⊆ B and B ∈ B then A ∈ B;

(iii) B is stable under finite unions; that is, if B1, · · · , Bn ∈ B then B1 ∪ · · · ∪Bn ∈ B.
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The pair (S,B) is referred to as a bornological space, and the sets belonging to B are considered bounded sets within
this space. Given bornological spaces (S,BS) and (T,BT ), a mapping f : (S,BS) → (T,BT ) is called bounded if f(A) ∈ BT

for every A ∈ BS .
Key examples of bornological spaces (S,B) include:

(i) A metric space, with the family of its bounded subsets;

(ii) A topological space, along with the family of its relatively compact subsets;

(iii) A uniform space, paired with the family of its totally bounded subsets.

Definition 2.9 (see [1]). If B is a bornology on S, then a collection B0 is called a base for B if B0 ⊆ B and every set of B is a
subset of a member of B0.

Definition 2.10. A bornology B is said to be a second countable bornology if it has a countable base.

Definition 2.11. A bornological bispace is an ordered pair ((S, τ1, τ2),B), where (S, τ1, τ2) is a bispace and B is a bornology
on S .

Definition 2.12. A bounded set B′ of a bornology B on a set S is said to be maximal if every B ∈ B is a subset of B′.

Definition 2.13. A bornology B in a bispace (S, τ1, τ2) is said to be τi-open if every bounded set is contained in some τi-open
bounded set, for i = 1, 2.

Definition 2.14. A bornology B in a bispace (S, τ1, τ2) is said to be τi-closed if the τi-closure of every bounded set is bounded,
for i = 1, 2.

Proposition 2.1. Let P be a countable base for a bornology B on a set S such that B does not have a maximal bounded set.
Then there exists a strictly increasing sequence {Qn} of members of P such that the collection {Qn : n ∈ N} is a base for B.

Proof. By the countability of P, we can write P = {Pn : n ∈ N}. Let Q1 = P1. Since B does not contain any maximal
bounded set, there exists an element B ∈ B such that B is not a subset of Q1 ∪ P2, and there exists an element P ∈ P such
that Q1 ∪ B ∪ P2 ⊂ P . This establishes the existence of an element P ∈ P such that Q1 ∪ P2 ̸= P and Q1 ∪ P2 ⊂ P . Let
n1 = min{n ∈ N : Q1 ∪ P2 ⊂ Pn} and Q2 = Pn1

. Here, we use the symbol ⊂ for strict inclusion. Suppose that, for m ∈ N, we
have already defined the set Qm ∈ P; then, analogous to the aforementioned procedure, we take

nm+1 = min{n ∈ N : Qm ∪ Pm+1 ⊂ Pn}

and subsequently define Qm+2 = Pnm+1
. This demonstrates that the sequence {Qn} is a strictly increasing sequence of

members of P.
To demonstrate that the sequence {Qn} constitutes a base of B, let us consider an arbitrary element B of B. Given that

P is a base of B, it follows that there exists a positive integer n such that B ⊆ Pn ⊆ Qn+1. Therefore, it can be concluded
that {Qn} is a base of B.

Proposition 2.2. Let (S, τ1, τ2) be a bispace. Let B be a second countable, τ1-open and τ2-closed bornology on S such that
B does not have a maximal bounded set. Then there exists a strictly increasing sequence {Qn} of τ1-open sets such that
Q = {Qn : n ∈ N} is a base for B provided that τ2-cl(Qn) ⊂ Qn+1 for each n ∈ N.

Proof. By Proposition 2.1, B possesses a strictly increasing countable base P = {Pn : n ∈ N}. Let Q1 be an arbitrary
τ1-open bounded set. Given that B is τ1-open, it guarantees the existence of a τ1-open bounded set. Here τ2- cl(Q1 ∪ P2) is
a bounded set, as B is τ2-closed. Since B does not contain any maximal bounded set, there exists an element B ∈ B such
that B is not a subset of τ2- cl(Q1 ∪ P2) and there also exists an element P ∈ P such that τ2-cl(Q1 ∪ P2) ∪ B ⊂ P . This
establishes the existence of an element P ∈ P satisfying τ2-cl(Q1 ∪ P2) ̸= P and τ2-cl(Q1 ∪ P2) ⊂ P .

Let n1 = min{n ∈ N : τ2-cl(Q1 ∪ P2) ⊂ Pn} and Q2 = Pn1
. Here, we employ the notation ⊂ to denote the strict inclusion.

Assume that, for m ∈ N, we have previously established a τ1-open set Qm ∈ P; then, in a manner analogous to the preceding
discussion, we define nm+1 = min{n ∈ N : τ2-cl(Qm ∪ Pm+1) ⊂ Pn} and Qm+2 = Pnm+1

. The sequence {Qn} possesses the
requisite properties.

It is essential to demonstrate that Q constitutes a base for B. For this purpose, let B denote any member of B. Since P
is a base of B, there exists a positive integer n satisfying B ⊆ Pn ⊆ Qn+1. Consequently, Q is a base of B.

58



S. Patra / Electron. J. Math. 9 (2025) 56–62 59

Remark 2.1. In Proposition 2.2, it is important to note that τ1 and τ2 are interchangeable.

Definition 2.15. A point s of a bornological bispace ((S, τ1, τ2),B) is said to be a τi-finite point if it has a bounded τi-
neighbourhood in S, for i = 1, 2.

Definition 2.16. A bornological bispace ((S, τ1, τ2),B) is said to be weakly locally bounded if every point of S is either
τ1-finite or τ2-finite.

Definition 2.17. A bornological bispace ((S, τ1, τ2),B) is said to be locally bounded if every point of S is τ1-finite and τ2-finite.

Definition 2.18. A bispace (S, τ1, τ2) is said to be bicompact if every cover P ⊆ τ1 ∪ τ2 has a finite subcover.

We remark that if (S, τ1, τ2) is bicompact, then both the spaces (S, τ1) and (S, τ2) are bicompact.

Definition 2.19 (see [6]). A cover P of a bispace (S, τ1, τ2) is said to be pairwise open if P ⊆ τ1 ∪ τ2 and if P contains at
least one nonempty member of τ1 and atleast one nonempty member of τ2.

Definition 2.20. A bispace (S, τ1, τ2) is said to be pairwise compact if every pairwise open cover of S has a finite subcover.

Proposition 2.3. Let (S, τ1, τ2) be a bispace. Any τ1-closed or τ2-closed subset of a pairwise compact space S is pairwise
compact.

Proof. Let K be a τ1-closed subset of S. Let P be a pairwise open cover of K by open sets of S. Since K is τ1-closed, the
complement S \K is τ1-open. Hence, the members of P together with the τ1-open set S \K form a pairwise open cover of S.
Since S is pairwise compact, the pairwise open cover of S contains a finite subcover of S. In other words, there is a finite
number of open sets P1, P2, · · · , Pn, where Pi ∈ τ1 ∪ τ2, i = 1, 2, · · · , n in P such that

P1 ∪ · · · ∪ Pn ∪ (S \K) = S.

Hence, {P1, · · · , Pn} covers K, and K is pairwise compact.

Proposition 2.4. Every bicompact subset of a weakly locally bounded bornological bispace ((S, τ1, τ2),B) is bounded.

Proof. Let K be a bicompact subset of a weakly locally bounded bornological bispace ((S, τ1, τ2),B). Let x ∈ K ⊆ S.
As S is weakly locally bounded, so x is either τ1-finite or τ2-finite. Let x be a τ1-finite point. Then, x has a bounded τ1-
neighbourhood, say Bx ∈ B in S. So, there exists Px ∈ τ1 such that x ∈ Px ⊆ Bx. Now, P = {Px : x ∈ K} ⊆ τ1 ∪ τ2 is a cover
of K. By bicompactness of K, there exists a finite subcollection say, {P1, P2, · · · , Pn} of P such that

K ⊆
n⋂

i=1

Pi.

Hence,

K ⊆
n⋂

i=1

Pi ⊆
n⋂

i=1

Bi.

Now, since
n⋂

i=1

Bi is bounded, K must also be bounded.

Proposition 2.5. Every pairwise compact subset of a locally bounded bornological bispace ((S, τ1, τ2),B) is bounded.

Proof. The proof is similar to that of Proposition 2.4.

3. Main result

Before stating and proving the primary result of this paper, some additional preparation is needed.

Definition 3.1. Let (S, τ) be a σ-space and f : S → R be a function. Then

(i) f is called upper semicontinuous on S if for each y ∈ R, the set f−1((−∞, y)) = {x ∈ S : f(x) < y} is open in S;
equivalently, for each y ∈ R, the set f−1([y,−∞)) = {x ∈ X : f(x) ≥ y} is closed in S.

(ii) f is called lower semicontinuous on S if for each y ∈ R, the set f−1((y,∞)) = {x ∈ S : f(x) > y} is open in S;
equivalently, for each y ∈ R, the set f−1((−∞, y]) = {x ∈ S : f(x) ≤ y} is closed in S.
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The next result follows directly from Definition 3.1.

Proposition 3.1. (i) If f : S → R is an upper semicontinuous function on S, then for each point x0 ∈ S and for every
ϵ > 0, there exists a neighbourhood U of x0 such that f(x) < f(x0) + ϵ for all x ∈ U .

(ii) If f : S → R is a lower semicontinuous function on S, then for each point x0 ∈ S and for every ϵ > 0, there exists a
neighbourhood U of x0 such that f(x) > f(x0)− ϵ for all x ∈ U .

Definition 3.2. Let (S, τ1, τ2) be a bispace and f : S → R be a function. Then f is said to be τi-upper (lower) semicontinuous
if f : (S, τi) → R is upper (lower) semicontinuous, for i = 1, 2.

Definition 3.3. Let (S, τ1, τ2) be a bispace. Then a (τi, τj)-characteristic function for a bornology B on S is a real-valued
τi-upper semicontinuous and τj-lower semicontinuous function f such that

B = {A ⊆ S : sup{f(x) : x ∈ A} < +∞}

for i, j ∈ {1, 2}.

Definition 3.4. A bispace (S, τ1, τ2) is said to have property (∗) if, given a set P and a τ1-open set Q such that τ2-cl(P ) ⊆ Q,
there exist a τ1-open set G and a set F such that

τ2-cl(P ) ⊆ G ⊆ τ2-cl(F ) ⊆ Q.

Lemma 3.1. If (S, τ1, τ2) satisfies property (∗), then given a set G and a τ1-closed set H such that τ2-cl(G) ∩ H = ∅, there
exists a real-valued function α on S such that

(i) α(x) = 0 for all x ∈ τ2-cl(G), α(x) = 1 for all x ∈ H, and 0 ≤ α(x) ≤ 1 for all x ∈ S;

(ii) α is τ1-upper semicontinuous and τ2-lower semicontinuous.

Proof. Let G and H be subsets of S such that H is τ1-closed and τ2-cl(G) ∩H = ∅. Let G0 = τ2-cl(G) and let K1 = S \H.
Then K1 is τ1-open and G0 ⊆ K1. Since (S, τ1, τ2) satisfies the property (∗), there exists a τ1-open set K 1

2
and a set G 1

2
such

that
G0 ⊆ K 1

2
⊆ τ2-cl

(
G 1

2

)
⊆ K1.

By applying the hypothesis of (S, τ1, τ2) to each pair of sets G0, K 1
2

and τ2-cl(G 1
2
), K1, we obtain τ1-open sets K 1

4
, K 3

4
and

two sets G 1
4
, G 3

4
such that

τ2-cl(G0) ⊆ K 1
4
⊆ τ2-cl

(
G 1

4

)
⊆ K 1

2
⊆ τ2-cl

(
G 1

2

)
⊆ K 3

4
⊆ τ2-cl

(
G 3

4

)
⊆ K1.

Continuing this process, we generate two families {Gs} and {Ks}, where s = p
2q , p = 1, 2, · · · , 2q − 1, and q = 1, 2, · · · . For

any other dyadic rational s, set Ks = ∅ for s ≤ 0, Ks = X for s > 1, and Gs = ∅ for s < 0, Gs = X for s ≥ 1. Then

Kr ⊆ Ks ⊆ τ2-cl(Gs) ⊆ τ2-cl(Gt)

for r ≤ s ≤ t, and τ2-cl(Gs) ⊆ Kt for s < t. Let α be the function from S to [0, 1] defined by

α(x) = inf{t : x ∈ Kt} for x ∈ S.

Then
α(x) = inf{t : x ∈ τ2-cl(gt)} for x ∈ S.

Clearly, 0 ≤ α(x) ≤ 1 for x ∈ S, α(x) = 0 for x ∈ G0, and α(x) = 1 for x ∈ S/K1 = H. As in the proof of the classical Urysohn
lemma, we can show, using the sets Ks, that α is τ1-upper semicontinuous, and using the sets τ2-cl(Gs), that α is τ2-lower
semicontinuous. This completes the proof.

Now, we are in a position to prove the main result.

Theorem 3.1. A bornological bispace ((S, τ1, τ2),B) with property (∗) admits a (τ1, τ2)-characteristic function α if and only
if S is weakly locally bounded, the bornology B is τ1-open and τ2-closed, and S has a countable base.
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Proof. Assume that the bornological bispace ((S, τ1, τ2),B) admits a (τ1, τ2)-characteristic function α. Let p ∈ S and denote
q = f(p). Let us choose a real number b > q. Let Bb denote the subset of S that consists of all points x ∈ S satisfying
α(x) < b, i.e., Bb = {x ∈ S : α(x) < b}. From the τ1-upper semicontinuity of α, it follows that Bb is an τ1-open set. According
to the definition of a (τ1, τ2)-characteristic function, Bb is bounded. Since p ∈ Bb, p is a τ1-finite point in S. Thus, S is weakly
locally bounded.

Next, let B denote an arbitrary bounded set. We choose a real number t such that

t > sup{α(x) : x ∈ B}.

Here sup{α(x) : x ∈ B} is finite, as B is bounded. Now, we define Bt = {x ∈ S : α(x) < t}. From the τ1-upper semicontinuity
of α, it follows that Bt is an τ1-open set. Also, Bt is bounded. So, Bt is a bounded τ1-open set containing B. Thus, B is
τ1-open boundedness.

By τ2-lower semicontinuity of α, the set {x ∈ S : α(x) ≤ t} is τ2-closed. So

τ2- cl(Bt) ⊆ {x ∈ S : α(x) ≤ t}.

By the definition of a (τ1, τ2)-characteristic function, the set {x ∈ S : α(x) ≤ t} is bounded, and a subset of a bounded set is
bounded. So, τ2- cl(Bt) is a bounded set. Also, B ⊆ Bt implies that

τ2-cl(B) ⊆ τ2-cl(Bt).

Since τ2-cl(Bt) is a bounded set, τ2-cl(B) is also bounded. Hence, B is τ2-closed boundedness.
Now, for every positive integer n, let Bn = {x ∈ S : α(x) < n}. Then, C = {Bn : n ∈ N} is a sequence of bounded τ1-open

sets. Let B denote an arbitrary bounded set of S. Choose an integer n satisfying

n > sup{α(x) : x ∈ B}.

Then, we have B ⊆ Bn. Hence, C is a countable base of the boundedness B.
Conversely, assume that ((S, τ1, τ2),B) is a bornological bispace with property (∗) satisfying the conditions of the the-

orem. If S is bounded, then the constant zero function on S is a characteristic function of S. Hereafter, we assume that
S is not bounded. Since S is weakly locally bounded, S cannot have a maximal bounded set. It follows from Proposi-
tion 2.2 that the boundedness of S has a base C, which consists of a strictly increasing sequence of bounded τ1-open sets
G1, G2, · · · , Gn, · · · , satisfying τ2-cl(Gn) ⊆ Gn+1 for every n = 1, 2, · · · . From Lemma 3.1, it follows that there exists a
real-valued funtion ϕn defined on S such that

(i) ϕn(x) = 0 for every x ∈ τ2-cl(Gn), ϕn(x) = 1 for every x ∈ S \Gn+1, and 0 ≤ ϕn(x) ≤ 1 for every x ∈ S;

(ii) ϕn is τ1-upper semicontinuous and τ2-lower semicontinuous.

Now, we define a function α : S → R as
α(x) = n− 1 + ϕn(x)

for every x ∈ Gn+1 \ Gn and for every n. Next, we examine the τ1-upper semicontinuity and τ2-lower semicontinuity of
α. For x ∈ Gn+1 \ Gn, α(x) = n − 1 + ϕn(x), where ϕn is τ1-upper semicontinuous. This means that for any c ∈ R, the
set {x ∈ S : ϕn(x) < c − (n − 1)} is τ1-open. Thus, α is τ1-upper semicontinuous on S. Also, the fact that ϕn is τ2-lower
semicontinuous on S implies that α is τ2-lower semicontinuous on S.

Now, let E denote an arbitrary subset of S. If E is bounded, then there exists a positive integer n satisfying E ⊆ Gn+1.
This leads to the conclusion that α(x) ≤ n for every x ∈ E. That is, sup{α(x) : x ∈ E} is finite. Conversely, assume that
sup{α(x) : x ∈ E} is finite. We choose a sufficiently large positive integer n such that E ⊆ Gn+1. In fact, if for some x ∈ E,
we have x /∈ Gn+1, then x ∈ Gn+2 \Gn+1 (say), and in that case, we have

α(x) = (n+ 1)− 1 + ϕn+1(x) = n+ ϕn+1(x).

As 0 ≤ ϕn+1(x) ≤ 1, we obtain α(x) ≥ n, which is a contradiction. So, E ⊆ Gn+1, and E is bounded. Therefore, α is a
(τ1, τ2)-characteristic function of S.
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