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Abstract
For an entire transcendental function f and a sequence (λn) of positive numbers increasing to +∞, suppose that A and Aj ,
with 1 ≤ j ≤ p, are entire functions represented by series in the system of functions f(λnz) provided that the function A is
a Hadamard composition of genus m of functions Aj . In terms of generalized orders, the connection between the growth of
the function A with respect to the function f and the growth of the functions Aj with respect to f is studied.
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1. Introduction

Let f and g be entire transcendental functions and Mf (r) = max{|f(z)| : |z| = r}. In order to study the relative growth of
the functions f and g, Roy [15] used the order

%g[f ] = lim
r→+∞

ln M−1g (Mf (r))

ln r

and the lower order
λg[f ] = lim

r→+∞

ln M−1g (Mf (r))

ln r

of the function f with respect to the function g. Research on the relative growth of entire functions in terms of
maximal terms, Nevanlinna characteristic function, and k-logarithmic orders was continued by several mathematicians;
for example, see [5–8]. In [3], the relative growth of entire functions of two complex variables was considered. In [4],
the relative growth of the entire Dirichlet series in terms of R-orders was studied. For the Dirichlet series F (s) =∑∞
n=1 fn exp{sλn}, the relative growth was studied in [11,12,14].
Let fj(z) =

∑∞
n=0 an,jz

n (j = 1, 2) be entire transcendental functions. The function (f1 ∗f2)(z) =
∑∞
n=0 anz

n is said [9] to
be the Hadamard composition (product) of the functions fj if an = an,1an,2 for every n. Hadamard [2,10] obtained several
properties of this composition and found some applications of this composition in the theory of the analytic continuation
of the functions represented by power series. For the Dirichlet series, the usual Hadamard composition is defined in a
similar way. For these series, the concept of Hadamard compositions of the genus m was introduced in [1, 13] and their
relative growth was studied there.

In the present paper, we study the relative growth of Hadamard compositions of the genus m of series in systems of
functions. Let

f(z) =

∞∑
k=0

fkz
k (1)

be an entire transcendental function and Mf (r) = max{|f(z)| : |z| = r}. Let Λ = (λn) be a sequence of positive numbers
increasing to +∞. Denote by S(Λ, f, R) the class of the series

A(z) =

∞∑
n=1

anf(λnz) (2)

in the system f(λnz) regularly convergent in DR = {z : |z| < R}; that is, for every r ∈ [0, R),

M(r,A) :=

∞∑
n=1

|an|Mf (rλn) < +∞. (3)
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We remark that the function ln Mf (r) is logarithmically convex and therefore,

Γf (r) :=
d ln Mf (r)

d ln r
↗ +∞, r → +∞.

(On the points where the derivative does not exist, under d ln Mf (r)
d ln r means the right-hand derivative.)

If series (2) regularly converges in C, then the function A is entire. Generalized orders are used to study its growth.
Denote by L the class of continuous non-negative functions α on (−∞, +∞) such that α(x) = α(x0) ≥ 0 for x ≤ x0 and
α(x) ↑ +∞ as x0 ≤ x → +∞. We say that α ∈ L0 if α ∈ L and α((1 + o(1))x) = (1 + o(1))α(x) as x → +∞. Also, α ∈ Lsi
if α ∈ L and α(cx) = (1 + o(1))α(x) as x → +∞ for every c ∈ (0, +∞); that is, α is a slowly increasing function. Note that
Lsi ⊂ L0. For α ∈ L and β ∈ L, the quantities

%α,β [f ] = lim
r→+∞

α(ln Mf (r))

β(r)

and
λα,β [f ] = lim

r→+∞

α(ln Mf (r))

β(r)

are called [17] generalized (α, β)-order and lower (α, β)-order of an entire function f , respectively. The relationship between
the growth of functions A ∈ S(Λ, f,+∞) and f in terms of generalized orders was studied in [18]. Particularly, it has
been proven that if α ∈ Lsi, β(ex) ∈ L0, d ln β−1(cα(x))

d ln x = O(1) as x → +∞ for every c ∈ (0, +∞), an ≥ 0 for all n ≥ 1,
ln λn = o

(
ln β−1(cα

(
1

ln λn
ln 1

an

))
as n→∞ for every c ∈ (0, +∞), and ln n = O(Γf (λn)) as n→∞, then %α,β [A] = %α,β [f ].

The growth of the function A ∈ S(Λ, f,+∞) with respect to the function f is identified in [19] with the growth of the
function M−1f (M(r,A)) as r → +∞. The generalized (α, β)-order %α,β [A]f and the generalized lower (α, β)-order λα,β [A]f

of the function A ∈ S(Λ, f,+∞) with respect to a function f are defined [19] as

%α,β [A]f := lim
r→+∞

α(M−1f (M(r,A)))

β(r)
and λα,β [A]f := lim

r→+∞

α(M−1f (M(r,A)))

β(r)
.

In [19], it was shown that if A ∈ S(Λ, f,+∞), an ≥ 0 for every n ≥ 1, ln n ≤ qΓf (λn)) for some q > 0 and for every n ≥ n0,
and lim

x→+∞
ln µ(x)

x ln M−1
f (ex)

= γ, where µ(x) = max{|an|λxn : n ≥ 1}, then

λα,α[A]f = %α,α[A]f = 1

provided either γ < 1 and α(ex) ∈ Lsi or γ = 0 and α(ex) ∈ L0.
Let Gj(z) =

∑∞
n=0 gn,jz

n with 1 ≤ j ≤ p. Let P (x1, . . . , xp) be a homogeneous polynomial of degree m; that is,
P (tx1, . . . , txp) = tmP (x1, . . . , xp) for every t from the above field on which a polynomial is defined. The function G(z) =∑∞
n=0 gnz

n is said [21] to be a Hadamard composition of genus m ≥ 1 of functions Gj if gn = P (gn,1, . . . , gn,p), where

P (x1, . . . , xp) =
∑

k1+···+kp=m

ck1...kpx
k1
1 · . . . · xkpp , kj ∈ Z+. (4)

is a homogeneous polynomial of degree m ≥ 1 with constant coefficients ck1...kp . Denote by (G1 ∗ . . . ∗Gp)m the Hadamard
composition of genus m ≥ 1 of functions fj , that is

(G1 ∗ . . . ∗Gp)m(z) =

∞∑
n=0

gnz
n =

∞∑
n=0

 ∑
k1+···+kp=m

ck1...kpg
k1
n,1 · . . . · gkpn,p

 zn.

Properties of Hadamard compositions of genus m ≥ 1 of entire functions represented by series in a system of functions
were studied in [21]. According to the definition, the function (2) is said to be a Hadamard composition of genus m of the
functions

Aj(z) =

∞∑
n=1

an,jf(λnz), 1 ≤ j ≤ p, (5)

if an = P (an,1, . . . , an,p), where P is defined by (4), that is,

A(z) = (A1 ∗ . . . ∗Ap)m(z) =

∞∑
n=1

 ∑
k1+···+kp=m

ck1...kpa
k1
n,1 · . . . · akpn,p

 f(λnz). (6)

The function A1 is said to be dominant if |cm0...0||an,1|m 6= 0 and |an,j | = o(|an,1|) as n→∞ for 2 ≤ j ≤ p.
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In [21], it was shown that if ln n = o(Γf (λn)) as n → ∞ and Aj ∈ S(Λ, f,+∞) for every j with 1 ≤ j ≤ p, then
A(z) = (A1 ∗ . . . ∗ Ap)m(z) ∈ S(Λ, f,+∞). On the other hand, if A ∈ S(Λ, f,+∞) and the function A1 is dominant, then
Aj ∈ S(Λ, f,+∞) for every j with 1 ≤ j ≤ p. If

%α,β [Aj ] = lim
r→+∞

α(ln M(r,Aj))

β(r)

is the (α, β)-order of the function Aj , then under the conditions α ∈ Lsi, β ∈ Lsi, fk ≥ 0 for every k ≥ 0 and

ln m < h ≤ d ln ln Mf (r)

d ln r
≤ H < +∞

for every r ≥ r0, the inequality %α,β [A] ≤ max{%α,β [Aj ] : 1 ≤ j ≤ p} holds. Moreover, if the function A1 is dominant, then
%α,β [Aj ] ≤ %α,β [A1] = %α,β [A] for every j. In this article, the dependence of the growth of the function A with respect to the
function f on the growth of functions Aj with respect to the function f is studied.

2. Hadamard compositions of entire functions

The following theorem is the first main result of the present paper:

Theorem 2.1. Let m ≥ 2, α ∈ Lsi, β ∈ Lsi, ln n = O(Γf (λn)) when n → ∞, and Γf (r) � ln Mf (r) when r → +∞. If
Aj ∈ S(Λ, f,+∞) for every j with 1 ≤ j ≤ p, then

A(z) = (A1 ∗ . . . ∗Ap)m(z) ∈ S(Λ, f,+∞)

and
%α,β [A]f ≤ max{%α,β [Aj ]f : 1 ≤ j ≤ p}. (7)

Also, if the function A1 is dominant, then

%α,β [A]f = %α,β [A1]f ≥ %α,β [Aj ]f

and
λα,β [A]f = λα,β [A1]f ≥ λα,β [Aj ]f

for every j with 1 ≤ j ≤ p.

Proof. Let µ(r,A) = max{|an|Mf (rλn) : n ≥ 1} be the maximal term of series (3). Then, by [19], for q > 1 and r ≥ 1, we
have

µ(r,A) ≤M(r,A) ≤ µ(qr, A)

∞∑
n=1

exp {−Γf (λn) ln q} . (8)

From the condition ln n = O(Γf (λn)) when n → ∞, it follows that ln n ≤ ηΓf (λn) for some η > 0. For q = eη+1, we have
Γf (λn) ln q ≥ ((η + 1)/η) ln n and thus,

∞∑
n=1

exp {−Γf (λn) ln q} ≤ K < +∞.

Therefore, (8) implies
α(M−1f (µ(r,A)))

β(r)
≤
α(M−1f (M(r,A)))

β(r)
≤
α(M−1f (Kµ(qr, A)))

β(r)
. (9)

For brevity, we put µ(r) = µ(r,A) and µj(r) = µ(r,Aj). Then

%α,β [µ]f := lim
r→+∞

α(M−1f (µ(r)))

β(r)

and
λα,β [µ]f := lim

r→+∞

α(M−1f (µ(r)))

β(r)

are the generalized (α, β)-order and lower (α, β)-order of the maximal term with respect to f . Since M−1f ∈ Lsi, by the
conditions α ∈ L0 and β ∈ Lsi, we obtain %α,β [A]f = %α,β [µ]f and λα,β [A]f = λα,β [µ]f .
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By the condition Γf (r) � ln Mf (r), we have

0 < h ≤ Γf (r)

ln Mf (r)
≤ H < +∞. (10)

Take B = 1 + (ln m)/H > 1. Then, from (10), we obtain

ln ln Mf (r)− ln ln Mf (r/B) =

r∫
r/B

Γf (t)

ln Mf (t)
d ln t ≤ H ln B = H ln (1 + (ln m)/H) ≤ ln m,

On the other hand, for C = m1/h > 1, we have

ln ln Mf (Cr)− ln ln Mf (r) =

Cr∫
r

Γf (t)

ln Mf (t)
d ln t ≥ h ln C = ln m.

Hence, for some B > 1 and C > 1, we have

Mf (r/C)m ≤Mf (r) ≤Mf (r/B)m. (11)

Therefore,

µ(r) = max


∣∣∣∣∣∣

∑
k1+···+kp=m

ck1...kpa
k1
n,1 · . . . · akpn,p

∣∣∣∣∣∣Mf (rλn) : n ≥ 1


≤ max

 ∑
k1+···+kp=m

|ck1...kp |an,1|k1 · . . . · |an,p|kpMf (rλn/B)m : n ≥ 1


≤ max

 ∑
k1+···+kp=m

|ck1...kp |(|an,1|Mf (rλn/B))k1 · . . . · (|an,p|Mf (rλn/B))kp : n ≥ 1


≤

∑
k1+···+kp=m

|ck1...kp |µ1(r/B)k1 · . . . · µp(r/B)kp . (12)

Let %∗ = max{%α,β [µj ]f : 1 ≤ j ≤ p} < +∞. Since β ∈ Lsi for every % > %∗ and for every r ≥ r0 = r0(%), we have

µj(r/B) ≤Mf (α−1(%β(r)))

for r ≥ r0. Therefore, (12) implies

µ(r) ≤ K0Mf (α−1(%β(r)))m and K0 =
∑

k1+···+kp=m

|ck1...kp |.

Since M−1f ∈ Lsi and α ∈ Lsi, we obtain

%α,β [µ]f ≤ lim
r→+∞

α(M−1f (K0M
m
f (α−1(%β(r))))

β(r)

= lim
r→+∞

α(M−1f (Mm
f (α−1(%β(r))))

β(r)

= % lim
r→+∞

α(M−1f (Mm
f (r))

α(r)

≤ % lim
r→+∞

α(M−1f (Mf (Cr))

α(r)

= % lim
r→+∞

α(M−1f (Mf (Cr))

α(Cr)
%.

In view of the arbitrariness of %, we obtain the inequality %α,β [µ]f ≤ %∗ = max{%α,β [µj ]f : 1 ≤ j ≤ p} that is obvious for
%∗ = +∞. Since %α,β [µ]f = %α,β [A]f and %α,β [µj ]f = %α,β [Aj ]f , inequality (7) is proved.
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Now, suppose that the function A1 is dominant and m ≥ 2. We put

Σ′n =
∑

k1+···+kp=m,k1 6=m

ck1...kp(an,1)k1 · . . . · (an,p)kp

=
∑

k1+···+kp=m

ck1...kp(an,1)k1 · . . . · (an,p)kp − cm0...0(an,1)m.

Note that for each monomial of the polynomial Σ′n, the sum of the exponents is equal to m. Hence, we have

|an,1|k1 · . . . · |an,p|kp
|an,1|m

=
|an,2|k2 · . . . · |an,p|kp

|an,1|m−k1
→ 0, n→∞

and, thus Σ′n = o(|an,1|m) as n→∞. Therefore, |an| = (1 + o(1))|cm0...0||an,1|m as n→∞, and in view of (11), we obtain

(1 + o(1))|cm0...0||an,1|mMf (rλn/C)m ≤ |an|Mf (rλn) ≤ (1 + o(1))|cm0...0||an,1|mMf (rλn/B)m

as n→∞. Using these inequalities, it is easy to show that c1µm1 (r/C) ≤ µ(r) ≤ c2µ
m
1 (r/B) for r ≥ r0, where c1 and c2 are

positive constants. Since α ∈ Lsi, β ∈ Lsi, and M−1f ∈ Lsi, we obtain

α(M−1f (µ(r)))

β(r)
= (1 + o(1))

α(M−1f (µm1 (r)))

β(r)
, r → +∞. (13)

Using (11) again, we have Mf (r)m ≤ Mf (Cr). Hence, M−1f (xm) ≤ CM−1f (x) and thus, M−1f (µm1 (r)) ≤ CM−1f (µ1(r)).
Therefore, (13) implies

α(M−1f (µ(r)))

β(r)
= (1 + o(1))

α(M−1f (µ1(r)))

β(r)
, r → +∞,

that is, %α,β [A]f = %α,β [A1]f and λα,β [A]f = λα,β [A1]f .

Now, let m = 1. Then

(A1 ∗ . . . ∗Ap)1(z) =

∞∑
n=1

(c1an,1 + · . . . ·+cpan,p) f(λnz) = .

p∑
j=1

cj

∞∑
n=1

an,jf(λnz) =

p∑
j=1

cjAj(z).

Also, for A = (A1 ∗ . . . ∗Ap)1, we have

M(r,A) ≤
p∑
j=1

|cj |M(r,Aj).

It is not difficult to show that this implies (7) provided α ∈ L0 and β ∈ L. If, in addition, the function A1 is dominant, then

|c1an,1 + · . . . ·+cpan,p| = (1 + o(1))|c1||an,1|

as n→∞, that is
q1|an,1| ≤ |c1an,1 + · . . . ·+cpan,p| ≤ q2|an,1|

for some 0 < q1 < q2 < +∞. Therefore,
q1M(r,A1) ≤M(r,A) ≤ q2M(r,A1).

Therefore, if α ∈ L0 and β ∈ L, then %α,β [A]f = %α,β [A1]f and λα,β [A]f = λα,β [A1]f . Consequently, we have the following
result:

Proposition 2.1. Let m = 1, α ∈ L0, β ∈ L, and Aj ∈ S(Λ, f,+∞) for every j with 1 ≤ j ≤ p. Then

A(z) = (A1 ∗ . . . ∗Ap)m(z) ∈ S(Λ, f,+∞)

and (7) holds. Also, if the function A1 is dominant, then %α,β [A]f = %α,β [A1]f and λα,β [A]f = λα,β [A1]f .

5
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3. Hadamard compositions of functions analytic in a disk

Now, we consider the class S(Λ, f, 1); that is, we suppose that (3) holds for r < 1, and it does not hold for r > 1. In [20], it
was shown that if ln n = o(Γf (λn)) when n→∞ and Γf (cr) � Γf (r) for every c ∈ (0,+∞), then

lim
n→∞

1

λn
M−1f

(
1

|an|

)
= 1. (14)

Let Aj ∈ S(Λ, f, 1) for 1 ≤ j ≤ p. Then, in view of (14), it holds that

1

λn
M−1f

(
1

|an,j |

)
≥ 1− ε,

that is,
|an,j | ≤

1

Mf ((1− ε)λn)

for all ε, n, and j, with ε ∈ (0, 1), n ≥ n0(ε), and 1 ≤ j ≤ p. Therefore, if A(z) = (A1 ∗ . . . ∗ Ap)m(z), then for n ≥ n0(ε), we
have

|an| ≤
∑

k1+···+kp=m

|ck1...kp ||an,1|k1 · . . . · |an,p|kp ≤
K

Mf ((1− ε)λn)m
≤ K

Mf ((1− ε)λn)
,

where
K =

∑
k1+···+kp=m

|ck1...kp |.

Therefore,
1

λn
M−1f

(
K

|an|

)
≥ 1− ε

and, since M−1f ∈ Lsi, in view of the arbitrariness of ε, the following result is true.

Proposition 3.1. If Aj ∈ S(Λ, f, 1) for 1 ≤ j ≤ p and A(z) = (A1 ∗ . . . ∗Ap)m(z) then A ∈ S(Λ, f, 1).

As above, let µ(r,A) be the maximal term of series (3) regularly converging in D1. Suppose that µ(r,A) ↑ K < +∞ as
r ↑ 1. Then |an|Mf (rλn) ≤ K for all n ≥ 1 and r ∈ (0, 1). Letting r ↑ 1, we obtain

|an|Mf (λn) ≤ K

for every n ≥ 1, that is
lim
n→∞

|an|Mf (λn) ≤ K.

Conversely, if |an|Mf (λn) ≤ K, then
|an|Mf (rλn) ≤ K

for all n ≥ 1 and r ∈ (0, 1), and hence
µ(r,A) ≤ K < +∞

for every r < 1. Therefore, the following result is true:

Proposition 3.2. In order that µ(r,A) ↑ +∞ as r ↑ 1, it is necessary and sufficient that

lim
n→∞

|an|Mf (λn) = +∞.

In what follows, we assume that the condition given in Proposition 3.2 is satisfied.
For α ∈ L, β ∈ L, and for an analytic function ϕ(z) =

∞∑
k=0

ϕkz
k in D1, the generalized (α, β)-order and lower generalized

(α, β)-order are defined [16] as
%1α,β [ϕ] = lim

r↑1

α(ln Mϕ(r))

β(1/(1− r))
and

λ1α,β [ϕ] = lim
r↑1

α(ln Mϕ(r))

β(1/(1− r))
.

6
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By analogy, we define

%1α,β [A]f := lim
r↑1

α(M−1f (M(r,A)))

β(1/(1− r))
,

λ1α,β [A]f := lim
r↑1

α(M−1f (M(r,A)))

β(1/(1− r))
,

and similar characteristic for µ(r) = µ(r,A). Let n(r) =
∑
λn≤r

1 be the counting function of the sequence Λ.

Proposition 3.3. Let α ∈ Lsi, β ∈ Lsi,

lim
x→+∞

α(M−1f (x))

β(x/ ln x)
= η > 0, (15)

and

lim
x→+∞

α(M−1f (x))

β(x/ ln n(x))
= 0. (16)

If Γf (r) � ln Mf (r) as r → +∞ and Γf (r) ≥ hr for some h > 0 and every r ∈ [0,+∞), then

%1α,β [A]f = %1α,β [µ]f and λ1α,β [A]f = λ1α,β [µ]f .

Proof. Since µ(r,A) ≤ M(r,A), we have %1α,β [A]f ≥ %1α,β [µ]f and λ1α,β [A]f ≥ λ1α,β [µ]f . On the other hand, for all q > 1 and
r ∈ [0, 1), we have

M(r,A) =

∞∑
n=1

|an|Mf

((
r +

1− r
q

)
λn

)
Mf (rλn)

Mf ((r + (1− r)/q)λn)

≤ µ
(
r +

1− r
q

) ∞∑
n=1

exp

−
(r+(1−r)/q)λn∫

rλn

Γf (t)d ln t


≤ µ

(
r +

1− r
q

) ∞∑
n=1

exp

{
−Γf (rλn) ln

(
1 +

1− r
qr

)}
. (17)

Since β ∈ Lsi, by the definition of %1α,β [µ]f , we have

%1α,β [µ]f = lim
r↑1

α(M−1f (µ (r + (1− r)/q)))

β

(
1

1− r − (1− r)/q

)

= lim
r↑1

α(M−1f (µ (r + (1− r)/q)))

β

(
q

(q − 1)(1− r)

)

= lim
r↑1

α(M−1f (µ (r + (1− r)/q)))
β(1/(1− r))

,

that is, if %1α,β [µ]f < +∞, then for all % > %1α,β [µ]f and r ≥ r0(%), it holds that

µ

(
r +

1− r
q

)
≤Mf

(
α−1

(
%β

(
1

1− r

)))
. (18)

Put b = h/(2q) and
T (r) = Mf (α−1(εβ(2/(b(1− r))).

Then, from (16), for all ε ∈ (0, %) and t ≥ t0(ε), we obtain

ln n(t) ≤ t

β−1(α(M−1f (t))/ε)
= o(t), t→ +∞,

and T (r) > t0(ε) for all r ≥ r0(ε).

7
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Therefore, in view of the condition Γf (r) ≥ hr, for b = h/q, we have
∞∑
n=1

exp

{
−Γf (rλn) ln

(
1 +

1− r
qr

)}
≤
∞∑
n=1

exp{−bλn(1− r)}

=

∞∫
0

exp{−bt(1− r)}dn(t)

= b(1− r)
∞∫
0

n(t) exp{−bt(1− r)}dt

= b(1− r)

 T (r)∫
0

n(t) exp{−bt(1− r)}dt+

∞∫
T (r)

exp{−bt(1− r) + ln n(t)}dt



≤ b(1− r)

 T (r)∫
0

n(t)dt+

∞∫
T (r)

exp

{
−t

(
b(1− r)− 1

β−1(α(M−1f (t))/ε)

)}
dt



≤ b(1− r)

T (r)n(T (r)) +

∞∫
T (r)

exp

{
−t

(
b(1− r)− 1

β−1(α(M−1f (T (r)))/ε)

)}
dt



= b(1− r)

T (r)n(T (r)) +

∞∫
T (r)

exp

{
−t
(
b(1− r)− b(1− r)

2

)}
dt


≤ b(1− r)T (r) exp

{
T (r)

β−1(α(M−1f (T (r)))/ε)

}
+ 2. (19)

From (15), it follows that
α(M−1f (x)) ≥ εβ(x/ ln x)

for all ε ∈ (0, η) and x ≥ x0; that is,
β−1(α(M−1f (T (r)))/ε) ≥ T (r)/ ln T (r).

Hence,

exp

{
T (r)

β−1(α(M−1f (T (r)))/ε)

}
≤ T (r), r ∈ [r0(ε), 1).

Therefore, (19) implies that
∞∑
n=1

exp

{
−Γf (rλn) ln

(
1 +

1− r
qr

)}
≤ b(1− r)T (r)2 + 2

≤ T (r)2 + 2

= M2
f (α−1(εβ(2/(b(1− r))) + 2, r ∈ [r∗0(ε), 1). (20)

Since β ∈ Lsi and ε < %, from (17), (18), and (20), it follows that

M(r,A) ≤M4
f

(
α−1

(
%β

(
1

1− r

)))
(21)

for every r ∈ [0, 1) sufficiently close to 1. As above, the condition Γf (r) � ln Mf (r) implies (11), and henceMf (r)4 ≤Mf (Cr)

for some C > 1. Therefore, (21) gives
M(r,A) ≤Mf

(
Cα−1

(
%β

(
1

1− r

)))
.

8
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Hence, in view of the condition α ∈ Lsi, we obtain %1α,β [A]f ≤ %, and in view of the arbitrariness of %, we have

%1α,β [A]f ≤ %1α,β [µ]f .

If %1α,β [µ]f = +∞, then this inequality is obvious. Thus, the equality %1α,β [A]f = %1α,β [µ]f is proved.
The inequality λ1α,β [A]f ≤ λ1α,β [µ]f is similarly proved. Indeed, as before, we have

λ1α,β [µ]f = lim
r↑1

α(M−1f (µ (r + (1− r)/q)))
β(1/(1− r)

.

Therefore, if λ1α,β [µ]f < +∞ then for every λ > λ1α,β [µ]f there exists a sequence (rk) ↑ 1 such that

µ

(
rk +

1− rk
q

)
≤Mf

(
α−1

(
λβ

(
1

1− rk

)))
. (22)

Since (20) holds for every r ∈ [r∗0(ε), 1), from (17), (22), and (20) it follows (as before) that

M(rk, A) ≤Mf

(
Cα−1

(
λβ

(
1

1− rk

)))
for r∗0(ε) ≤ rk ↑ 1. Hence, the inequality

λ1α,β [A]f ≤ λ1α,β [µ]f

follows. Therefore, λ1α,β [A]f = λ1α,β [µ]f , which completes the proof of the proposition.

Using Propositions 3.1 and 3.3, we prove the next result.

Theorem 3.1. Let m ≥ 2, Mf (0) ≥ 1, and the conditions of Proposition 3.3 be satisfied. If Aj ∈ S(Λ, f, 1) for every j with
1 ≤ j ≤ p, then

A(z) = (A1 ∗ . . . ∗Ap)m(z) ∈ S(Λ, f, 1)

and
%1α,β [A]f ≤ max{%1α,β [Aj ]f : 1 ≤ j ≤ p}. (23)

Proof. Since Mf (r) ≥Mf (0) ≥ 1, we have Mf (rλn) ≤Mm
f (rλn) and instead of (12), we obtain

µ(r) := µ(r,A) ≤
∑

k1+···+kp=m

|ck1...kp |µ(r,A1)k1 · . . . · µ(r,Ap)
kp . (24)

Let µj(r) = µ(r,Aj) and %∗ = max{%α,β [µj ]f : 1 ≤ j ≤ p} < +∞. Then,

µj(r) ≤Mf (α−1(%β(1/(1− r)))

for all % > %∗ and r ≥ r0. Therefore, (24) yields

µ(r) ≤ K0Mf (α−1(%β(1/(1− r)))m.

Hence, as in the proof of Theorem 2.1, we obtain

%1α,β [µ]f ≤ lim
r↑1

α(M−1f (K0M
m
f (α−1(%β(1/(1− r))))
β(1/(1− r))

= %.

In view of the arbitrariness of %, we obtain the inequality

%1α,β [µ]f ≤ %∗ = max{%1α,β [µj ]f : 1 ≤ j ≤ p},

which is obvious for %∗ = +∞. Since the equalities %1α,β [µ]f = %1α,β [A]f and %1α,β [µj ]f = %1α,β [Aj ]f hold (by Proposition 3.3),
inequality (23) also holds.

Remark 3.1. Theorem 3.1 is an analogue of only one part of Theorem 2.1. An analogue of the second part (which is concerned
with the dominant) could not be obtained. However, as seen from the proof of Proposition 2.1, the next proposition, being an
analogue of this statement, is correct.

9
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Proposition 3.4. Let m = 1, α ∈ L0, β ∈ L, and Aj ∈ S(Λ, f, 1) for every j with 1 ≤ j ≤ p. Then

A(z) = (A1 ∗ . . . ∗Ap)m(z) ∈ S(Λ, f, 1)

and (23) holds. Moreover, if the function A1 is dominant, then %1α,β [A]f = %1α,β [A1]f and λ1α,β [A]f = λ1α,β [A1]f .

Acknowledgment

The author thanks the reviewers for their comments.

References
[1] A. I. Bandura, O. M. Mulyava, M. M. Sheremeta, On Dirichlet series similar to Hadamard compositions in half-plane, Carpatian Math. Publ. 15 (2023) 180–195.
[2] L. Bieberbach, Analytische Fortzetzung, Springer, Berlin, 1955.
[3] S. K. Data, T. Biswas, Growth analysis of entire functions of two complex variables, Sahad Commun. Math. Anal. 3 (2016) 13–22.
[4] S. K. Data, T. Biswas, Some growth analysis of entire functions in the form of vector valued Dirichlet series on the basis on their relative Ritt L∗-order and relative Ritt

L∗-lower order, New Trends Math. Sci. 2 (2017) 97–103.
[5] S. K. Data, T. Biswas, P. Das, Some results on generalized relative order of meromorphic functions, Ufa Math. J. 8 (2016) 92–103.
[6] S. K. Data, T. Biswas, C. Ghosh, Growth analysis of entire functions concerning generalized relative type and generalized relative weak type, Facta Univ. Ser. Math.

Inform. 30 (2015) 295–324.
[7] S. K. Data, T. Biswas, A. Hoque, Some results on the growth analysis of entire function using their maximum terms and relative L∗-order, J. Math. Ext. 10 (2016) 59–73.
[8] S. K. Data, A. R. Maji, Relative order of entire functions in terms of their maximum terms, Int. J. Math. Anal. 5 (2011) 2119–2126.
[9] J. Hadamard, Theoreme sur le series entieres, Acta Math. 22 (1899) 55–63.

[10] J. Hadamard, La serie de Taylor et son prolongement analitique, Scientia Phys. Math. 12 (1901) 43–62.
[11] O. M. Mulyava, M. M. Sheremeta, Relative growth of Dirichlet series, Mat. Stud. 49 (2018) 158–164.
[12] O. M. Mulyava, M. M. Sheremeta, Relative growth of entire Dirichlet series with different generalized orders, Mat. Stud. 49 (2018) 159–164.
[13] O. M. Mulyava, M. M. Sheremeta, Compositions of Dirichlet series similar to the Hadamard compositions, and convergence classes, Mat. Stud. 51 (2019) 25–34.
[14] O. M. Mulyava, M. M. Sheremeta, Relative growth of entire Dirichlet series with different generalized orders, Bukovinian Math. J. 9 (2021) 22–34.
[15] C. Roy, On the relative order and lower order of an entire function, Bull. Soc. Cal. Math. Soc. 102 (2010) 17–26.
[16] M. M. Sheremeta, On the connection between the growth of a function analytic in a disk and the moduli of the coefficients of its expansion into a Taylor series, DAN

URSR Ser. A 6 (1966) 729–732. (in Russian.)
[17] M. M. Sheremeta, Connection between the growth of the maximum of the modulus of an entire function and the moduli of the coefficients of its power series expansion,

Izv. Vyssh. Uchebn. Zaved. Mat. 2 (1967) 100–108. (in Russian.)
[18] M. M. Sheremeta, On the growth of series in systems of functions and Laplace-Stieltjes integrals, Mat. Stud. 55 (2021) 124–131.
[19] M. M. Sheremeta, Relative growth of series in system functions and Laplace-Stieltjes type integrals, Axioms 10 (2021) #43.
[20] M. M. Sheremeta, On regularly converging series on systems of functions in a disk, Visnyk Lviv Univ. Ser. Mech. Math. 94 (2022) 98–108.
[21] M. M. Sheremeta, Hadamard composition of series in system functions, Bukovinian Math. J. 11 (2023) 39–51.

10


	Introduction
	Hadamard compositions of entire functions
	Hadamard compositions of functions analytic in a disk

