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Abstract

This paper is concerned with the general eccentric distance sum index and the general degree eccentricity index of graphs.
Bounds on the difference between these indices are presented for graphs of diameter 2. A relation between the mentioned
indices, in terms of the graph’s order and minimum degree, is also established. Additionally, an upper bound on the general
eccentric distance sum for graphs of order at least 2 is presented. Furthermore, all the graphs attaining the bounds are
identified, which demonstrates that the obtained bounds are optimal.
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1. Introduction

In this paper, we focus on connected simple graphs. We examine certain topological indices of such graphs that are crucial
in graph theory and its applications. The number of vertices and edges in a graph are referred to as the order and size of
the graph, respectively. The degree of a vertex v in a graph G is denoted by deg(v). The minimum degree of G is defined as

δ(G) = min
v∈V (G)

deg(v),

and the maximum degree of G is defined as
∆(G) = max

v∈V (G)
deg(v).

The eccentricity of a vertex v in G is defined as the maximum distance from v to any other vertex of G. The diameter
of G is defined as

d(G) = max
v∈V (G)

ecc(v).

For undefined terms from graph theory, we refer the reader to [18].
The present study focuses on the generalized versions of the following two eccentricity-based topological indices: the

degree eccentricity index (DEI) and the eccentric distance sum (EDS) index. The DEI and EDS index of a graph G are
defined as follows:

DEI(G) =
∑

v∈V (G)

ecc(v) deg(v) and EDS(G) =
∑

v∈V (G)

ecc(v)D(v),

respectively, where
D(v) =

∑
u∈V (G)

d(v, u)

represents the sum of the distances from the vertex v to all other vertices of G.
There exists an excellent correlation between several physical/biological properties of chemical substances and

certain eccentricity-based topological indices [8,14]. These indices also have strong predictive power in determining phar-
maceutical properties, such as the anti-HIV activity, of chemical compounds [5]. The mathematical properties of these
indices have extensively been studied; for example, see [1–3,9–11,19,22].

Bounds on the EDS index for various graph classes have been presented in [4, 7, 12, 13, 20]. Similarly, bounds on
the ECI for different graph types have been provided in [6, 21–24]. The relationship between the EDS index and other
distance-based indices has been explored in [7].
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The general degree-eccentricity index [11] is defined as

DEIa,b(G) =
∑

v∈V (G)

ecc(v)a deg(v)b.

This general form allows us to obtain the general eccentric connectivity index [17] by setting a = 1, and the classical
eccentric connectivity index by setting a = b = 1. By setting a = 0 and b = 1, we obtain the total degree, which is equal to
twice the size of the graph. While, with the choice a = 1 and b = 0, we obtain the total eccentricity.

The general eccentric distance sum index [15] is defined as

EDSa,b(G) =
∑

v∈V (G)

ecc(v)aD(v)b,

The topological index EDSa,b encompasses several existing eccentricity-based topological indices, such as the ordinary EDS
index and the total eccentricity index.

Sharp bounds on DEIa,b(G) for different types of graphs and graph parameters have been provided in [1,9–11]. Sharp
bounds on EDSa,b(G) for various graph types and parameters have been reported in [2,3,15,16].

In this paper, we provide bounds on the difference between EDSa,b and DEIa,b for graphs of diameter 2. We also establish
a relation between these indices in terms of the graph’s order and minimum degree when b = 1. Additionally, we present an
upper bound on EDSa,b for a graph of order n ≥ 2 containing at least two vertices of degree n−1 when b = 1. Furthermore,
we identify all extremal graphs, demonstrating that our bounds are optimal.

2. Results

For any graph of diameter 2, we establish bounds on the difference EDSa,1 − DEIa,1 in Theorems 2.1 and 2.2, by utilizing
the following known result:

Lemma 2.1 (see [22]). Let G be a graph with diameter 2 and n = |G|.

(i). If ∆(G) = n− 2, then |E(G)| ≥ 2n− 4.

(ii). If ∆(G) = n− 3, then |E(G)| ≥ 2n− 5.

(iii). If ∆(G) ≤ n− 4 and δ(G) ≤ 3, then |E(G)| ≥ 2n− 5.

Theorem 2.1. Let G be a graph with diameter 2 and |G| = n ≥ 3. For a > 0,

EDSa,1(G)−DEIa,1(G) ≥ 2a+2,

with equality if and only if G is Kn − e, where e ∈ E(Kn).

Proof. Let C = {v ∈ V (G) : ecc(v) = 1}. Since d(G) = 2, we have

D(v) = deg(v) + 2(n− 1− deg(v)) = 2(n− 1)− deg(v). (1)

We complete the proof by discussing two possible cases.

Case 1. ∆(G) = n− 1.

For v ∈ C, we have ecc(v) = 1 and D(v) = n− 1. For v ∈ V (G) \ C, we have ecc(v) = 2 and

D(v) = 2(n− 1)− deg(v).

Then,

EDSa,1(G) = |C|(n− 1) +
∑

v∈V (G)\C

2a(2(n− 1)− deg(v)), and

DEIa,1(G) = |C|(n− 1) +
∑

v∈V (G)\C

2a deg(v).
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Thus,

EDSa,1(G)−DEIa,1(G) =
∑

v∈V (G)\C

2a(2(n− 1)− deg(v)− deg(v))

= 2a+1

 ∑
v∈V (G)\C

(n− 1− deg(v))



= 2a+1

(n− 1)(n− |C|)−
∑

v∈V (G)\C

deg(v)

 .

Since
2|E(G)| =

∑
v∈C

deg(v) +
∑

v∈V (G)\C

deg(v),

we have ∑
v∈V (G)\C

deg(v) = 2|E(G)| − |C|(n− 1).

Therefore,

EDSa,1(G)−DEIa,1(G) = 2a+1 ((n− 1)(n− |C|)− (2|E(G)| − |C|(n− 1))) = 2a+1 (n(n− 1)− 2|E(G)| ) .

Case 2. ∆(G) ≤ n− 2.

Since d(G) = 2, we have ecc(v) = 2 and D(v) = 2(n− 1)− deg(v) for all v ∈ V (G). Hence, we have

EDSa,1(G) =
∑

v∈V (G)

2a[2(n− 1)− deg(v)]

= 2a

2n(n− 1)−
∑

v∈V (G)

deg(v)


= 2a (2n(n− 1)− 2|E(G))

= 2a+1 (n(n− 1)− |E(G)|) , and

DEIa,1(G) =
∑

v∈V (G)

2a deg(v) = 2a(2|E(G)|) = 2a+1|E(G)|.

Therefore,
EDSa,1(G)−DEIa,1(G) = 2a+1 (n(n− 1)− |E(G))− 2a+1|E(G)| = 2a+1

(
n2 − n− 2|E(G)|

)
.

Since d(G) = 2, the size of G cannot be greater than
(
n
2

)
− 1, i.e.,

|E(G)| ≤
(
n

2

)
− 1 =

n2 − n− 2

2
.

Consequently, we have

EDSa,1(G)−DEIa,1(G) ≥ 2a+1

(
n2 − n− 2

(
n2 − n− 2

2

))
(2)

= 2a+2.

The equality in (2) is achieved if and only if
|E(G)| =

(
n

2

)
− 1,

that is, if and only if G is Kn − e.

Let S∗n (or S∗∗n ) be a graph obtained by connecting two (or two pairs of) pendant vertices of Sn with an edge (or two
edges), respectively.

Theorem 2.2. Let G be a graph with diameter 2 and n = |G| ≥ 7. Then for a > 0,

EDSa,1(G)−DEIa,1(G) ≤ 2a+1
[
n2 − 3n+ 2

]
,

with equality obtained if and only if G ∼= Sn.
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Proof. First, we calculate EDSa,1(G)−DEIa,1(G) when G ∈ {S∗∗n , S∗n, Sn}. We recall that S∗∗n is obtained from Sn by adding
two edges. These two new edges may or may not share a vertex. If the two new edges of S∗∗n share a vertex, then

EDSa,1(S∗∗n ) = 2a [(2n− 5) + 2(2n− 4) + (n− 4)(2n− 3)] + (n− 1),

DEIa,1(S∗∗n ) = 2a [3 + 2(2) + (n− 4)] + (n− 1),

EDSa,1(S∗∗n )−DEIa,1(S∗∗n ) = 2a
[
2n2 − 6n− 4

]
= 2a+1

[
n2 − 3n− 2

]
.

If the two new edges of S∗∗n do not share a vertex, then

EDSa,1(S∗∗n ) = 2a [4(2n− 4) + (n− 5)(2n− 3)] + (n− 1),

DEIa,1(S∗∗n ) = 2a [4(2) + (n− 5)] + (n− 1),

EDSa,1(S∗∗n )−DEIa,1(S∗∗n ) = 2a
[
2n2 − 6n− 4

]
= 2a+1

[
n2 − 3n− 2

]
.

Therefore, in either case, we have

EDSa,1(S∗∗n )−DEIa,1(S∗∗n ) = 2a+1
[
n2 − 3n− 2

]
.

For the graph S∗n, we have

EDSa,1(S∗n) = 2a [2(2n− 4) + (n− 3)(2n− 3)] + (n− 1),

DEIa,1(S∗n) = 2a [2(2) + (n− 3)] + (n− 1),

EDSa,1(S∗n)−DEIa,1(S∗n) = 2a
[
2n2 − 6n

]
= 2a+1

[
n2 − 3n

]
.

Also, for the star Sn, we have

EDSa,1(Sn) = 2a(n− 1)(2n− 3) + (n− 1),

DEIa,1(Sn) = 2a(n− 1) + (n− 1),

EDSa,1(Sn)−DEIa,1(Sn) = 2a+1
[
n2 − 3n+ 2

]
.

Since n2 − 3n− 2 < n2 − 3n < n2 − 3n+ 2, we have

EDSa,1(S∗∗n )−DEIa,1(S∗∗n ) < EDSa,1(S∗n)−DEIa,1(S∗n) < EDSa,1(Sn)−DEIa,1(Sn).

Next, we show that
EDSa,1(G)−DEIa,1(G) < EDSa,1(S∗∗n )−DEIa,1(S∗∗n )

for any graph G with diameter 2 such that n ≥ 7 and G 6∈ {Sn, S
∗
n, S

∗∗
n }. Let C = {v ∈ V (G) : deg(v) = n− 1}. Since G has

n ≥ 7 vertices and diameter 2, from Theorem 2.1, we get

EDSa,1(G)−DEIa,1(G) = 2a+1
[
n2 − n− 2|E(G)|

]
.

Case 1. ∆(G) = n− 1.

If |C| = 1, then
2|E(G)| ≥ n− 1 + 2(n− 1) ≥ 2(n− 1) + 6 = 2(n+ 2),

i.e., |E(G)| ≥ n+ 2. If |C| ≥ 2, then deg(v) = n− 1 for v ∈ C and deg(v) ≥ |C| for v ∈ V (G) \ C.

2|E(G)| =
∑
v∈C

deg(v) +
∑

v∈V (G)\C

deg(v)

≥ |C|(n− 1) + |C|(n− |C|)

= (2n− 1)|C| − |C|2

≥ 2(2n− 1)− 4 (because |C| ≥ 2)
= 4n− 6 = 2n+ 2n− 6

> 2n+ 4 = 2(n+ 2), because 2n− 6 > 4 for n ≥ 7.
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Thus, in general, it holds that |E(G)| ≥ n+ 2. Hence, we have

EDSa,1(G)−DEIa,1(G) = 2a+1
[
n2 − n− 2|E(G)|

]
≤ 2a+1

[
n2 − n− 2(n+ 2)

]
= 2a+1

[
n2 − 3n− 4

]
< 2a+1

[
n2 − 3n− 2

]
= EDSa,1(S∗∗n )−DEIa,1(S∗∗n ).

Case 2. ∆(G) ≤ n− 2.

Case 2.1. ∆(G) = n− 2 or ∆(G) = n− 3

Using the first two parts of Lemma 2.1, we have |E(G)| ≥ 2n− 5.

Case 2.2. ∆(G) ≤ n− 4.

In this case, we discuss two further possibilities.

• If δ(G) ≤ 3, the by Lemma 2.1(iii) we have |E(G)| ≥ 2n− 5.

• If δ(G) ≥ 4, then 2|E(G)| ≥ nδ ≥ 4n, i.e., |E(G)| ≥ 2n > 2n− 5.

In either of the cases Case 2.1 and Case 2.2, we have |E(G)| ≥ 2n− 5. Thus,

EDSa,1(G)−DEIa,1(G) = 2a+1
[
n2 − n− 2|E(G)|

]
≤ 2a+1

[
n2 − n− 2(2n− 5)

]
= 2a+1

[
n2 − 5n+ 10

]
= 2a+1

[
n2 − 3n− 2 + 12− 2n

]
< 2a+1

[
n2 − 3n− 2

]
, because 12− 2n < 0 for n ≥ 7.

Thus, we have
EDSa,1(G)−DEIa,1(G) < EDSa,1(S∗∗n )−DEIa,1(S∗∗n ).

Therefore, for a > 0 and for any graph G with diameter 2, we have

EDSa,1(G)−DEIa,1(G) ≤ EDSa,1(Sn)−DEIa,1(Sn) = 2a+1
[
n2 − 3n+ 2

]
.

Theorem 2.3. Let G be a graph on n ≥ 2 vertices. For a, b ∈ R where b > 0, we have

EDSa,b(G) ≤ (n− 1)bDEIa+b,0(G).

Equality holds if and only if G ∼= Kn.

Proof. From the definition of the eccentricity of a vertex, we have d(v, u) ≤ ecc(v). Thus,

D(v) =
∑

u∈V (G)

d(v, u) ≤
∑

u∈V (G)

ecc(v) = (n− 1)ecc(v). (3)

Equality in (3) holds when the vertex u is one of the vertices furthest from v in G, i.e., ecc(v) = d(v, u). For b > 0, we have

(D(v))b ≤ ((n− 1)ecc(v))b.
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Thus, we have

EDSa,b(G) =
∑

v∈V (G)

(ecc(v))a(D(v))b

≤
∑

v∈V (G)

(ecc(v))a((n− 1)ecc(v))b

= (n− 1)b
∑

v∈V (G)

(ecc(v))a+b.

Consequently, we have
EDSa,b(G) ≤ (n− 1)bDEIa+b,0(G),

where
DEIa+b,0(G) =

∑
v∈V (G)

(ecc(v))a+b.

We note that the equality in (3) holds if and only if G ∼= Kn.

Theorem 2.4. Let G be a graph of order n ≥ 3. For a, b ∈ R with b > 0, the following inequality holds:

EDSa,b(G) ≥ (n− 1)bDEIa,0(G),

with equality if and only if G ∼= Kn.

Proof. For any v ∈ V (G) and b > 0, we have DG(v) ≥ n− 1. Thus,

(DG(v))b ≥ (n− 1)b,

and hence,
(eccG(v))a(DG(v))b ≥ (eccG(v))a(n− 1)b.

Summing over all vertices of G, we obtain∑
v∈V (G)

(eccG(v))a(DG(v))b ≥
∑

v∈V (G)

(eccG(v))a(n− 1)b.

Therefore,
EDSa,b(G) ≥ (n− 1)b

∑
v∈V (G)

(eccG(v))a = (n− 1)bDEIa+b,0(G).

Equality follows from DG(v) ≥ n− 1 and ecc(v) = 1 for all v ∈ V (G), i.e., G ∼= Kn.

From the proof of Theorem 4.2 in [7], we have Lemma 2.2, which we use to prove our next result (that is, Theorem 2.5).

Lemma 2.2 (see [7]). Let G be a graph with order n ≥ 5. For any vertex v in G, it holds that eccG(v) ≤ n − deg(v), with
equality if and only if G is obtained by deleting k pairwise independent edges from Kn, where k = 0, 1, 2, . . . , bn2 c.

Theorem 2.5. Let G be a graph with order n ≥ 2 with minimum degree δ. For a, b ∈ R with b > 0, we have

EDSa,b(G) ≤ n(n− 1)b(n− δ)a+b,

where the equality holds if and only if G ∼= Kn.

Proof. Let (d1, d2, . . . , dn) be the degree sequence of G such that dn = δ. From (3), for any v ∈ V (G), we have

D(v) ≤ (n− 1)ecc(v).

Hence, for b > 0, it holds that
(D(v))b ≤ ((n− 1)ecc(v))b.
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Therefore, we have

EDSa,b(G) ≤
∑

v∈V (G)

(ecc(v))a((n− 1)ecc(v))b

= (n− 1)b
∑

v∈V (G)

(ecc(v))a+b

≤ (n− 1)b
∑

v∈V (G)

(n− deg(v))a+b, by Lemma 2.2.

If G ∼= Kn, then di = n− 1 for each i = 1, 2, . . . , n. Thus, n− di = 1, ecc(v) = 1, and D(v) = n− 1. We have

EDSa,b(Kn) = n(n− 1)b.

For any v ∈ V (G), the inequality δ ≤ deg(v) holds and hence n− deg(v) ≤ n− δ. Hence, we have

EDSa,b(G) ≤ (n− 1)b
n∑

i=1

(n− deg(v))a+b

≤ (n− 1)b
n∑

i=1

(n− δ)a+b = n(n− 1)b(n− δ)a+b.

Equality holds if and only if G ∼= Kn.

Theorem 2.6. Let G be a graph of order n ≥ 2 containing at least two vertices of degree n− 1. For a > 0, we have

EDSa,1(G) ≤ 2(n− 1) + 2a+1(n− 2)2,

with equality if and only if G is K2 + (n− 2)K1.

Proof. Let Φ = {v ∈ V (G) : dG(v) = n− 1}. Then |Φ| ≥ 2 and d(G) = 2. For v ∈ Φ, we have eccG(v) = 1 and DG(v) = n− 1.
However, for v ∈ V (G) \ Φ, we have eccG(v) = 2 and DG(v) = 2(n− 1)− dG(v). Hence, we have

EDSa,1(G) =
∑
v∈Φ

(eccG(v))aDG(v) +
∑

v∈V (G)\Φ

(eccG(v))aDG(v)

= |Φ|(n− 1) +
∑

v∈V (G)\Φ

2aDG(v)

= |Φ|(n− 1) +
∑

[

2mm]v ∈ V (G) \ Φ2a(2(n− 1)− dG(v))

= |Φ|(n− 1) + (n− |Φ|)2a(2(n− 1))− 2a
∑

v∈V (G)\Φ

dG(v)

= |Φ|(n− 1) + (n− |Φ|)2a(2(n− 1))− 2a[2|E(G)| − (n− 1)|Φ|]

= |Φ|(n− 1)(1 + 2a) + (n− |Φ|)(n− 1)2a+1 − 2a(2|E(G)|). (4)

Note that degG(v) ≥ |Φ| for v ∈ V (G) \ Φ. By the Handshaking lemma, we have

2|E(G)| ≥ (n− 1)|Φ|+ (n− |Φ|)|Φ|. (5)

Therefore, from (4) and (5), it follows that

EDSa,1(G) ≤ |Φ|(n− 1)(1 + 2a) + (n− |Φ|)(n− 1)2a+1 − 2a[(n− 1)|Φ|+ (n− |Φ|)|Φ|] (6)

= |Φ|(n− 1) + (n− |Φ|)(n− 1)2a+1 − 2a|Φ|(n− |Φ|)

Equality in (5) holds if and only if degG(v) = |Φ| for all v ∈ V (G) \ Φ. Thus,

G ∼= K|Φ| + (n− |Φ|)K1.
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Consequently, we have

EDSa,1(G) ≤ |Φ|(n− 1) + (n− |Φ|)(n− 1)2a+1 − 2a|Φ|(n− |Φ|)

= |Φ|(n− 1) + 2a(n− |Φ|)[2(n− 1)− |Φ|]

≤ 2(n− 1) + 2a(n− 2)[2(n− 1)− 2] (7)

= 2(n− 1) + 2a+1(n− 2)2.

Equality in (7) holds if and only if |Φ| = 2. Therefore, equality EDSa,1(G) = 2(n− 1) + 2a+1(n− 2)2 is achieved whenever G
is K2 + (n− 2)K1.

3. Open problems

Some open problems related to the present study are listed below:

1. Find graphs with the largest and smallest EDSa,b among trees of a given order and number of branching vertices.

2. Find bounds on EDSa,b for trees of a given order and number of segments.

3. Establish relations between EDSa,b and other general topological indices for general graphs.

We suggest studying the above three problems for either both general values of a and b, or one general value and the other
equal to 1.
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