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Abstract
In the recent paper [Int. J. Quantum Chem. 124 (2024) #e27387], Tang, Li, and Deng proposed a novel vertex-degree-
based topological index, namely the Euler Sombor index. This index for a graph G is denoted by ES(G) and is defined as
ES(G) =

∑
uv∈E(G)

√
d2(u) + d2(v) + d(u)d(v), where d(u) is the degree of the vertex u in G and E(G) is the edge set of G.

In the present paper, we obtain sharp lower and upper bounds on the Euler Sombor index of maximal outerplanar graphs
with a fixed number of vertices. We also characterize the graphs attaining these bounds.
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1. Introduction

Let G be a simple connected graph with vertex set V (G) and edge set E(G). The number of vertices and edges of G are
called its order and size, respectively. The set consisting of all neighbors of v in G is denoted by NG(v) (or N(v)). The
cardinality of NG(v) is called the degree of v and is denoted by dG(v) (or d(v)); i.e., dG(v) = |NG(v)|. The subgraph of G
obtained by deleting its vertex v and the edges incident to v is denoted by G− v.

An outerplanar graph is a planar graph that has a planar embedding such that all of its vertices lie on the boundary of
the unbounded face. An outerplanar graph is said to be maximal if its outerplanar property is affected by adding an edge
between two nonadjacent vertices. Consequently, it follows that a maximal outerplanar graph of order n has 2n− 3 edges
and at least one vertex with degree 2. The structure and properties of maximal outerplanar graphs have been studied in
several publications, see for example [6,7,9,10,16,17].

In 2021, Gutman [1] introduced a new topological index, namely the Sombor index, from a new perspective of geometry,
and obtained its basic properties. The Sombor index of a graph G is defined as

SO(G) =
∑

uv∈E(G)

√
d2(u) + d2(v).

Based on this index, many vertex-degree-based topological indices defined from a geometric perspective have been proposed
and extensively studied by scholars, see for example [2,4,5]. From the perspective of the elliptical area, Gutman, Furtula,
and Oz [4] recently proposed the elliptic Sombor index, which is defined as follows:

ESO(G) =
∑

uv∈E(G)

(d(u) + d(v))
√
d2(u) + d2(v).

In [4], the authors established some bounds on the elliptic Sombor index and determined the correlation between this
index and other topological indices. The extremal value problems of the elliptic Sombor index have attracted considerable
attention from scholars and many results on this topic have been obtained [8,11–13,15].

Recently, the Euler Sombor index based on the perimeter of the ellipse was proposed [3,14], which is defined as

ES(G) =
∑

uv∈E(G)

√
d2(u) + d2(v) + d(u)d(v).

In [14], the chemical applicability and mathematical properties of the Euler Sombor index were studied. The extremal
values for the Euler Sombor index and the corresponding extremal graphs among all (molecular) trees were also determined
in [14]. Gutman [3] established the relationship between the Euler Sombor index and the Sombor index.
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In this paper, we continue to study the extremal value problems of the Euler Sombor index. Particularly, we determine
the graphs attaining the extremal values of the Euler Sombor index over the class of maximal outerplanar graphs with a
fixed order.

2. Preliminaries

Denote by P 2
n the graph obtained from the paths Pa = v1v2 · · · va and Pb = u1u2 · · ·ub, where a+ b = n and 0 ≤ b− a ≤ 1, by

adding new edges viui and vjuj+1 for

• i = 1, 2, . . . , a and j = 1, 2, . . . , a− 1 when a = b,

• i = 1, 2, . . . , a and j = 1, 2, . . . , a when a = b− 1.

The graph P 2
n is shown in Figure 2.1. Let Qn be the set of maximal outerplanar graphs of order n whose every member G

satisfies the following two properties:

(i) there is a vertex v in V (G) such that d(v) = 2 and N(v) = {u,w},

(ii) for every vertex x ∈ V (G)\{u,w}, either x ∈ N(u) or x ∈ N(w).

u1 u2 u3 uk−2 uk−1 uk

v1 v2 v3 vk−2 vk−1 vk

u1 u2 u3 uk−2 uk−1 uk

v1 v2 v3 vk−2 vk−1

P 2
2k P 2

2k−1

Figure 2.1: The graphs P 2
2k and P 2

2k−1.

For two vertex disjoint graphs G1 and G2, the join of G1 and G2, denoted by G1 ∨ G2, refers to the graph formed by
adding edges between every vertex of G1 and every vertex of G2. Clearly, K1 ∨ Pn−1 ∈ Qn.

Lemma 2.1 (see [7]). Let G be a maximal outerplanar graph and v be a vertex in G with d(v) = 2 and N(v) = {u,w}. Then
uv ∈ E(G).

Lemma 2.2 (see [7]). Let G be a maximal outerplanar graph with order n ≥ 4 and v be a vertex in G with d(v) = 2 and
N(v) = {u,w}. Then |N(u) ∩N(w)| = 2.

Lemma 2.3 (see [7]). Let G be a maximal outerplanar graph with order n ≥ 5 and v be a vertex in G with d(v) = 2 and
N(v) = {u,w}. Then 7 ≤ d(u) + d(w) ≤ n + 2, where the left and right equalities hold if and only if G[N(u) ∪ N(w)] ∼= P 2

5

and G ∈ Qn, respectively.

Lemma 2.4. Let f(x, y) =
√
4 + x2 + 2x+

√
4 + y2 + 2y +

√
x2 + y2 + xy − (x+ y − 2)

√
(x− 1)2 + (y − 1)2 + (x− 1)(y − 1).

Then f(x, y) is strictly increasing for x, y ≥ 2.

Proof. Since x2 + 2x+ xy − 4[(x− 1)2 + (y − 1)2 + (x− 1)(y − 1)] ≤ 0, we have

fx(x, y) =
x+ 1√

x2 + 2x+ 4
− 2x+ y − 3

2
√
(x− 1)2 + (y − 1)2 + (x− 1)(y − 1)

+
2x+ y

2
√
x2 + y2 + xy

≥ 2x+ y√
x2 + y2 + xy

− 2x+ y − 3

2
√
(x− 1)2 + (y − 1)2 + (x− 1)(y − 1)

,

> 0.
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Thus, the function f(x, y) is strictly increasing for x ≥ 2. Since f(x, y) is a symmetric function, the function f(x, y) is also
strictly increasing for y ≥ 2. �

Lemma 2.5. Let g(x, y) =
√
x2 + y2 + xy−

√
(x− 1)2 + y2 + (x− 1)y. Then g(x, y) is strictly increasing for x ≥ 2 and strictly

decreasing for y ≥ 2.

Proof. Since

(2x+ y)2[(x− 1)2 + y2 + (x− 1)y]− (2x+ y − 2)2[x2 + y2 + xy] = 3y2(2x+ y − 1) > 0,

we have

gx(x, y) =
2x+ y

2
√
x2 + y2 + xy

− 2x+ y − 2

2
√

(x− 1)2 + y2 + (x− 1)y
> 0.

Thus, g(x, y) is strictly increasing for x ≥ 2. Since

(x+ 2y)2[(x− 1)2 + y2 + (x− 1)y]− (2x+ y − 1)2[x2 + y2 + xy] = (1− x)(3y2 + 3xy)− 3xy2 < 0,

we have

gy(x, y) =
x+ 2y

2
√
x2 + y2 + xy

− 2x+ y − 1

2
√

(x− 1)2 + y2 + (x− 1)y
< 0.

Thus, g(x, y) is strictly decreasing for y ≥ 2. �

Lemma 2.6. Let

h(x) =
√
4 + x2 + 2x+

1

2
(
√
x2 + a2 + ax+

√
(x− 1)2 + (a− 1)2 + (a− 1)(x− 1)) + (x− 4)g(x, 3) + g(x, 2) + g(x, 4),

where a is a constant. Then h(x) is strictly convex for x ≥ 4.

Proof. We note that

h′′(x) =
5

(x2 + 2x+ 4)
3
2

+
0.375a2

(x2 + ax+ a2)
3
2

+
0.375(a− 1)2

[(x− 1)2 + (a− 1)(x− 1) + (a− 1)2]
3
2

+
2x3 + 9x2 + 33.75x

(x2 + 3x+ 9)
3
2

− 2x3 + x2 + 19.75x− 34

(x2 + x+ 7)
3
2

− 4

(x2 + 3)
3
2

− 12

(x2 + 2x+ 13)
3
2

− 15

(x2 + 2x+ 16)
3
2

> 0.

Thus, h(x) is a strictly convex function for x ≥ 4. �

Lemma 2.7. Let p(x) be a strictly convex symmetric continuous function on [a, b] and P (x, y) = p(x) + p(y). Then

P (x, y) ≤ P (a, s− a)

for x+ y = s.

Proof. Let x, y ∈ [a, b], a ≤ x′ < x ≤ y < y′ ≤ b and x− x′ = y′ − y. Then there exists, λ = x−x′
y−x′ =

y′−y
y′−x ∈ (0, 1], such that

y = λx+ (1− λ)y′ and x = λy + (1− λ)x′.

Since p(x) is strictly convex on [a, b], we have

p(y) = p(λx+ (1− λ)y′) < λp(x) + (1− λ)p(y′) (1)

and
p(x) = p(λy + (1− λ)x′) < λp(y) + (1− λ)p(x′). (2)
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By adding (1) and (2), we have
p(x) + p(y) < λ[p(x) + p(y)] + (1− λ)[p(x′) + p(y′)],

that is,
p(x) + p(y) < p(x′) + p(y′),

which implies that
P (x, y) < P (x′, y′).

Thus, we have
P (x, y) ≤ P (a, s− a)

for x+ y = s. �

By Lemmas 2.6 and 2.7, we obtain the following corollary:

Corollary 2.1. Let φ(x, y) = h(x) + h(y) and x+ y ∈ [4, n+ 2]. Then

φ(x, y) ≤ φ(4, n− 2)

with equality if and only if x = 4, y = n− 2.

3. Main results

Theorem 3.1. Let G be a maximal outerplanar graph with order n ≥ 6. Then

ES(G) ≥ 4(2n− 11)
√
3 + 4

√
7 + 2

√
19 + 4

√
37

with equality if and only if G ∼= P 2
n .

H3H2H1 = K1 ∨ P5

Figure 3.1: Non-isomorphic maximal outerplanar graphs with order 6.

Proof. We prove ES(G) ≥ ES(P 2
n) by induction on n ≥ 6. If n = 6, then G is one of the graphs H1, H2, and H3, shown in

Figure 3.1. By direct calculations, we have

ES(H1) = 6
√
3 + 2

√
19 + 2

√
39 + 21 ≈ 52.60,

ES(H2) = 12
√
3 + 12

√
7 ≈ 52.53, and

ES(H3) = ES(P 2
6 ) = 4

√
3 + 4

√
7 + 2

√
19 + 4

√
37 ≈ 50.56.

Clearly,
ES(G) ≥ ES(P 2

6 ).

Assume that the result holds for all maximal outerplanar graphs with order n − 1 ≥ 6. Let G be a maximal outerplanar
graph of order n with the minimum Euler Sombor index. There must be a vertex v with degree 2 in G. Let NG(v) = {u,w}
and d(u) ≤ d(w). By Lemmas 2.1 and 2.2, uw ∈ E(G) and there is a vertex p ∈ N(u) ∩ N(w). By Lemma 2.3, we have
d(u) ≥ 3, d(w) ≥ 4 and there is a vertex q ∈ N(w)\{N(u) ∩N(w)}.
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Let G′ = G− v. Then dG′(u) = d(u)− 1, dG′(w) = d(w)− 1, and the degree of the other vertices remains unchanged. Let
N0(u) = N(u)\{v, w} and N0(w) = N(w)\{v, u}. For d(u) ≥ 3 and d(w) ≥ 4, by Lemmas 2.4 and 2.5, we have

ES(G) = ES(G′) +
√
d2(v) + d2(u) + d(v)d(u) +

√
d2(v) + d2(w) + d(v)d(w)

+
√
d2(u) + d2(w) + d(u)d(w)−

√
d2G′(u) + d2G′(w) + d2G′(u)d

2
G′(w)

+
∑

ui∈N0(u)

(√
d2(u) + d2(ui) + d(u)d(ui)−

√
d2G′(u) + d2G′(ui) + dG′(u)dG′(ui)

)

+
∑

wj∈N0(w)

(√
d2(w) + d2(wj) + d(w)d(wj)−

√
d2G′(w) + d2G′(wj) + dG′(w)dG′(wj)

)

= ES(G′) +
√

22 + d2(u) + 2d(u) +
√
22 + d2(w) + 2d(w)

+
√
d2(u) + d2(w) + d(u)d(w)−

√
(d(u)− 1)2 + (d(w)− 1)2 + (d(u)− 1)(d(w)− 1)

+
∑

ui∈N0(u)

(√
d2(u) + d2(ui) + d(u)d(ui)−

√
(d(u)− 1)2 + d2(ui) + (d(u)− 1)d(ui)

)

+
∑

wj∈N0(w)

(√
d2(w) + d2(wj) + d(w)d(wj)−

√
(d(w)− 1)2 + d2(wj) + (d(w)− 1)d(wj)

)

≥ ES(G′) +
√

4 + d2(u) + 2d(u) +
√

4 + d2(w) + 2d(w)

+
√
d2(u) + d2(w) + d(u)d(w)−

√
(d(u)− 1)2 + (d(w)− 1)2 + (d(u)− 1)(d(w)− 1)

+
√
d2(u) + d2(p) + d(u)d(p)−

√
(d(u)− 1)2 + d2(p) + (d(u)− 1)d(p)

+
√
d2(w) + d2(p) + d(w)d(p)−

√
(d(w)− 1)2 + d2(p) + (d(w)− 1)d(p)

+
√
d2(w) + d2(q) + d(w)d(q)−

√
(d(w)− 1)2 + d2(q) + (d(w)− 1)d(q).

Thus,

ES(G)− ES(G′) ≥ f(d(u), d(w)) + g(d(u), d(p)) + g(d(w), d(p)) + g(d(w), d(q))

≥ f(3, 4) + g(3, d(p)) + g(4, d(p)) + g(4, d(q))

with equality if and only if d(u) = 3 and d(w) = 4. By inductive hypothesis, we have

ES(G′) ≥ 4(2n− 13)
√
3 + 4

√
7 + 2

√
19 + 4

√
37

with equality holds if and only if G′ ∼= P 2
n−1, G[N(u) ∪N(w)] ∼= P 2

5 , and d(p) = d(q) = 4. Consequently, we have

ES(G) ≥ ES(P 2
n−1) + f(3, 4) + g(3, 4) + g(4, 4) + g(4, 4)

= 4(2n− 11)
√
3 + 4

√
7 + 2

√
19 + 4

√
37.

This completes the proof. �

Theorem 3.2. Let G be a maximal outerplanar graph with order n ≥ 4. Then

ES(G) ≤ 3(n− 4)
√
3 + 2

√
19 + 2

√
n2 + 3 + (n− 3)

√
n2 + n+ 7

with equality if and only if G ∼= K1 ∨ Pn−1.
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Proof. We prove ES(G) ≤ ES(K1 ∨ Pn−1) by induction on n ≥ 4. If n = 4, then there is only one maximum outerplanar
graph K1 ∨ P3. Thus, the result holds for n = 4. Assume that the result holds for all maximal outerplanar graphs with
order n − 1 ≥ 4. Let G be a maximal outerplanar graph of order n with the maximum Euler Sombor index. There must
be a vertex v with degree 2 in G. Let NG(v) = {u,w} and d(u) ≤ d(w). By Lemmas 2.1 and 2.2, uw ∈ E(G) and there is a
vertex p ∈ N(u) ∩N(w).

Let G∗ = G − v. Let N0(u) = N(u)\{v, w} = {u1, u2, . . . , us, p} and N0(w) = N(w)\{v, u} = {w1, w2, . . . , wt, p}. Also, let
s = d(u)− 3 and t = d(w)− 3. For d(u) ≥ 3 and d(w) ≥ 4, by Lemma 2.5, we have

ES(G) = ES(G∗) +
√
d2(v) + d2(u) + d(v)d(u) +

√
d2(v) + d2(w) + d(v)d(w)

+
√
d2(u) + d2(w) + d(u)d(w)−

√
d2G∗(u) + d2G∗(w) + d2G∗(u)d

2
G∗(w)

+
∑

ui∈N0(u)

(√
d2(u) + d2(ui) + d(u)d(ui)−

√
d2G∗(u) + d2G∗(ui) + dG∗(u)dG∗(ui)

)

+
∑

wj∈N0(w)

(√
d2(w) + d2(wj) + d(w)d(wj)−

√
d2G∗(w) + d2G∗(wj) + dG∗(w)dG∗(wj)

)

= ES(G∗) +
√

22 + d2(u) + 2d(u) +
√
22 + d2(w) + 2d(w)

+
√
d2(u) + d2(w) + d(u)d(w)−

√
(d(u)− 1)2 + (d(w)− 1)2 + (d(u)− 1)(d(w)− 1)

+
∑

ui∈N0(u)

(√
d2(u) + d2(ui) + d(u)d(ui)−

√
(d(u)− 1)2 + d2(ui) + (d(u)− 1)d(ui)

)

+
∑

wj∈N0(w)

(√
d2(w) + d2(wj) + d(w)d(wj)−

√
(d(w)− 1)2 + d2(wj) + (d(w)− 1)d(wj)

)

= ES(G∗) +
√

22 + d2(u) + 2d(u) +
√
22 + d2(w) + 2d(w)

+
√
d2(u) + d2(w) + d(u)d(w)−

√
(d(u)− 1)2 + (d(w)− 1)2 + (d(u)− 1)(d(w)− 1)

+
∑

ui∈N0(u)

g(d(u), d(ui)) +
∑

wj∈N0(w)

g(d(w), d(wi)).

v

u w

p wt wt−1 w1w2

Figure 3.2: The maximal outerplanar graph with order n and d(u) = 3.
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Next, we consider two cases in terms of the degree d(u).

Case 1. d(u) = 3.
In this case, we have N0(u) = {p}, see Figure 3.2. By Lemma 2.5, we obtain

ES(G) = ES(G∗) +
√
19 +

√
4 + d2(w) + 2d(w) +

√
9 + d2(w) + 3d(w)

−
√
4 + (d(w)− 1)2 + 2(d(w)− 1) + g(3, d(p)) +

∑
wj∈N0(w)

g(d(w), d(wi))

≤ ES(G∗) +
√
19 +

√
4 + d2(w) + 2d(w) +

√
9 + d2(w) + 3d(w)

−
√
4 + (d(w)− 1)2 + 2(d(w)− 1) + g(3, 3) + g(d(w), 2) + (d(w)− 3)g(d(w), 3)

= ES(G∗) +
√
19 + 3

√
3− 5 +

√
9 + d2(w) + 3d(w) + 2g(d(w), 2) + (d(w)− 3)g(d(w), 3),

with equality holds if and only if d(p) = 3, d(w1) = 2, and d(wj) = 3, where j ∈ {2, 3, . . . , t}. Let

ϕ(x) =
√

9 + x2 + 3x+ 2g(x, 2) + (x− 3)g(x, 3).

Then ϕ(x) is strictly increasing for x ≥ 2. By the inductive hypothesis and 4 ≤ d(w) ≤ n− 1, we have

ES(G) ≤ ES(G∗) + ϕ(n− 1) +
√
19 + 3

√
3− 5

≤ ES(K1 ∨ Pn−2) +
√
19 + 3

√
3− 5 +

√
9 + (n− 1)2 + 3(n− 1)

+ 2g(n− 1, 2) + (n− 1− 3)g(n− 1, 3)

= 3(n− 4)
√
3 + 2

√
19 + 2

√
n2 + 3 + (n− 3)

√
n2 + n+ 7,

the equality holds if and only if G∗ ∼= K1 ∨ Pn−2 and d(u) = 3, d(w) = n− 1, which means G ∼= K1 ∨ Pn−1.

v

u w

u1 u2 w1w2us wtp

Figure 3.3: The maximal outerplanar graph with order n and d(u) ≥ 4.
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Case 2. d(u) ≥ 4.
In this case, the graph G is illustrated in Figure 3.3. By Lemma 2.5, we have

ES(G) ≤ ES(G∗) +
√

4 + d2(u) + 2d(u) +
√
4 + d2(w) + 2d(w)

+
√
d2(u) + d2(w) + d(u)d(w)−

√
(d(u)− 1)2 + (d(w)− 1)2 + (d(u)− 1)(d(w)− 1)

+ (d(u)− 4)g(d(u), 3) + g(d(u), 2) + g(d(u), 4)

+ (d(w)− 4)g(d(w), 3) + g(d(w), 2) + g(d(w), 4)

= ES(G∗) + h(d(u)) + h(d(w))

with equality if and only if d(p) = 4, d(u1) = d(w1) = 2, and d(ui) = d(wj) = 3, where i ∈ 2, 3, . . . , s and j ∈ {2, 3, . . . , t}. By
Lemma 2.3 and Corollary 2.1, we have

ES(G) ≤ ES(G∗) + φ(d(u), d(w)) ≤ ES(G∗) + φ(4, n− 2),

where the equality holds if and only if d(u) = 4 and d(w) = n− 2. Since

ϕ(n− 1)− φ(4, n− 2) =
√

9 + (n− 1)2 + 3(n− 1) + 2g(n− 1, 2) + (n− 1− 3)g(n− 1, 3)

− 2
√
7−

√
4 + (n− 2)2 − 2(n− 2) +

√
16 + (n− 2)2 + 4(n− 2)

−
√
9 + (n− 3)2 + 3(n− 3)

≥
√
9 + (n− 1)2 + 3(n− 1) +

√
16 + (n− 2)2 + 4(n− 2)

−
√
4 + (n− 2)2 − 2(n− 2)−

√
9 + (n− 3)2 + 3(n− 3)

> 0,

by the inductive hypothesis, we have

ES(G) ≤ ES(G∗) + φ(4, n− 2)

≤ ES(K1 ∨ Pn−2) + φ(4, n− 2)

≤ ES(K1 ∨ Pn−2) + ϕ(n− 1)

≤ ES(K1 ∨ Pn−1).

By combining the above arguments, we have

ES(G) ≤ 3(n− 4)
√
3 + 2

√
19 + 2

√
n2 + 3 + (n− 3)

√
n2 + n+ 7

with equality if and only if G ∼= K1 ∨ Pn−1. This completes the proof of the theorem. �
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