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Abstract

For an entire transcendental function f and a sequence ()\,,) of positive numbers increasing to +oo, suppose that A and 4,
with 1 < j < p, are entire functions represented by series in the system of functions f(\,z) provided that the function A is
a Hadamard composition of genus m of functions A;. In terms of generalized orders, the connection between the growth of
the function A with respect to the function f and the growth of the functions A; with respect to f is studied.
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1. Introduction

Let f and g be entire transcendental functions and M,(r) = max{|f(z)| : |2| = r}. In order to study the relative growth of
the functions f and g, Roy [15] used the order

— In Mg_l(Mf(r))

Qg Lﬂ - TEI-POO Inr
and the lower order n M1 (M
/\g [ f] = lim M
r—-+00 In r

of the function f with respect to the function g. Research on the relative growth of entire functions in terms of
maximal terms, Nevanlinna characteristic function, and k-logarithmic orders was continued by several mathematicians;
for example, see [5-8]. In [3], the relative growth of entire functions of two complex variables was considered. In [4],
the relative growth of the entire Dirichlet series in terms of R-orders was studied. For the Dirichlet series F(s) =
S0 fnexp{sA,}, the relative growth was studied in [11,12,14].

Let f;(z) = >.,° o an,j2" (j = 1,2) be entire transcendental functions. The function (f;  f2)(z) = >~ ; a, 2™ is said [9] to
be the Hadamard composition (product) of the functions f; if a,, = ay 10, 2 for every n. Hadamard [2,10] obtained several
properties of this composition and found some applications of this composition in the theory of the analytic continuation
of the functions represented by power series. For the Dirichlet series, the usual Hadamard composition is defined in a
similar way. For these series, the concept of Hadamard compositions of the genus m was introduced in [1, 13] and their
relative growth was studied there.

In the present paper, we study the relative growth of Hadamard compositions of the genus m of series in systems of
functions. Let

F2) =) fid 1)
k=0

be an entire transcendental function and M;(r) = max{|f(z)| : |z| = r}. Let A = (\,) be a sequence of positive numbers
increasing to +oo. Denote by G(4A, f, R) the class of the series

A(z) =) anf(An2) 2)
n=1
in the system f(\,z) regularly convergent in Dr = {z : |2| < R}; that is, for every r € [0, R),
M(r, A) = |an|My(ri,) < +oo. (3)
n=1
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We remark that the function In M/(r) is logarithmically convex and therefore,

dln My
Ff(r) = 71;111 J;n(r) S 4oo, 1 — +00.

(On the points where the derivative does not exist, under dlr:jliw means the right-hand derivative.)

If series (2) regularly converges in C, then the function A is entire. Generalized orders are used to study its growth.
Denote by L the class of continuous non-negative functions « on (—oo, +0) such that a(z) = a(xg) > 0 for © < 27 and
a(r) T +ooas zg <z — +oo. We say that o € LY if o € L and a((1 + o(1))x) = (1 + o(1))a(z) as  — +oo. Also, a € Ly;
ifa € L and a(cx) = (1 + o(1))a(x) as x — +oo for every ¢ € (0, +00); that is, « is a slowly increasing function. Note that
Ly c L°. For a € L and 3 € L, the quantities

— a(ln Mg(r))

Qaﬁ[f] = TBI_POO ﬂ(?“)

and (0 My (r)
. oln Mg(r
Aa = lim —————
L] Jm ==

are called [17] generalized («, 3)-order and lower («, 3)-order of an entire function f, respectively. The relationship between
the growth of functions A € G(A, f,+00) and f in terms of generalized orders was studied in [18]. Particularly, it has

el
been proven that if a € Ly, B(e®) € LY, W = 0(1) as * — +oo for every ¢ € (0, +0), a, > 0 for all n > 1,

In A, =o(In 7" (ca (55 In ;- ) ) asn — oo for every ¢ € (0, +00), and In n = O(T's(\,)) as n — oo, then 04 5[A] = 0a,5(f].
The growth of the function A € &(A, f, +00) with respect to the function f is identified in [19] with the growth of the
function M, Y(OM(r, A)) as 7 — +oco. The generalized («, 3)-order g, 5[A]; and the generalized lower («, 3)-order \, s[A];

of the function A € &(A, f, +00) with respect to a function [ are defined [19] as

_ o oM (M(r, A))) oM (m(r, A)))
el = I =gy end Aesll= T

In [19], it was shown that if A € G(A, f,+0), a, > 0 for every n > 1, In n < gI'y(\,)) for some ¢ > 0 and for every n > ny,

and lim In p1(x)

— — T .
oo W =, where ,U(l') = max{\an|/\n n > 1}, then

Aa,alAlf = Ca,alAly =1

provided either v < 1 and a(e®) € Ly; or v = 0 and a(e®) € L°.
Let Gj(z) = >0 ggn,;2" with 1 < j < p. Let P(zy,...,z,) be a homogeneous polynomial of degree m; that is,
P(txq,...,txp) = t"P(z1,...,z,) for every ¢ from the above field on which a polynomial is defined. The function G(z) =

oo o gn2"™ is said [21] to be a Hadamard composition of genus m > 1 of functions G; if g, = P(gn,1,---,gn,p), Where
P(zy,...,2p) = Z ckl,,,kpxlfl -...-x];’), kj € Z,. (4)
kit +kp=m

is a homogeneous polynomial of degree m > 1 with constant coefficients cy, .. ,. Denote by (G ... * G}),, the Hadamard
composition of genus m > 1 of functions f;, that is

o o0
n k k n
(Gr*...%Gp)m(z) = E gn2" = g g ChykipGn'1 oo Gntp | 2™
n=0 n=0 ki4-+kp=m

Properties of Hadamard compositions of genus m > 1 of entire functions represented by series in a system of functions
were studied in [21]. According to the definition, the function (2) is said to be a Hadamard composition of genus m of the
functions

Aj(2) =Y an ;i fOn2), 1<j<p, (5)
n=1

if a,, = P(an1,-.-,an,p), Where P is defined by (4), that is,

A(z) = (A% ... % Ap)m(2) = ) S kit aln, | f(A2). (6)

n=1 \ki+-+kp,=m

The function A; is said to be dominant if |c,,0.. 0||an,1|™ # 0 and |a,, ;| = o(|an,1]) asn — oo for 2 < j < p.
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In [21], it was shown that if In n = o(T's(\,)) as n — oo and A; € S(A, f,+o0) for every j with 1 < j < p, then
A(z) = (A1 * ... x Ay)m(2) € 6(A, f,+00). On the other hand, if A € G(A, f, +00) and the function A, is dominant, then
Aj € 6(A, f,+00) for every j with 1 < j <p. If

o a(lnM(r, Aj))
0o plAj] = Tim =g 5=

is the (a, B)-order of the function A;, then under the conditions oo € Lg;, 8 € Lg;, fi > 0 for every £ > 0 and

dln In M;(r)

1 h <
npme<hs dln r

< H < 400

for every r > ry, the inequality g, g[A] < max{o.[4;] : 1 < j < p} holds. Moreover, if the function A; is dominant, then
0a.8lA4;] < 0a,8[A1] = 0a,[A] for every j. In this article, the dependence of the growth of the function A with respect to the
function f on the growth of functions A; with respect to the function f is studied.

2. Hadamard compositions of entire functions

The following theorem is the first main result of the present paper:

Theorem 2.1. Let m > 2, o € Ly, f € L, Inn = O(T'f(\,)) when n — oo, and T'f(r) < In My(r) when r — +oo. If
Aj € &(A, f,+00) for every j with 1 < j < p, then

A(z) = (A1 * ... x Ap)m(2) € B(A, f, +0)
and
0a,8[Aly < max{oapl4;ly:1<j <p} (7

Also, if the function A, is dominant, then

0a.8lAlf = 0a,8[A1]} > 0a8[Aj]f

and
AaplAlf = Aa A1l 2 AaslAjls

for every j with 1 < j < p.

Proof. Let pu(r, A) = max{|a,|Ms(rA,) : n > 1} be the maximal term of series (3). Then, by [19], for ¢ > 1 and r > 1, we
have -
ulr, A) < M(r, A) < plgr, 4) Y exp{~T¢(Aa)In g} . ®)
n=1
From the condition In n = O(I'¢()\,)) when n — oo, it follows that In n < nI'¢()\,,) for some n > 0. For ¢ = ¢""!, we have
Ty(Ay)In g > ((n+1)/n)In n and thus,

Zexp{—I‘f()\n)ln q} < K < 4o0.
n=1

Therefore, (8) implies
Oé(Mf_l(u(nA)))<Oz(Mf_1(im(nA))) a(M;H (Kp(gr, A)))

L B B T
For brevity, we put u(r) = u(r, A) and p;(r) = p(r, 4;). Then

- = a(M; (u(r)))
Oa gl =1 A

r—r+00

9)

and

Aa = lim
aluly m 50

are the generalized (o, 8)-order and lower («, 3)-order of the maximal term with respect to f. Since M 7 e L, by the
conditions a € L° and 8 € Ly;, we obtain o, s[Alf = 0a,slu] s and Ao g[Alf = Aa,plus-
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By the condition I'y(r) < In M/ (r), we have

Ly(r)
< —— < .
0<h_1an()_H<+oo (10)

Take B =1+ (In m)/H > 1. Then, from (10), we obtain

lnlan(r)lnlan(r/B)/IF]J\}()()dlnt<HlnB Hn(1+ (Inm)/H) <Inm,
n My (t
r/B

On the other hand, for C = m'/" > 1, we have

Cr
Inln M;(Cr)—InIn Ms(r) :/mdln t>hln C=Ilnm.
f

r

Hence, for some B > 1 and C > 1, we have

My (r/CY™ < My(r) < My(r/B)™. ()
Therefore,
= max Chy. ok aﬁll capty | Mp(rAn) i n>1
k14 -HC =m
< max \Ckl_,,kp\amﬂkl o |an7p|k”Mf(r/\n/B)m n>1
ki+-- +kp_m
< max \cklm_kp\(|an,1|Mf(7’)\n/B))k1 R (|an7p|Mf(r)\n/B))kP :n>1
ki+-- +kp_m
< [Chy by 1 (r/BY () B)F (12)
ki+-- +kp_m

Let o* = max{oa gly;ls: 1 < j < p} < +4o0. Since g € L for every o > o* and for every r > ro = r¢(0), we have
pi(r/B) < Mg(a™'(0B(r)))
for r > ry. Therefore, (12) implies

w(r) < KoMg(a= ' (oB(r)))™ and K, = Z [ NE
kit thkp=m

Since M 7 Ve L,; and a € Ly;, we obtain

Oapluly < lim

r—-o0 B(r)
e M B)
r—4oo B(r)
= lim a(M_l(Mm(T))
0 a(r)
a(M;H (Mg (Cr))
< QTBIEOO a(r)
ez (Myen)
Qr—il—‘{loo a(C’r) e

In view of the arbitrariness of g, we obtain the inequality o, g[u]; < 0* = max{oa gli;]lr : 1 < j < p} that is obvious for
0* = +o00. Since g, g[1t]; = 00,8[A]; and g4 sl1;]; = 0a,8[A4;], inequality (7) is proved.
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Now, suppose that the function A4; is dominant and m > 2. We put

Sh= Y ek (@n)™ e (@)
R S
i k1 k, m
- Z Ckl...kp(an,l) Teet (an,p) = CmO...O(an,l)
k1+...+kp:m

Note that for each monomial of the polynomial ¥/ , the sum of the exponents is equal to m. Hence, we have

: ‘an,p‘kp _ ‘an,2|k2 Tl |an7p|k” 50, n— oo
lan,1|™ |an,1|m7k1

and, thus ¥/, = o(|a,, 1|™) as n — co. Therefore, |a,| = (1 + 0(1))|c¢mo...0l|an,1|™ as n — oo, and in view of (11), we obtain
(1 +o(W)lemo..ollan 1| My (rAn/C)™ < lan|Ms(rAn) < (1+ o(1))emo.. ollan ™ My (rAn/B)™

as n — oo. Using these inequalities, it is easy to show that ¢ pf*(r/C) < p(r) < eau*(r/B) for r > ry, where ¢; and ¢ are
positive constants. Since a € Ly;, § € Ly;, and M, 7 L e L,;, we obtain

a(M; (u(r))
B(r)

Using (11) again, we have M;(r)™ < M;(Cr). Hence, Mf_l(xm) < C’Mf_l(x) and thus, Mf_l(u}”(r)) < CM; Y (7).
Therefore, (13) implies

a(My (u'(r))

= (1+0(1)) r — +00. (13)

a(M; " (p(r))) a(M; " (pu(r
I A s R
that iS, Qa’g[A]f = Qa,g[Al]f and )\a,ﬁ[A]f = /\a,B[Al]f- O

Now, let m = 1. Then
o] p 00 p
(A *...xAp)i(2) = Z (cran1+ ... +cpanyp) f(Anz) = .ch Z an,; f(An2) chAJ(z)
n=1 j j=1

Also, for A = (A; *...x Ap)1, we have
p
M(r, A) < Z c; | (r, Aj)

It is not difficult to show that this implies (7) provided « € LO and 8 € L. If, in addition, the function A; is dominant, then
\claml 4+ +cpan7p| = (1 + 0(1))|01Han$1|

as n — oo, that is

Qilana| <|cian1 + ... F+epanp| < g2lan 1]

for some 0 < ¢; < g2 < +oo. Therefore,
@M(r, Ar) < M(r, A) < g2 (r, Ay).

Therefore, if « € L° and 8 € L, then g, 5[A]f = 0a.5[A1]f and A\, s[A]f = Ao 5[A1]s. Consequently, we have the following
result:

Proposition 2.1. Let m =1, a € LY, B € L, and A; € S(A, f,+oc) for every j with 1 < j < p. Then
A(z) = (A1 ... % Ap)m(2) € B(A, f,+00)

and (7) holds. Also, if the function A, is dominant, then o, g[Alf = 0a,5[A1]r and Ao g[Alf = Ao [A1]f.
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3. Hadamard compositions of functions analytic in a disk

Now, we consider the class G(A, f, 1); that is, we suppose that (3) holds for » < 1, and it does not hold for » > 1. In [20], it
was shown that if In n = o(T's()\,,)) when n — oo and I'y(cr) < T'¢(r) for every c € (0, +00), then

1 1
lim —M;' | — ) =1. (14)
nooo An (Ian|>

Let A; € 6(A, f,1) for 1 < j < p. Then, in view of (14), it holds that

1 1
—M7 [ —)>1-
Mt (m,j)— =

1
anj| < —i——
| = )
for all ¢, n, and j, with ¢ € (0,1), n > ng(¢), and 1 < j < p. Therefore, if A(z) = (A1 *...* Ap)m(2), then for n > ny(e), we
have

that is,

N . K K
= kﬁ.-g;@p_m'%l"'k”'a"’l BRI VAT RS S T VA (SRS S
where
K= > okl
k1t A kp=m
Therefore,

1 K
—M =) >1-
P <an|>— :

and, since M ; 1 e L;, in view of the arbitrariness of ¢, the following result is true.
Proposition 3.1. If A; € (A, f,1) for 1 <j<pand A(z) = (A1 *...x Ap)n(2) then A € S(A, f,1).

As above, let 1(r, A) be the maximal term of series (3) regularly converging in ;. Suppose that u(r, A) T K < +o0 as
r 1 1. Then |a, |Ms(rA,) < K for alln > 1 and r € (0,1). Letting r 1 1, we obtain

|lan|My(An) < K
for every n > 1, that is
lim <K.
nh_{glo |an|Mp(An) < K
Conversely, if |a,[M;(\,) < K, then
|an|Mf(rAn) < K
foralln > 1 and r € (0,1), and hence
u(r,A) < K < 400

for every r < 1. Therefore, the following result is true:

Proposition 3.2. In order that j(r, A) 1 +oco as r 1 1, it is necessary and sufficient that

m |an|My(An) = +0c.

n—oQ

In what follows, we assume that the condition given in Proposition 3.2 is satisfied.

For a € L, B € L, and for an analytic function p(z) = 3 ;2" in Dy, the generalized («, 3)-order and lower generalized

(a, B)-order are defined [16] as k=0
1 1] = T 2 M (1)
Oa,plp] = lim )

and
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By analogy, we define

a(M; " (M(r, A)))
AL S[A]f o= lim —F ,
A= S )
and similar characteristic for u(r) = u(r, A). Let n(r) = > 1 be the counting function of the sequence A.
An<r
Proposition 3.3. Let o € Lg;, 5 € Ly,

oM (2)
2 S 170 e
" (M7 )
a(M; (x
. f _
B B () (o
IfT¢(r) <In Ms(r) as v — +oo and I's(r) > hr for some h > 0 and every r € [0, +c0), then

ot slAly = ol sluly and AL

Proof. Since y(r, A) < M(r, A), we have o}, 5[A]; > o}, 5lul; and A},
r € [0,1), we have

e )= 3 oty ((++ 57 ) ) st e

) oo (r+Q1-=7)/a)An

—r

< r+ exp / T'r(t)dIn t
p(re ) > (1)

TAn

1—7)\ 1—
Su(r+ qr>ZeXp —I'¢(rA,)In (1+ qrr)}.

n=1

17
Since 3 € Ly, by the definition of ¢}, 5[u]f, we have
oMt +(1—
ol il — i (M (p(r 1( r)/a)))
==t
e a(M; H(p(r+(1=7)/9)))
= l1m
e
(=11 —=r)
a(M ur+ (= n/a))
rtl B(1/(1—r)) ’
that is, if o}, 5(ul; < 400, then for all ¢ > o, s[ul; and r > ro(0), it holds that
(o) e (o)
q 1—7r
Put b = h/(2¢) and

T(r) = Mg(a™(e8(2/(b(1 = 1))).
Then, from (16), for all € € (0, 0) and ¢ > ty(e), we obtain

t
In n(t) < Ol 0)/e) o(t), t— +oo,

and T'(r) > to(e) for all r > ry(e).
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Therefore, in view of the condition I';(r) > hr, for b = h/q, we have

Zexp{ Ts(rAn) (qu)} Zexr){ bAn(1—7)}

_ / exp{—bt(1 —r)}dn(t)
0

1—r/n Yexp{—bt(1 —r)}dt
0

T(r) )
=b(1—-r) n(t) exp{—bt(1 — r)}dt + exp{—bt(1 —r) + In n(t)}dt
/ J )
T(r) oo )
<b(l-r) O/ n(t)dt +T/ exp {—t (b(l —r)— Bl(a(Mfl(t))/5)> } dt)
(r)
<b(1—r) | TE)(Tr) + 7 ex { " (b(l ) L ) }dt
F B (a(M; (1))
=b(1—7) | TGIn(T(r)) + / exp{t <b(1 ) ”)}dt)
T(r)
- T T)ex T('f")
< b(1 - 7)T(r) p{ﬁ—l(a(Mfl(T(r)))/g) } +2. (19)

From (15), it follows that

for all € € (0,n) and = > xy; that is,

Hence,

Therefore, (19) implies that

Zexp{ T4 (rAn) <1+1q_rr)}§b(1—r)T(r)2+2

<T(r)?+2

= M?(a_l(aﬁﬂ/(b(l —r))+2, relrie),l). (20)

Since 3 € Ly; and ¢ < g, from (17), (18), and (20), it follows that

o oo (1))

for every r € [0,1) sufficiently close to 1. As above, the condition I';(r) =< In M/(r) implies (11), and hence M;(r)* < M;(Cr)

for some C' > 1. Therefore, (21) gives
M(r, A) <Mf( <95( ! )))
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Hence, in view of the condition « € L,;, we obtain in 514l < 0, and in view of the arbitrariness of o, we have

Q}X,B[A]f < Qi,ﬁ[ﬂ]f'

If o, 3luls = +o0, then this inequality is obvious. Thus, the equality o, 5[A]; = o}, 3¢l is proved.
The inequality /\L slAly < Ai, sluy is similarly proved. Indeed, as before, we have

Vo el e (1= )/a)
Aol =B g

Therefore, if )\;’ sluly < +oo then for every A > A}L sluly there exists a sequence (1) 1 1 such that

(o5 o (u(25)

Since (20) holds for every r € [r{(¢), 1), from (17), (22), and (20) it follows (as before) that

e (o))

Ao slAlr < AL sluly

follows. Therefore, )\(1% slAly = )\(1}7 slulf, which completes the proof of the proposition. O

for r§(¢) < ri 1 1. Hence, the inequality

Using Propositions 3.1 and 3.3, we prove the next result.

Theorem 3.1. Let m > 2, M;(0) > 1, and the conditions of Proposition 3.3 be satisfied. If A; € G(A, f,1) for every j with
1<j <p, then
A(z) = (A1 x ... x Ap)m(2) € B(A, f,1)

and
06 5lAly <max{o], 5[A;]5:1<j <p}. (23)

Proof. Since M,(r) > M;(0) > 1, we have M;(r\,) < My (r\n) and instead of (12), we obtain

p(r) = u(r A < ST Jer ol ADF L, Ay, (24)
ki+-+kp,=m

Let y1;(r) = pu(r, A;) and o* = max{oq slp]s : 1 < j < p} < +oo. Then,
pj(r) < My(a™'(0B(1/(1 — 7))
for all o > o* and r > ry. Therefore, (24) yields
pu(r) < KoMyp(a™ (oB(1/(1 =)™
Hence, as in the proof of Theorem 2.1, we obtain

— a(M; (KoM (a™ (eB(1/(1 = 1))

Qé,ﬁ[ﬂ]f < lrl,{rll 6(1/(1 — 7“)) =0

In view of the arbitrariness of o, we obtain the inequality

0o plily < 0" =max{eq glusly : 1< < p},

which is obvious for o* = +oc. Since the equalities o, ;[ul; = o}, 3[Al; and o/, 41515 = 0, 3[4;]; hold (by Proposition 3.3),
inequality (23) also holds. 0

Remark 3.1. Theorem 3.1 is an analogue of only one part of Theorem 2.1. An analogue of the second part (which is concerned
with the dominant) could not be obtained. However, as seen from the proof of Proposition 2.1, the next proposition, being an
analogue of this statement, is correct.
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Proposition 3.4. Let m =1, a € LY, 3 € L, and A; € S(A, f,1) for every j with 1 < j < p. Then
Alz) = (A1 *...x Ap)m(z) € S(A, £, 1)

and (23) holds. Moreover, if the function A, is dominant, then oy, 5[Al; = op, 5[A1]; and X}, 5[A]l; = AL 5[A1]y.
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