Research Article **The minimum Wiener index of Halin graphs with characteristic trees of diameter 4**

Hedi Wang, Kexiang Xu[∗](#page-0-0)

School of Mathematics, Nanjing University of Aeronautics & Astronautics, Nanjing, Jiangsu 210016, PR China

(Received: 18 December 2024. Received in revised form: 14 January 2025. Accepted: 18 January 2025. Published online: 21 January 2025.)

 \degree 2025 the authors. This is an open-access article under the CC BY (International 4.0) license (<www.creativecommons.org/licenses/by/4.0/>).

Abstract

The Wiener index of a connected graph G is defined as the sum of distances between all unordered pairs of vertices of G . A Halin graph is a plane graph consisting of a plane embedding of a tree T of order at least 4 containing no vertex of degree 2, and a cycle connecting all leaves of T. The tree T is called the characteristic tree of the Halin graph. Denote by $\mathbb{H}_{n,4}$ the set of all Halin graphs of order n with characteristic trees of diameter 4. In this paper, we determine the minimum Wiener index of the graphs in $\mathbb{H}_{n,4}$. We also find the corresponding extremal graphs.

Keywords: Wiener index; Halin graph; diameter.

2020 Mathematics Subject Classification: 05C09, 05C12.

1. Introduction

All graphs considered in this paper are finite, undirected, connected, and simple. Let $G = (V(G), E(G))$ be a graph. As usual, denote by $V(G)$, $E(G)$, $|V(G)|$, and $|E(G)|$ the vertex set, edge set, number of vertices, and the number of edges of G, respectively. For any $v \in V(G)$, let $N_G(v)$ be the set of neighbors of v and $d_G(v) = |N_G(v)|$ be the degree of v. The *distance* $d_G(u, v)$ of two vertices $u, v \in V(G)$ is the length of a shortest $u - v$ path in G. The greatest distance between any two vertices in G is the *diameter* of G, which is denoted by $diam(G)$. The *eccentricity* of $v \in V(G)$ is denoted by $\varepsilon(v)$ and is defined as

$$
\varepsilon(v) = \max_{u \in V(G)} d_G(v, u).
$$

The Wiener index, proposed by Wiener [\[14\]](#page-11-0) in 1947, is one of the most studied topological indices in chemical graph theory. The *Wiener index* of a connected graph G can be defined as

$$
W(G) = \sum_{\{u,v\} \subseteq V(G)} d(u,v).
$$

Klavžar and Nadjafi-Arani [[8\]](#page-11-1) gave lower bounds on the difference between the Szeged index and Wiener index; afterward, they improved lower bounds in [\[10\]](#page-11-2). Xu, Li, and Luo [\[16\]](#page-11-3) established some comparative results between the number of nonempty subtrees and the Wiener index of a graph. Das [\[4\]](#page-11-4) presented upper bounds on the Wiener index of a graph with certain given parameters. Božović et al. [[2\]](#page-11-5) presented extremum values of the Wiener index of trees with given parameters and characterized the extremal trees. More results on the Wiener index can be found in [\[3,](#page-11-6)[5,](#page-11-7)[9,](#page-11-8)[11](#page-11-9)[–13,](#page-11-10)[15,](#page-11-11)[17\]](#page-11-12).

A *Halin graph* G is a plane graph consisting of a plane embedding of a tree T of order at least 4 containing no vertex of degree 2, and a cycle C connecting all leaves of T. The tree T (or $T(G)$) and the cycle C (or $C(G)$) are called the characteristic tree and the adjoint cycle of G, respectively. Halin graphs were first introduced by Halin [\[6\]](#page-11-13), and later they were studied considerably in the mathematical literature [\[1,](#page-11-14)[7\]](#page-11-15). Denote by $\mathbb{H}_{n,4}$ the set of Halin graphs of order n with characteristic trees of diameter 4. In this paper, we determine the minimum Wiener index of graphs in $\mathbb{H}_{n,4}$ and find the corresponding extremal graphs.

Let $G \in \mathbb{H}_{n,4}$, we use $T(G)$ and $C(G)$ to denote the characteristic tree and the adjoint cycle of G throughout this section. Note that G has only one vertex o of eccentricity 2. For a vertex $v \in N_G(o)$, if $v \in C(G)$ then v is called a *hanging vertex*, otherwise v is called a *support vertex*. We use [n] to denote $\{1, 2, \ldots, n\}$. Suppose that G has m support vertices v_1, v_2, \ldots, v_m and $N_G(v_i)\cap C(G)=\{v_i^1,v_i^2,\ldots,v_i^{k_i}\},$ where $i\in[m]$ and $k_i\geq 2.$ Let $\mathbb{H}'_{n,4}$ be the set of all those graphs of $\mathbb{H}_{n,4}$ that contain no hanging vertex. Denote by $\mathbb{H}_{n,4}^*$ the set of all those graphs of $\mathbb{H}_{n,4}$ that contain at least one hanging vertex. Also, we

[∗]Corresponding author [\(kexxu1221@126.com\)](mailto:kexxu1221@126.com).

denote by $\mathbb{H}_{n,4}^{*1}$ (respectively, $\mathbb{H}_{n,4}^{*2}$) the set of all those graphs of $\mathbb{H}_{n,4}^*$ that contain at least 3 (respectively, only 2) support vertices. Let $\gamma_G(i)$ be the numbers of those pairs of vertices of G that have distance i for $i \in [4]$. Then

$$
W(G) = \gamma_G(1) + 2\gamma_G(2) + 3\gamma_G(3) + 4\gamma_G(4). \tag{1}
$$

In Sections [2,](#page-1-0) [3,](#page-3-0) and [4,](#page-7-0) we give the minimum value of the Wiener index of the graphs belonging to the sets $\mathbb{H}'_{n,4}$, $\mathbb{H}^{*1}_{n,4}$ and $\mathbb{H}_{n,4}^{*2}$, respectively. Section [5](#page-10-0) presents the main result of this paper, which not only gives the minimum Wiener index of the graphs in $\mathbb{H}_{n,4}$ but also provides the corresponding extremal graphs.

2. **Graphs in** $\mathbb{H}'_{n,4}$

Since a graph $G\in\mathbb{H}_{n,4}'$ with m support vertices contains no hanging vertex and any vertex of degree 2, we have $m\geq 3$ and $n\geq 10.$ The characteristic tree $T(G)$ is shown in Figure [2.1.](#page-1-1) Let $E(C(G))=\{v_i^jv_i^{j+1}:i\in [m],j\in [k_i-1]\}\cup \{v_i^{k_i}v_{i+1}^1:i\in [m]\}.$ Suppose that the number of k_i with $k_i = 2$ for $i \in [m]$ is ℓ . By the relationship between the support vertices and their neighbors, we have

$$
|G| = n = m + 1 + \sum_{i=1}^{m} k_i.
$$
 (2)

Figure 2.1: The characteristic tree $T(G)$ of $G \in \mathbb{H}'_{n,4}$.

Proposition 2.1. *If* $G \in \mathbb{H}'_{n,4}$ *has* $m \geq 3$ *support vertices, then*

$$
W(G) = n2 + (m - 6)n + 2 \sum_{1 \le i < j \le m} k_i k_j - (m + 2)m + 5 - \ell,\tag{3}
$$

with $n \ge 10$ *and* $k_i = |N_G(v_i) \cap C(G)| \ge 2$ *for* $i \in [m]$ *.*

Proof. We consider the pairs of vertices at distance i and calculate the values of $\gamma_G(i)$ for every $i \in [4]$. By Equation [\(2\)](#page-1-2), we have

$$
\gamma_G(1) = |E(G)| = m + 2\sum_{i=1}^m k_i = 2n - m - 2.
$$
 (4)

In the following discussion, we assume that $k_i,$ $v_i,$ and v_i^j have subscripts modulo m for $i\in[m].$ There are three cases for the pairs of vertices at distance 2.

Case A1. Pairs of vertices contain $o: \{(o, v_i^1), (o, v_i^2) \dots, (o, v_i^{k_i}) : i \in [m]\}.$ By Equation [\(2\)](#page-1-2), the number of these pairs is

$$
\sum_{i=1}^{m} k_i = n - m - 1.
$$

Case A2. Pairs of vertices contain support vertices v_i for $i \in [m]$: $\{(v_i, v_j) : i, j \in [m], i \neq j\}$ and $\{(v_i, v_{i+1}^1), (v_{i+1}, v_i^{k_i}) : i \in [m]\}$. The number of these pairs is $\frac{1}{2}m(m+3)$.

Case A3. Pairs of vertices whose both vertices are in $C(G)$: $\{(u, v) : i \in [m], d_G(u, v) = 2, u, v \in N_G(v_i) \cap C(G)\}$ and $\{(v_i^{k_i}, v_{i+1}^2), (v_i^{k_i-1}, v_{i+1}^1) : i \in [m]\}$. By Equation [\(2\)](#page-1-2), the number of such pairs is

$$
\frac{1}{2}\sum_{i=1}^{m}(k_i)^2 - \frac{3}{2}\sum_{i=1}^{m}k_i + 3m = \frac{1}{2}n^2 - (m + \frac{5}{2})n - \sum_{1 \le i < j \le m} k_i k_j + \frac{1}{2}m^2 + \frac{11}{2}m + 2.
$$

Hence, by Cases A1, A2, and A3, we have

$$
\gamma_G(2) = \frac{1}{2}n^2 - (m + \frac{3}{2})n - \sum_{1 \le i < j \le m} k_i k_j + m^2 + 6m + 1. \tag{5}
$$

For the pairs of vertices at distance 3, there are two cases.

Case B1. Pairs of vertices contain support vertices: $\{(v_j, v) : v \in \bigcup_{i \in [m] \setminus \{j\}} \{v_i^1, v_i^2, \ldots, v_i^{k_i}\} \setminus \{v_{j+1}^1, v_{j-1}^{k_{j-1}}\}, j \in [m]\}$ (if $j = 1$, then we assume that $v_{j-1}^{k_{j-1}}$ is $v_{m}^{k_{m}}$). By Equation [\(2\)](#page-1-2), the number of these pairs is

$$
(m-1)\sum_{i=1}^{m}k_i-2m = (m-1)n - m^2 - 2m + 1.
$$

Case B2. Pairs of vertices whose both vertices are in $C(G)$.

Subcase B2.1. $\{(v_i^{k_i-1}, v_{i+1}^2) : i \in [m]\}$. The number of these pairs is m .

Subcase B2.2. First, we consider the case when $k_i \geq 3$ for $i \in [m]$. Then, we list such pairs of vertices as follows: $\{(v_j^{k_j},v_{j+1}^h):h\in[k_{j+1}]\setminus\{1,2\},j\in[m]\}$ and $\{(v_{j+1}^1,v_j^h):h\in[k_j]\setminus\{k_j-1,k_j\},j\in[m]\}.$ By Equation [\(2\)](#page-1-2), the number of such pairs of vertices is

$$
2\sum_{i=1}^{m}k_i - 4m = 2n - 6m - 2.
$$

However, if $k_p=2,~p\in[m],$ and the rest $k_i\geq 3,$ then we note that a new pair of vertices $\{(v^{k_{p-1}}_{p-1},v^{1}_{p+1})\}$ with distance 3 has emerged, due to $k_p=2$ (if $p=1$, then this pair of vertices is $\{(v_m^{k_m},v_2^1)\}).$ Obviously, all other situations still satisfy our previous discussion. Recall that the number of k_i whose value is 2 for $i \in [m]$ is ℓ . Thus, the number of these pairs is $2n - 6m - 2 + \ell$.

Hence, by Cases B1 and B2, we have

$$
\gamma_G(3) = (m+1)n - m^2 - 7m - 1 + \ell. \tag{6}
$$

Finally, we consider the case when there are pairs of vertices at distance 4: $\{(u, v) : u, v \in C(G), d_G(u, v) = 4\}$. Then, the number of these pairs is

$$
\gamma_G(4) = \sum_{1 \le i < j \le m} k_i k_j - 2n + 2m + 2 - \ell. \tag{7}
$$

Now, from Equations [\(1\)](#page-1-3), [\(4\)](#page-1-4), [\(5\)](#page-2-0), [\(6\)](#page-2-1), and [\(7\)](#page-2-2), the required result follows.

Lemma 2.1. Let $x_n \ge x_{n-1} \ge \cdots \ge x_2 \ge x_1 \ge 2$ be *n positive integers with* $\sum_{i=1}^n x_i = M$ *. Define*

$$
f(x_1, x_2, \dots, x_n) = \sum_{1 \leq i < j \leq n} x_i x_j,
$$

where $i, j \in [n]$. Then $f(x_1, x_2, \ldots, x_n)$ attains the minimum value if and only if there exists $l \in [n]$ such that $x_l = M - 2(n - 1)$ *and* $x_i = 2$ *for* $i \in [n] \setminus \{l\}.$

Proof. Suppose to the contrary that there exist two positive integers $x_i \geq x_j \geq 3$ for $i, j \in [n]$. We replace x_i and x_j with $x_i + 1$ and $x_j + 1$, respectively. Then

$$
f(x_1, \ldots, x_j - 1, \ldots, x_i + 1, \ldots, x_n) - f(x_1, x_2, \ldots, x_n) = x_j - x_i - 1 < 0,
$$

which is a contraction. Therefore, at most one $x_i, i \in [n]$, is greater than 2.

Let $G_{1,m} \in \mathbb{H}'_{n,4}$ be a graph with $m \geq 3$ support vertices. Also, let

$$
k_m = \sum_{i=1}^{m} k_i - 2(m-1) = n - 3m + 1
$$

and $k_i = 2$ for $i \in [m-1]$. For an example, The characteristic tree $T(G_{1,3})$ of $G_{1,3}$ is shown in Figure [2.2.](#page-3-1)

 \Box

Figure 2.2: The characteristic tree $T(G_{1,3})$ of $G_{1,3}$.

By Proposition [2.1,](#page-1-5)

$$
W(G_{1,m}) = \begin{cases} -9m^2 + (5n+1)m + n^2 - 10n + 10, & \text{if } k_m \ge 3, \\ -9m^2 + (5n+1)m + n^2 - 10n + 9, & \text{if } k_m = 2. \end{cases}
$$
(8)

In the following, we give the graphs with the minimum Wiener index in $\mathbb{H}'_{n,4}$.

Theorem 2.1. For any graph $G \in \mathbb{H}'_{n,4}$, we have $W(G) \ge F_1(n)$ and

$$
F_1(n) = \begin{cases} 81, & \text{if } n = 10, \\ n^2 + 5n - 68, & \text{if } n \ge 11, \end{cases}
$$
 (9)

where the equality $W(G) = F_1(n)$ *holds if and only if* $G \cong G_{1,3}$ *.*

Proof. Suppose that $G \in \mathbb{H}'_{n,4}$ has m support vertices and attains the minimum Wiener index. By Proposition [2.1,](#page-1-5)

$$
W(G) = n^{2} + (m - 6)n + 2 \sum_{1 \leq i < j \leq m} k_{i}k_{j} - (m + 2)m + 5 - \ell,
$$

with $n \ge 10$, where $k_i = |N_G(v_i) \cap C(G)| \ge 2$ for $i \in [m]$ and ℓ is the number of k_i with $k_i = 2$ for $i \in [m]$. Without loss of generality, by Lemma [2.1,](#page-2-3) $k_m = \sum_{i=1}^m k_i - 2(m-1) = n-3m+1$ and $k_i = 2$ for $i \in [m-1]$ in G. Note that $G \cong G_{1,m}$.

By Equation [\(8\)](#page-3-2), we define the function

$$
f_1(x) = -9x^2 + (5n+1)x
$$
 for $x \in \left[3, \left\lfloor \frac{n-1}{3} \right\rfloor \right]$ with $n \in N^*$ and $n \ge 10$.

Note that $f_1(x)$ attains the minimum value if and only if $x = 3$. Hence, we conclude that $W(G_{1,m})$ takes the minimum value if and only if $m = 3$. Thus, $G \cong G_{1,3}$. By taking $m = 3$ in Equation [\(8\)](#page-3-2), we have $W(G_{1,3}) = F_1(n)$. \Box

3. Graphs in $\mathbb{H}_{n,4}^{*1}$

For a graph $G\in\mathbb{H}^*_{n,4}$ with m support vertices, we now define some terms related to hanging vertices in $G.$ In Figure $3.1,$ there is a hanging vertex z_1 between the vertices $v_{l_1}^{k_{l_1}}$ and $v_{l_1+1}^1$; we call such a vertex the *single hanging vertex* in the region $l_1.$ There are also at least 2 hanging vertices $y_1^1,\ldots,y_1^{p_1}$ between the vertices $v_{r_1}^{k_{r_1}}$ and $v_{r_1+1}^1;$ we call such vertices the *multiple hanging vertices* in the region r_1 .

Figure 3.1: The characteristic tree $T(G)$ of $G \in \mathbb{H}_{n,4}^*$.

Suppose that $G\in \mathbb{H}_{n,4}^{*1}$ has $m\geq 3$ support vertices. Recall that if v_i is a support vertex, then $k_i=|N_G(v_i)\cap C(G)|\geq 2$ for $i \in [m]$. Let t be the number of regions with a single hanging vertex and s be the number of regions with multiple hanging vertices. Without loss of generality, suppose that there are t single hanging vertices z_1, z_2, \ldots, z_t in the regions $l_1, l_2, \ldots, l_t \in [m]$ in G, respectively. Let $\{y_1^1, y_1^2, \ldots, y_1^{p_1}\}, \{y_2^1, y_2^2, \ldots, y_1^{p_2}\}, \ldots, \{y_s^1, y_s^2, \ldots, y_s^{p_s}\}$ be the sets of p_1, p_2, \ldots, p_s multiple hanging vertices in the regions $r_1, r_2, \ldots, r_s \in [m]$, respectively. Note that $p_i \geq 2$ for $i \in [s]$. Let ε be the number of p_i with $p_i = 2$ for $i \in [s]$. Let σ be the set of all hanging vertices and $x = \sum_{i=1}^s p_i + t$ be the number of hanging vertices. Also, let $\Phi = \{l_1, l_2, \ldots, l_t, r_1, r_2, \ldots, r_s\}$ denote the set of regions with hanging vertices in G and $\Psi = \Phi \cup \{l_1 + 1, \ldots, l_t + 1, r_1 + 1, \ldots, r_s + 1\}.$ Let λ be the number of k_i with $k_i = 2$ for $i \in [m] \setminus \Psi$. Let

$$
E(C(G)) = \{v_i^j v_i^{j+1} : i \in [m], j \in [k_i - 1]\} \cup \{v_i^{k_i} v_{i+1}^1 : i \in [m] \setminus \Phi\} \cup \{v_{l_i}^{k_{l_i}} z_i, z_i v_{l_i+1}^1 : i \in [t]\}
$$

$$
\cup \{v_{r_i}^{k_{r_i}} y_i^1, y_i^j y_i^{j+1}, y_i^{p_i} v_{r_i+1}^1 : i \in [s], j \in [p_i - 1]\}.
$$
 (10)

By the relationship between the support vertices and their neighbors, we have

$$
|V(G)| = n = m + 1 + \sum_{i=1}^{m} k_i + \sum_{i=1}^{s} p_i + t = m + 1 + \sum_{i=1}^{m} k_i + x.
$$
 (11)

 $\bf{Proposition~3.1.}$ If $G \in \mathbb{H}_{n,4}^{*1}$, then keeping in mind the concepts defined before this proposition, we have

$$
W(G) = n^{2} + (m - 6)n + 2 \sum_{1 \leq i < j \leq m} k_{i}k_{j} - (m + 2)m + 5 - \lambda
$$
\n
$$
+ x(\sum_{i=1}^{m} k_{i} - m + 3) - s - 3t + \sum_{i \in \Phi} (k_{i} + k_{i+1}) - \varepsilon,
$$
\n
$$
(12)
$$

with $n > 11$ *and* $m > 3$ *.*

Proof. We consider the pairs of vertices at distance i and calculate the values of $\gamma_G(i)$ for every $i \in [4]$. By Equation [\(11\)](#page-4-0), we have

$$
\gamma_G(1) = |E(G)| = m + 2\sum_{i=1}^m k_i + 2t + 2\sum_{i=1}^s p_i = 2n - m - 2.
$$
 (13)

In the following discussion, we assume that $k_i,$ $v_i,$ and v_i^j have subscripts modulo m for $i\in[m].$ For the pairs of vertices at distance 2, there are four cases.

Case A1. Pairs of vertices contain $o: \{(o, v_i^1), (o, v_i^2), \ldots, (o, v_i^{k_i}) : i \in [m]\}.$ By Equation [\(11\)](#page-4-0), the number of these pairs is

$$
\sum_{i=1}^{m} k_i = n - m - 1 - x.
$$

Case A2. Pairs of vertices contain support vertices and no hanging vertex:

$$
\{(v_i, v_j) : i, j \in [m], i \neq j\} \text{ and } \{(v_i, v_{i+1}^1), (v_{i+1}, v_i^{k_i}) : i \in [m] \setminus \Phi\}.
$$

The number of these pairs is

$$
\frac{m(m+3)}{2}-2(t+s).
$$

Case A3. Pairs of vertices with no hanging vertices and whose both vertices are in $C(G)$.

Subcase A3.1. $\{(u, v) : i \in [m], d_G(u, v) = 2, u, v \in N_G(v_i) \cap C(G)\}$. By Equation [\(11\)](#page-4-0), the number of these pairs is

$$
\frac{1}{2}\sum_{i=1}^{m}(k_i)^2 - \frac{3}{2}\sum_{i=1}^{m}k_i + m = \frac{1}{2}n^2 - \left(m + \frac{5}{2}\right)n - \sum_{1 \le i < j \le m} k_i k_j + \frac{1}{2}m^2 + \frac{7}{2}m + 2 - nx + \frac{1}{2}x^2 + \left(m + \frac{5}{2}\right)x.
$$

 $\textbf{Subcase A3.2.} \; \{(v_i^{k_i}, v_{i+1}^2), (v_i^{k_i-1}, v_{i+1}^1) : i \in [m] \setminus \Phi\} \; \text{and} \; \{(v_i^{k_i}, v_{i+1}^1) : i \in \{l_1, l_2, \ldots, l_t\}\}. \; \text{The number of these pairs is}$ $2m - 2s - t$.

Case A4. Pairs of vertices contain hanging vertices.

Subcase A4.1. Pairs of vertices contain hanging vertices and support vertices:

 $\{(z_i, v_k) : i \in [t], k \in [m]\} \quad \text{and} \quad \{(y_i^1, v_k), (y_i^2, v_k), \dots, (y_i^{p_i}, v_k) : i \in [s], k \in [m]\}.$

The number of these pairs is mx .

Subcase A4.2. Pairs of vertices contain only hanging vertices: $\{(u, v) : u, v \in \sigma, d_G(u, v) = 2\}$. The number of these pairs is

$$
\frac{1}{2}x^2 - \frac{1}{2}x - \sum_{i=1}^{s} p_i + s.
$$

Subcase A4.3. Pairs of vertices contain both hanging vertices and the vertices in $C(G)$:

$$
\{(y_i^1, v_{r_i}^{k_{r_i}-1}), (y_i^2, v_{r_i}^{k_{r_i}}), (y_i^{p_i-1}, v_{r_i+1}^1), (y_i^{p_i}, v_{r_i+1}^2) : i \in [s]\} \text{ and } \{ (z_i, v_{l_i}^{k_{l_i}-1}), (z_i, v_{l_i+1}^2) : i \in [t]\}.
$$

The number of these pairs is $4s + 2t$.

Hence, by Cases A1, A2, A3, and A4, we have

$$
\gamma_G(2) = \frac{1}{2}n^2 - (m + \frac{3}{2})n - \sum_{1 \le i < j \le m} k_i k_j + m^2 + 6m + 1 + x^2 + (2m - n)x + s. \tag{14}
$$

There are four cases for the pairs of vertices at distance 3.

Case B1. Pairs of vertices contain support vertices.

 $\textbf{Subcase B1.1. } \{(v_j, v): v\in \bigcup_{i\in [m]\setminus\{j\}} \{v_i^1, v_i^2, \ldots, v_i^{k_i}\} \setminus \{v_{j+1}^1, v_{j-1}^{k_{j-1}}\}, j\in [m]\} \text{ (if } j=1 \text{, then we assume that } v_{j-1}^{k_{j-1}} \text{ is } v_{m}^{k_{m}}\text{).}$ By Equation [\(11\)](#page-4-0), the number of these pairs is

$$
(m-1)\sum_{i=1}^{m}k_i - 2m = (m-1)n - m^2 - 2m + 1 + (1-m)x.
$$

 $\textbf{Subcase B1.2.}\ \{(v_j, v_{j+1}^1), (v_{j+1}, v_j^{k_j}) : j \in \Phi\}.$ The number of such pairs is $2(s+t).$

Case B2. Pairs of vertices with no hanging vertices and whose both vertices are in $C(G)$.

Subcase B2.1. $\{(v_i^{k_i-1}, v_{i+1}^2) : i \in [m] \setminus \Phi\}$. The number of these pairs is $m - s - t$.

 $\textbf{Subcase B2.2.} \; \{(v_i^{k_i}, v_{i+1}^2), (v_i^{k_i-1}, v_{i+1}^1) : i \in \{l_1, l_2, \ldots, l_t\} \}. \text{ The number of these pairs is } 2t.$

Subcase B2.3. First, we assume that $k_i \geq 3$ for $i \in [m] \setminus \Psi$. Then, we list such pairs of vertices:

 $\{(v^{k_j}_j, v^i_{j+1}) : i \in [k_{j+1}] \setminus \{1, 2\}, j \in [m] \setminus \Phi\} \quad \text{and} \quad \{(v^1_{j+1}, v^i_j) : i \in [k_j] \setminus \{k_j - 1, k_j\}, j \in [m] \setminus \Phi\}.$

By Equation [\(11\)](#page-4-0), the number of the pairs of vertices mentioned above is

$$
2\sum_{i=1}^{m}k_i - 4(m - s - t) - \sum_{i \in \Phi}(k_i + k_{i+1}) = 2n - 6m - 2 + 4(s + t) - 2x - \sum_{i \in \Phi}(k_i + k_{i+1}).
$$

As discussed in Proposition [2.1,](#page-1-5) the number of those k_i whose value is 2 for $i \in [m] \setminus \Psi$ is λ . Thus, the number of these pairs of vertices is

$$
2n - 6m - 2 + \lambda + 4(s + t) - 2x - \sum_{i \in \Phi} (k_i + k_{i+1}).
$$

Case B3. Pairs of vertices contain a single hanging vertex. By Equation [\(11\)](#page-4-0), for any $h \in [t]$, the number of pairs of vertices

$$
\{(z_h, v_i^p) : i \in [m] \setminus \{l_h, l_{h+1}\}, p \in [k_i] \} \cup \{(z_h, v_{l_h}^p) : p \in [k_{l_h}] \setminus \{k_{l_h} - 1, k_{l_h}\} \} \cup \{(z_h, v_{l_h+1}^p) : p \in [k_{l_h+1}] \setminus \{1, 2\}\}\
$$

is

$$
\sum_{i=1}^{m} k_i - 4 = n - m - 5 - x.
$$

Thus, the total number of such pairs is $t(n - m - 5 - x)$.

Case B4. Pairs of vertices contain multiple hanging vertices. For any $i \in [s]$, we list these pairs of vertices as follows:

$$
\{(u, v_j^1), (u, v_j^2), \dots, (u, v_j^{k_j}) : u \in \{y_i^1, y_i^2, \dots, y_i^{p_i}\}, j \in [m] \setminus \{r_i, r_i + 1\}\};
$$

$$
\{(y_i^1, v_{r_i}^h) : h \in [k_{r_i}] \setminus \{k_{r_i} - 1, k_{r_i}\}\} \cup \{(y_i^2, v_{r_i}^h) : h \in [k_{r_i} - 1]\};
$$

$$
\{(u, v_{r_i}^1), (u, v_{r_i}^2), \dots, (u, v_{r_i}^{k_{r_i}}) : u \in \{y_i^1, \dots, y_i^{p_i}\} \setminus \{y_i^1, y_i^2\}\};
$$

$$
\{(y_i^{p_i}, v_{r_i+1}^h) : h \in [k_{r_i+1}] \setminus \{1, 2\}\} \cup \{(y_i^{p_i-1}, v_{r_i+1}^h) : h \in [k_{r_i+1}] \setminus \{1\}\};
$$

$$
\{(u, v_{r_i+1}^1), (u, v_{r_i+1}^2), \dots, (u, v_{r_i+1}^{k_{r_i+1}}) : u \in \{y_i^1, \dots, y_i^{p_i}\} \setminus \{y_i^{p_i-1}, y_i^{p_i}\}.
$$

We note that if $p_i=2,$ then there exists a pair of vertices $\left(v^{k_{r_i}}_{r_i},v^1_{r_i+1}\right);$ otherwise, the pair of vertices does not exist. Thus, for $i \in [s]$, the total number of such pairs is

$$
\sum_{j=1}^{s} p_j \sum_{i=1}^{m} k_i - 6s + \varepsilon.
$$

Hence, by Cases B1, B2, B3, and B4, we have

$$
\gamma_G(3) = (m+1)n - m^2 - 7m - 1 + \lambda + x(\sum_{i=1}^m k_i - m - 1) + 3t - s - \sum_{i \in \Phi} (k_i + k_{i+1}) + \varepsilon.
$$
 (15)

For the pairs of vertices at distance 4, there is only one possibility: $\{(u, v) : u, v \in V(C(G)) \setminus \sigma, d_G(u, v) = 4\}$, where σ is the set of all hanging vertices. Hence,

$$
\gamma_G(4) = \sum_{1 \le i < j \le m} k_i k_j - 2n + 2m + 2 - \lambda + 2x - 3t + \sum_{i \in \Phi} (k_i + k_{i+1}) - \varepsilon. \tag{16}
$$

Now, by using Equations (1) , (13) , (14) , (15) , and (16) , we obtain the required result.

Now, we consider a graph in $\mathbb{H}_{n,4}^{*1}$ with the minimum Wiener index. For a graph $G\in \mathbb{H}_{n,4}^{*1}$ with $m\geq 3$ support vertices and for any support vertex v_i , recall that $k_i=|N_G(v_i)\cap C(G)|\geq 2$ when $i\in[m].$ Let t be the number of regions with a single hanging vertex, s be the number of regions with multiple hanging vertices, x be the number of hanging vertices, and Φ be the set of regions with hanging vertices in G .

Figure 3.2: The characteristic tree $T(G_{3,3})$ of $G_{3,3}$.

Let $G_{2,m}\in \mathbb{H}_{n,4}^{*1}$ be a graph having m support vertices provided that $k_m=\sum_{i=1}^mk_i-2(m-1),$ $k_i=2$ for $i\in [m-1],$ and $\Phi = \{1\}$. Let $G_{3,m} \in \mathbb{H}_{n,4}^{*1}$ be a graph with m support vertices such that $k_i = 2$ for $i \in [m]$ and $\Phi = \{1\}$. For an example, $T(G_{3,3})$ is shown in Figure [3.2.](#page-6-2)

Theorem 3.1. For any graph $G \in \mathbb{H}_{n,4}^{*1}$, we have $W(G) \ge F_2(n)$ and

$$
F_2(n) = \begin{cases} 106, & \text{if } n = 11, \\ 133, & \text{if } n = 12, \\ n^2 + 3n - 46, & \text{if } n \ge 13, \end{cases}
$$
 (17)

where the equality $W(G) = F_2(n)$ *holds if and only if* $G \cong G_{3,3}$ *.*

Proof. Let $G \in \mathbb{H}_{n,4}^{*1}$ be a graph attaining the minimum Wiener index. Suppose that G has $m \geq 3$ support vertices. By Proposition [3.1,](#page-4-2) we have

$$
W(G) = n^2 + (m-6)n + 2 \sum_{1 \le i < j \le m} k_i k_j - (m+2)m + 5 - \lambda + x(\sum_{i=1}^m k_i - m + 3) - s - 3t + \sum_{i \in \Phi} (k_i + k_{i+1}) - \varepsilon.
$$

Since to $k_i \geq 2$ for $i \in [m]$, all the hanging vertices of G should be in the same region provided that

$$
\sum_{i \in \Phi} (k_i + k_{i+1}) = \min(k_h + k_{h+1})
$$

for $h \in [m]$. Without loss of generality, by Lemma [2.1,](#page-2-3) we have $k_m = \sum_{i=1}^m k_i - 2(m-1)$, $k_i = 2$ for $i \in [m-1]$, and $\Phi = \{1\}$ in G. Note that $G \cong G_{2,m}$. By Proposition [3.1,](#page-4-2) we have the values of $W(G_{2,m})$, and $W(G_{3,m})$. Note that $W(G_{2,m}) \ge W(G_{3,m})$, where the equality holds if and only if $G_{2,m} \cong G_{3,m}$. Next, we show that $W(G_{3,m}) \ge W(G_{3,3})$. For the graph $G_{3,m}$, we have three cases.

Case 1. $x > 3$.

By Proposition [3.1,](#page-4-2) we have $n = 1 + 3m + x \ge 13$ and $W(G_{3,m}) = (2n - 17)m + n^2 - 3n + 5$. Consequently, we have $W(G_{3,m}) \geq W(G_{3,3})$ and

$$
W(G_{3,3}) = n^2 + 3n - 46.\t\t(18)
$$

Case 2. $x = 2$.

By Proposition [3.1,](#page-4-2) we have $n = 3 + 3m > 12$ and

$$
W(G_{3,m}) = \frac{5}{3}n^2 - \frac{32}{3}n + 21.
$$

If $n = 12$, then $m = 3$ and $W(G_{3,3}) = 133$. However, if $n = 3m + 3 \ge 15$, then we have

$$
\frac{5}{3}n^2 - \frac{32}{3}n + 21 > n^2 + 3n - 46.
$$

Case 3. $x = 1$.

By Proposition [3.1,](#page-4-2) we have $n = 2 + 3m \ge 11$ and

$$
W(G_{3,m}) = \frac{5}{3}n^2 - 10n + \frac{43}{3}.
$$

If $n = 11$, then $m = 3$ and $W(G_{3,3}) = 106$. However, if $n = 3m + 2 \ge 14$, we have

$$
\frac{5}{3}n^2 - 10n + \frac{43}{3} > n^2 + 3n - 46.
$$

Therefore, $G \cong G_{3,3}$ and we can obtain Equation [\(17\)](#page-6-3).

4. Graphs in $\mathbb{H}_{n,4}^{*2}$

Since every graph $G \in \mathbb{H}_{n,4}^{*2}$ has only 2 support vertices, we have $\Phi(G) \subseteq [2]$, where $\Phi(G)$ is the set of regions with hanging vertices in $G.$ Let \mathbb{G}_{t1} denote the set of all those graphs of $\mathbb{H}_{n,4}^{*2}$ that contain multiple hanging vertices only in one region and no single hanging vertex. Also, denote by \mathbb{G}_{t2} the set of all those graphs of $\mathbb{H}_{n,4}^{*2}$ that contain multiple hanging vertices in two regions. Furthermore, we denote by \mathbb{G}_{t3} the set of all those graphs of $\mathbb{H}_{n,4}^{*2}$ that contain single hanging vertices in two regions. Moreover, let \mathbb{G}_{t4} be the set of all those graphs of $\mathbb{H}_{n,4}^{*2}$ that contain a single hanging vertex only in one region and no multiple hanging vertices. Finally, we denote by \mathbb{G}_{t5} the set of all those graphs of $\mathbb{H}_{n,4}^{*2}$ that contain both multiple hanging vertices and single hanging vertices. By the properties of the isomorphism, the set $\mathbb{H}_{n,4}^{*2}$ can be divided into $\mathbb{G}_{t1},$ \mathbb{G}_{t2} , \mathbb{G}_{t3} , \mathbb{G}_{t4} , and \mathbb{G}_{t5} . The $E(C(G))$ for $G \in \mathbb{H}_{n,4}^{*2}$ is similar to Equation [\(10\)](#page-4-3). Since the proofs of the following propositions are similar to that of Proposition [3.1,](#page-4-2) we omit them.

Proposition 4.1. *If* $G \in \mathbb{G}_{t1}$ *has two support vertices, then*

$$
W(G) = \begin{cases} 63, & \text{if } n = 9, \\ n^2 - 3n - 7 + p_1(k_1 + k_2) + 2k_1k_2 - \varepsilon, & \text{if } n \ge 10, \end{cases}
$$
(19)

with $k_1, k_2, p_1 \geq 2$ and $n \geq 9$, where ε is the number of p_i with $p_i = 2$ for $i \in \{1\}$ and $T(G)$ is shown in Figure [4.1.](#page-7-1)

Figure 4.1: The characteristic tree $T(G)$ of $G \in \mathbb{G}_{t1}$.

Figure 4.2: The characteristic tree $T(G'_{t1})$ of G'_{t1} .

Let $G'_{t1} \in \mathbb{G}_{t1}$ be a graph with $k_1 = k_2 = 2$. The graph $T(G'_{t1})$ is shown in Figure [4.2.](#page-8-0)

Lemma 4.1. *For any graph* $G \in \mathbb{G}_{t1}$ *, we have* $W(G) \ge F_3(n)$ *and*

$$
F_3(n) = \begin{cases} 63, & \text{if } n = 9, \\ n^2 + n - 27, & \text{if } n \ge 10, \end{cases}
$$
 (20)

where the equality $W(G) = F_3(n)$ *holds if and only if* $G \cong G'_{t1}$ *.*

Proof. By Proposition [4.1](#page-7-2) we have $W(G'_{t1}) = F_3(n)$. For any graph $G \in \mathbb{G}_{t1}$, by Proposition 4.1 and Lemma [2.1,](#page-2-3) we conclude that if $n = 9$ then $W(G) = W(G'_{t1}) = 63$, and if $n \ge 10$ then

$$
W(G) = n^{2} - 3n - 7 + p_{1}(k_{1} + k_{2}) + 2k_{1}k_{2} - \varepsilon
$$

\n
$$
\geq n^{2} - 3n - 7 + p_{1}(k_{1} + k_{2}) + 4(k_{1} + k_{2} - 2) - \varepsilon
$$

\n
$$
= n^{2} - 3n - 7 + p_{1}(k_{1} + k_{2}) + 4(n - p_{1} - 5) - \varepsilon
$$

\n
$$
= n^{2} + n - 27 + p_{1}(k_{1} + k_{2} - 4) - \varepsilon
$$

\n
$$
\geq W(G'_{t1}).
$$

Proposition 4.2. *If* $G \in \mathbb{G}_{t2}$ *has two support vertices, then*

$$
W(G) = n2 - 3n - 8 + (p1 + p2 + 1)(k1 + k2) + 2k1k2 - \varepsilon,
$$
\n(21)

with $k_1, k_2, p_1, p_2 \ge 2$ and $n \ge 11$, where ε is the number of p_i with $p_i = 2$ for $i \in [2]$ and $T(G)$ is shown in Figure [4](#page-8-1).3.

Figure 4.3: The characteristic tree $T(G)$ of $G \in \mathbb{G}_{t2}$.

Lemma 4.2. For any graph $G \in \mathbb{G}_{t2}$, it holds that $W(G) > W(G'_{t1})$.

Proof. By Proposition [4.2](#page-8-2) and Lemma [2.1,](#page-2-3) we have

$$
W(G) = n^2 - 3n - 8 + (p_1 + p_2 + 1)(k_1 + k_2) + 2k_1k_2 - \varepsilon
$$

\n
$$
\ge n^2 - 3n - 8 + (p_1 + p_2 + 1)(k_1 + k_2) + 4(k_1 + k_2 - 2) - \varepsilon
$$

\n
$$
= n^2 + n - 27 + (p_1 + p_2)(k_1 + k_2 - 4) + (k_1 + k_2) - 1 - \varepsilon
$$

\n
$$
> W(G'_{t1}).
$$

Figure 4.4: The characteristic tree $T(G)$ of $G \in \mathbb{G}_{t3}$.

 v_1

 \overline{v} $k₁$ 1

 z_1

 v_2

 \overline{v} 1 2

o

 \overline{v} k_{2} 2

 \overline{v} 1 1

 $\overline{z_2}$

Proposition 4.3. *If* $G \in \mathbb{G}_{t3}$ *has two support vertices, then*

$$
W(G) = \begin{cases} 64, & \text{if } n = 9, \\ n^2 + 2k_1k_2 - 27, & \text{if } n \ge 10, \end{cases}
$$
 (22)

with $k_1, k_2 \geq 2$ *and* $n \geq 9$ *, where* $T(G)$ *is shown in Figure [4.4.](#page-9-0)*

Lemma 4.3. For any graph $G \in \mathbb{G}_{t3}$, it holds that $W(G) > W(G'_{t1})$.

Proof. By Proposition [4.3](#page-9-1) and Lemma [2.1,](#page-2-3) if $n = 9$ then $W(G) > W(G'_{t1})$, and if $n \ge 10$ then

$$
W(G) = n2 + 2k1k2 - 27
$$

\n
$$
\ge n2 + 4(k1 + k2 - 2) - 27
$$

\n
$$
= n2 + 4(n - 7) - 27
$$

\n
$$
> W(G'_{t1}).
$$

Proposition 4.4. *If* $G \in \mathbb{G}_{t4}$ *has two support vertices, then*

$$
W(G) = \begin{cases} 46, & \text{if } n = 8, \\ 64, & \text{if } n = 9, \\ n^2 - 2n + 2k_1k_2 - 12, & \text{if } n \ge 10, \ k_1 = 2 \text{ or } k_2 = 2, \\ n^2 - 2n + 2k_1k_2 - 13, & \text{if } n \ge 10, \ k_1 \ne 2 \text{ and } k_2 \ne 2, \end{cases}
$$
(23)

with $k_1, k_2 \geq 2$ *and* $n \geq 8$ *, where* $T(G)$ *is shown in Figure* [4.5.](#page-9-2)

Figure 4.5: The characteristic tree $T(G)$ of $G \in \mathbb{G}_{t4}$.

Let $G'_{t4} \in \mathbb{G}_{t4}$ be the graph with $n = 8$.

Lemma 4.4. For any graph $G \in \mathbb{G}_{t4}$ with $n \geq 9$, it holds that $W(G) > W(G'_{t1})$.

Proof. By Proposition [4.4](#page-9-3) and Lemma [2.1,](#page-2-3) if $n = 9$ then $W(G) > W(G'_{t1})$, and if $n \ge 10$ then

$$
W(G) \ge n^2 - 2n + 2k_1k_2 - 13 \ge n^2 - 2n + 4(k_1 + k_2 - 2) - 13
$$

= $n^2 - 2n + 4(n - 6) - 13 = n^2 + 2n - 37$
> $W(G'_{t1}).$

Hence, $W(G) > W(G'_{t1})$ for $n \geq 9$.

Proposition 4.5. *If* $G \in \mathbb{G}_{t5}$ *has two support vertices, then*

$$
W(G) = n2 - 3n - 10 + (p1 + 2)(k1 + k2) + 2k1k2 - \varepsilon,
$$
\n(24)

with $k_1, k_2, p_1 \geq 2$ and $n \geq 10$, where ε is the number of p_i with $p_i = 2$ for $i \in \{1\}$ and $T(G)$ is shown in Figure [4.6.](#page-10-1)

Figure 4.6: The characteristic tree $T(G)$ of $G \in \mathbb{G}_{t_0}$.

Let $G'_{t5} \in \mathbb{G}_{t5}$ be a graph of order $n = 10$ in which $k_1 = k_2 = p_1 = 2$. **Lemma 4.5.** For any graph $G \in \mathbb{G}_{t5}$, we have $W(G) \geq W(G'_{t1})$, where equality holds if and only if $G \cong G'_{t5}$. **Proof.** By Proposition [4.5](#page-10-2) and Lemma [2.1,](#page-2-3) we have

$$
W(G) = n^2 - 3n - 10 + (p_1 + 2)(k_1 + k_2) + 2k_1k_2 - \varepsilon
$$

\n
$$
\ge n^2 - 3n - 10 + (p_1 + 2)(k_1 + k_2) + 4(k_1 + k_2 - 2) - \varepsilon
$$

\n
$$
= n^2 - 3n - 10 + (p_1 + 2)(k_1 + k_2) + 4(n - p_1 - 6) - \varepsilon
$$

\n
$$
= n^2 + n - 27 + (p_1 + 2)(k_1 + k_2 - 4) + 1 - \varepsilon
$$

\n
$$
\ge W(G'_{t1}),
$$

where the equality $W(G) = W(G'_{t_1})$ holds if and only if $k_1 = k_2 = p_1 = 2$, that is, $G \cong G'_{t_5}$.

Theorem 4.1. Let $G \in \mathbb{H}_{n,4}^{*2}$. If $n = 8$, then $G \cong G'_{t4}$. If $n = 10$, then $W(G) \geq W(G'_{t1})$, where the equality holds if and only if $G \cong G'_{t1}$ or $G \cong G'_{t5}$. If $n = 9$ or $n \ge 11$, then $W(G) \ge W(G'_{t1})$, where the equality holds if and only if $G \cong G'_{t1}$.

Proof. By Lemmas [4.1,](#page-8-3) [4.2,](#page-8-4) [4.3,](#page-9-4) [4.4,](#page-9-5) and [4.5,](#page-10-3) we obtain the desired result.

5. Main result

This section gives the main theorem of this paper, which is proved by using the results established in the previous three sections.

Theorem 5.1. Let $G \in \mathbb{H}_{n,4}$ be a graph with the minimum Wiener index. If $n = 8$ then $G \cong G'_{t4}$, if $n = 10$ then $G \cong G_{1,3}$, $and if n = 9 or n \ge 11, then G \cong G'_{t1}$. Also,

$$
W(G) = \begin{cases} 46, & \text{if } n = 8, \\ 63, & \text{if } n = 9, \\ 81, & \text{if } n = 10, \\ n^2 + n - 27, & \text{if } n \ge 11. \end{cases}
$$
 (25)

Proof. By Theorems [2.1,](#page-3-4) [3.1,](#page-6-4) and [4.1,](#page-10-4) we compare the values of $W(G_{1,3}), W(G_{3,3}),$ and $W(G'_{t1}),$ and then we obtain the required result. \Box

 \Box

 \Box

References

- [1] J. A. Bondy, L. Lovasz, Lengths of cycles in Halin graphs, ´ *J. Graph Theory* **9** (1985) 397–410.
- [2] V. Božović, Ž. K. Vukićević, G. Popivoda, R. Pan, X. Zhang, Extreme Wiener indices of trees with given number of vertices of maximum degree, Discrete Appl. Math. 304 (2021) 23–31.
- [3] P. Dankelmann, A. Alochukwu, Wiener index in graphs with given minimum degree and maximum degree, *Discrete Math. Theor. Comput. Sci.* **23** (2021) #11.
- [4] K. C. Das, M. J. Nadjafi-Arani, On maximum Wiener index of trees and graphs with given radius, *J. Comb. Optim.* **34** (2017) 574–587.
- [5] I. Gutman, A property of the Wiener number and its modifications, *Indian J. Chem.* **36A** (1997) 128–132.
- [6] R. Halin, Über simpliziale Zerfallungen beliebiger, *Math. Ann.* **156** (1964) 216–225.
- [7] S. He, H. Liu, The maximum number of short paths in a Halin graph, *Discrete Optim.* **50** (2023) #100809.
- [8] S. Klavžar, M. J. Nadjafi-Arani, On the difference between the revised Szeged index and the Wiener index, *Discrete Math.* 333 (2014) 28–34.
- [9] S. Klavžar, M. J. Nadjafi-Arani, Wiener index in weighted graphs via unification of Θ[∗]-classes, *European J. Combin.* **36** (2014) 71–76.
- [10] S. Klavžar, M. J. Nadjafi-Arani, Improved bounds on the difference between the Szeged index and the Wiener index of graphs, *European J. Combin*. 39 (2014) 148–156.
- [11] M. Knor, R. Škrekovski, A. Tepeh, Selected topics on Wiener index, Ars Math. Contemp. 24 (2024) #P4.07.
- [12] L. Li, X. Li, W. Liu, Note on the product of Wiener and Harary indices, *MATCH Commun. Math. Comput. Chem.* **91** (2024) 299–305.
- [13] X. Liu, Y. Mao, I. Gutman, The Steiner Wiener index of a graph, *Discuss. Math. Graph Theory* **36** (2016) 455–465.
- [14] H. Wiener, Structural determination of paraffin boiling points, *J. Am. Chem. Soc.* **69** (1947) 17–20.
- [15] K. Xu, A. Ilić, V. Iršič, S. Klavžar, H. Li, Comparing Wiener complexity with eccentric complexity, Discrete Appl. Math. 290 (2021) 7-16.
- [16] K. Xu, J. Li, Z. Luo, Comparative results between the number of subtrees and Wiener index of graphs, *RAIRO Oper. Res.* **56** (2022) 2495–2511.
- [17] K. Xu, M. Wang, J. Tian, Relations between Merrifield-Simmons and Wiener indices, *MATCH Commun. Math. Comput. Chem.* **85** (2021) 147–160.