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Abstract
The forgotten topological index of a graph is defined as the sum of the cubes of the degrees of vertices in the graph. In this
article, an upper bound and a lower bound for the forgotten topological index of graphs are established. Using the ideas of
obtaining these bounds, sufficient conditions (based on the forgotten topological index) for some Hamiltonian properties of
graphs are also presented.
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1. Introduction

We consider only finite undirected graphs without loops or multiple edges. Notation and terminology not defined here follow
those in [2]. Let G = (V (G), E(G)) be a graph with n vertices and e edges. The degree of a vertex v ∈ V (G) is denoted by
dG(v) (or d(v) when there is no confusion regarding the graph under consideration). We use δ and ∆ to denote the minimum
degree and maximum degree of G, respectively. A set of vertices in a graph G is independent if the vertices in the set are
pairwise nonadjacent. A maximum independent set in a graph G is an independent set of the largest possible size. The
independence number of a graph G is denoted by β(G) and is defined as the cardinality of a maximum independent set in
G. For disjoint vertex subsets X and Y of V (G), we use E(X,Y ) to denote the set of all those edges in E(G) whose one end
vertex belongs to X and the end vertex belongs to Y ; namely, E(X,Y ) := { f : f = xy ∈ E(G), x ∈ X, y ∈ Y }. A bipartite
graph G is balanced if the two partite sets of G have the same size. A bipartite graph G is said to be a balanced regular
bipartite graph if G is balanced and all the vertices of G have the same degree. A cycle C in a graph G is said to be a
Hamiltonian cycle of G if C contains all the vertices of G. A graph containing a Hamiltonian cycle is called a Hamiltonian
graph. A path P in a graph G is said to be a Hamiltonian path of G if P contains all the vertices of G. A graph containing
a Hamiltonian path is known as a traceable graph.

The forgotten topological index of a graph was introduced by Furtula and Gutman in [4]. For a graph G, its forgotten
topological index is denoted by F (G) and is defined as

∑
u∈V (G) d

3(u). Recently, several sufficient conditions (based on
different topological indices) for the Hamiltonian properties of graphs have been obtained; for example, see [1, 5–14].
Motivated by the results reported in the aforementioned references, we in the present article present an upper bound and
a lower bound for the forgotten topological index of a graph. Using the ideas of obtaining these bounds, we then present
sufficient conditions (based on the forgotten topological index) for Hamiltonian and traceable graphs. The main result of
the current article is as follows.

Theorem 1.1. Let G be a graph with n vertices, e edges, and the independence number β.

(i). If the maximum degree of G is ∆, then
F (G) ≤ ∆2(4n∆− 3∆β − 3e)

with equality if and only if G is a balanced regular bipartite graph.

(ii). If the minimum degree of G is δ, then

F (G) ≥ δ2(nδ + 3δβ − 3e)

with equality if and only if G is a balanced regular bipartite graph.
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Using the ideas of proving Theorem 1.1, we prove the following two theorems:

Theorem 1.2. Let G be a k-connected graph with n vertices and e edges, where k ≥ 2 and n ≥ 3.

(i). If the maximum degree of G is ∆ and
F (G) ≥ ∆2(4n∆− 3∆(k + 1)− 3e),

then G is Hamiltonian.

(ii). If the minimum degree of G is δ and
F (G) ≤ δ2(nδ + 3δ(k + 1)− 3e),

then G is Hamiltonian.

Theorem 1.3. Let G be a k-connected graph with n vertices and e edges, where n ≥ 9 and k ≥ 1.

(i). If the maximum degree of G is ∆ and
F (G) ≥ ∆2(4n∆− 3∆(k + 2)− 3e),

then G is traceable.

(ii). If the minimum degree of G is δ and
F (G) ≤ δ2(nδ + 3δ(k + 2)− 3e),

then G is traceable.

2. Lemmas

In this section, we recall some known results, which we use to prove our results.

Lemma 2.1 (see [3]). Let G be a k-connected graph of order n (with n ≥ 3) and the independence number β. If β ≤ k, then
G is Hamiltonian.

Lemma 2.2 (see [3]). Let G be a k-connected graph of order n and the independence number β. If β ≤ k + 1, then G is
traceable.

Lemma 2.3 (see [15]). Let G be a balanced bipartite graph of order 2n with bipartition (A,B). If

d(x) + d(y) ≥ n+ 1

for any x ∈ A and any y ∈ B with xy 6∈ E(G), then G is Hamiltonian.

3. Proofs of Theorems 1.1, 1.2, and 1.3

Proof of Theorem 1.1. LetG be a graph with n vertices and e edges. Let I := {u1, u2, . . . , uβ } be a maximum independent
set in G. Then ∑

u∈I
d(u) = |E(I, V − I)| ≤

∑
v∈V−I

d(v).

Since ∑
u∈I

d(u) +
∑

v∈V−I
d(v) = 2e,

we have that ∑
u∈I

d(u) ≤ e ≤
∑

v∈V−I
d(v).

(i). Let v be any vertex in V − I. From the inequality (∆− d(v))3 ≥ 0, it follows that

∆3 − 3∆2d(v) + 3∆d2(v)− d3(v) ≥ 0

and
∆3 + 3∆d2(v) ≥ 3∆2d(v) + d3(v).
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Thus, we obtain ∑
v∈V−I

(∆3 + 3∆d2(v)) ≥
∑

v∈V−I
(3∆2d(v) + d3(v))

and hence
(n− β)∆3 + 3(n− β)∆ ∆2 ≥ 3∆2e+

∑
v∈V−I

d3(v).

Consequently, we have ∑
v∈V−I

d3(v) ≤ 4(n− β)∆3 − 3∆2e.

Therefore,

F (G) =
∑
w∈V

d3(w)

=
∑
u∈I

d3(u) +
∑

v∈V−I
d3(v)

≤ β∆3 + 4(n− β)∆3 − 3∆2e

= ∆2(4n∆− 3∆β − 3e).

If F (G) = ∆2(4n∆− 3∆β − 3e), then by the above discussion, we obtain∑
v∈V−I

d(v) = e,

which implies that ∑
u∈I

d(u) = e

and G is a bipartite graph with partite sets I and V − I such that |I| = β. Furthermore, we have d(u) = ∆ for every u ∈ I
and d(v) = ∆ for every v ∈ V − I. Thus,

∆β = |E(I, V − I)| = (n− β)∆ and β =
n

2

Hence, G is a balanced regular bipartite graph.
On the other hand, if G is a balanced regular bipartite graph, then simple computations yield

F (G) = ∆2(4n∆− 3∆β − 3e).

This completes the proof of part (i) of Theorem 1.1.

(ii). Let u be any vertex in I. From the inequality (d(u)− δ)3 ≥ 0, we obtain

d3(u)− 3d2(u)δ + 3δ2d(u)− δ3 ≥ 0

and
δ3 + 3d2(u)δ ≤ 3δ2d(u) + d3(u).

Thus, it holds that ∑
u∈I

(δ3 + 3d2(u)δ) ≤
∑
u∈I

(3δ2d(u) + d3(u)).

Therefore, we obtain
βδ3 + 3βδ2 δ ≤ 3δ2e+

∑
u∈I

d3(u)

and hence ∑
u∈I

d3(u) ≥ 4βδ3 − 3δ2e.
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Consequently, we have

F (G) =
∑
w∈V

d3(w)

=
∑
u∈I

d3(u) +
∑

v∈V−I
d3(v)

≥ 4βδ3 − 3δ2e+ (n− β)δ3

= δ2(nδ + 3δβ − 3e).

If F (G) = δ2(nδ + 3δβ − 3e), then from the proof of the above inequality, we have∑
u∈I

d(u) = e,

which implies that ∑
v∈V−I

d(v) = e

and G is a bipartite graph with partite sets I and V − I such that |I| = β. Furthermore, we have d(u) = δ for every u ∈ I
and d(v) = δ for every v ∈ V − I. Thus,

δβ = |E(I, V − I)| = (n− β)δ and β =
n

2
.

Hence, G is a balanced regular bipartite graph.
On the other hand, if G is a balanced regular bipartite graph, then after simple computations, we have

F (G) = δ2(nδ + 3δβ − 3e).

This completes the proof of part (ii) of Theorem 1.1.

Proof of Theorem 1.2. Let G be a k-connected graph with n vertices and e edges, where n ≥ 3 and k ≥ 2. Suppose to the
contrary that G is not Hamiltonian. Then, Lemma 2.1 implies that β ≥ k + 1. Let I be an independent set of size (k + 1)

in G. Following the proof of Theorem 1.1, we have∑
u∈I

d(u) +
∑

v∈V−I
d(v) = 2e

and ∑
u∈I

d(u) ≤ e ≤
∑

v∈V−I
d(v).

(i). Following the proof of Theorem 1.1(i), we obtain

F (G) ≤ ∆2(4n∆− 3∆(k + 1)− 3e).

Since
F (G) ≥ ∆2(4n∆− 3∆(k + 1)− 3e),

we have that
F (G) = ∆2(4n∆− 3∆(k + 1)− 3e).

Following again the proof of Theorem 1.1(i), we conclude that G is a bipartite graph with partite sets I and V − I such that
|I| = k + 1, d(u) = ∆ for every u ∈ I, and d(v) = ∆ for every vertex v in V − I. Since

∆|I| = |E(I, V − I)| = ∆(|V | − |I|),

we have |I| = n
2 . Now, by Lemma 2.3, the graph G is Hamiltonian, which is a contradiction. This completes the proof of

part bf (i) of Theorem 1.2.
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(ii). Following the proof of Theorem 1.1(ii), we obtain

F (G) ≤ δ2(nδ + 3δ(k + 1)− 3e).

Since
F (G) ≥ δ2(nδ + 3δ(k + 1)− 3e),

it holds that
F (G) = δ2(nδ + 3δ(k + 1)− 3e).

Following again the proof of Theorem 1.1(ii), we conclude that G is a bipartite graph with partite sets I and V − I such
that |I| = k + 1, d(u) = δ for every u ∈ I, and d(v) = δ for every vertex v in V − I. Since

δ|I| = |E(I, V − I)| = δ(|V | − |I|),

we have |I| = n
2 . Hence, by Lemma 2.3, the graph G is Hamiltonian, which is a contradiction. This completes the proof of

part (ii) of Theorem 1.2.

The proof of Theorem 1.3 is similar to the proof of Theorem 1.2. However, for the sake of completeness, we present the
complete proof of Theorem 1.3.

Proof of Theorem 1.3. Let G be a k-connected graph with n vertices and e edges, where k ≥ 1 and n ≥ 9. Suppose to
the contrary that G is not traceable. Then, Lemma 2.2 implies that β ≥ k + 2. Let I be an independent set of size (k + 2)

in G. Following the proof of Theorem 1.1, we have∑
u∈I

d(u) +
∑

v∈V−I
d(v) = 2e

and ∑
u∈I

d(u) ≤ e ≤
∑

v∈V−I
d(v).

(i). Following the proof of Theorem 1.1(i), we derive the following inequality:

F (G) ≤ ∆2(4n∆− 3∆(k + 2)− 3e).

Since
F (G) ≥ ∆2(4n∆− 3∆(k + 2)− 3e),

it holds that
F (G) = ∆2(4n∆− 3∆(k + 2)− 3e).

Following again the proof of Theorem 1.1(i), we conclude that G is a bipartite graph with partite sets I and V − I such that
|I| = k + 2, d(u) = ∆ for every u ∈ I, and d(v) = ∆ for every vertex v in V − I. Since ∆|I| = |E(I, V − I)| = ∆(|V | − |I|),
we have |I| = n

2 . Since n ≥ 9, we have k ≥ 3. Now, Lemma 2.3 confirms that G is Hamiltonian and thereby G is traceable,
which is a contradiction. This completes the proof of part (i) of Theorem 1.3.

(ii). Following the proof of Theorem 1.1(ii), obtain

F (G) ≤ δ2(nδ + 3δ(k + 2)− 3e).

Since
F (G) ≥ δ2(nδ + 3δ(k + 2)− 3e),

it holds that
F (G) = δ2(nδ + 3δ(k + 2)− 3e).

Following again the proof of Theorem 1.1(ii), we conclude that G is a bipartite graph with partite sets I and V − I such
that |I| = k + 2, d(u) = δ for every u ∈ I, and d(v) = δ for every vertex v in V − I. Since

δ|I| = |E(I, V − I)| = δ(|V | − |I|),

we have |I| = n
2 . Also, since n ≥ 9, we have k ≥ 3. Now, by Lemma 2.3, the graph G is Hamiltonian. Hence, G is traceable,

which is a contradiction. This completes the proof of part (ii) of Theorem 1.3.
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