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Abstract
The Frullani integral formula is considered for the distributional integral. The existence of the Frullani integral is proven
to be equivalent to the existence of the distributional point value at zero and Cesàro limit at infinity. Connections to finite
parts and Cesàro summability are drawn. Applications and illustrations are also given.
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1. Introduction

A simple but interesting result for the evaluation of integrals is Frullani’s formula [5,6]:∫ ∞
0

f (ax)− f (bx)

x
dx = C ln

(a
b

)
, (1)

where a > 0 and b > 0. Formula (1) holds for the continuous functions in (0,∞) that have limits at both 0 and∞. Here

C = f (∞)− f
(
0+
)
. (2)

We shall refer to the integral in this formula as the Frullani Integral and the formula itself as the Frullani integral
formula. This formula was communicated by Frullani to Plana in 1821 and was eventually published in 1828 [14]. Cauchy
also published a version in 1823. For the formula to hold true, it is not necessary for the function to have a limit at infinity
or at zero. With an appropriate interpretation of the value of the function at infinity and at zero, one can show that it
holds for a larger class of functions.

In 1940, Iyengar [15] obtained the necessary and sufficient conditions for the existence of the Frullani integral in (1),
under the assumption that f : (0,∞) → R is Lebesgue integrable over every finite closed interval. He proved that if the
integral exists for all values of a/b in an interval [ρ1, ρ2] with 0 < ρ1 < ρ2, then it exists for every a, b > 0 and the equality
follows. He proved, albeit erroneously [22], that the existence of the Frullani integral is equivalent to the existence of the
following four expressions: ∫ 1

0+
f (x) dx = lim

ε→0+

∫ 1

ε

f (x) dx , m∗ = lim
ε→0+

1

ε

∫ ε

0+
f (x) dx , (3)

∫ ∞
1

f (x)

x2
dx = lim

λ→∞

∫ λ

1

f (x)

x2
dx , M∗ = lim

λ→∞
λ

∫ ∞
λ

f (x)

x2
dx . (4)

In this case
C = M∗ −m∗ . (5)

A correct proof was later given by Agnew [1, 2] and then by Ostrowski [21, 22], who showed that the improper Frullani
integrals exist for all a, b > 0 if and only if the two mean values

m = lim
ε→0+

ε

∫ 1

ε

f (x)

x2
dx , (6)

M = lim
λ→∞

1

λ

∫ λ

1

f (x) dx , (7)
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both exist, in which case m∗ = m and M∗ = M. Actually if the Frullani integrals exist for all a, b > 0 for any integral,
not just for the Lebesgue integral, Arias de Reyna [4] shows that (1) holds for some constant C; for the Denjoy-Perron-
Henstock-Kurzweil integral he proves that C is a distributional point value; actually the arguments of Ostrowski show
that C = M − m for this integral as well. It should be clear that the Lebesgue integral is not the right framework to
study these problems since the integrals in (1) are not absolutely convergent, in general; integrals that allow one to inte-
grate highly oscillatory functions, like the Denjoy-Perron-Henstock-Kurzweil integral or the more powerful distributional
integral introduced recently [12] seem better suited to understand the situation.

Recently, Ortner and Wagner [20] employed a distributional framework to rigorously obtain several integrals that arise
in Mathematical Physics, and placed many Frullani integral formulas and finite part evaluations in this context.

The aim of the present article is to establish that for the distributional integral there is a direct equivalence between
the existence of the Frullani integrals and the existence of distributional limits at the origin and Cesàro limits at infinity.
If f is distributionally integrable in [0,∞), then the distributional integral∫ 1

0

f (ax)− f (bx)

x
dx , (8)

exists for all a, b > 0 if and only if the distributional limit

f
(
0+
)

(dist) , (9)

exists. We prove a corresponding result at infinity for Cesàro integrals, namely∫ ∞
1

f (ax)− f (bx)

x
dx (C) , (10)

the Cesàro limit of the distributional integrals
∫ λ
1

(f (ax)− f (bx)) /x dx as λ → ∞, exists for every a, b > 0 if and only if
the Cesàro limit

f (∞) = lim
λ→∞

f (x) (C) , (11)

exists. If both (9) and (11) exist then Frullani’s formula (1) holds with C = f (∞) − f (0+) as the original formula (2),
except that now f (0+) is a distributional limit and f (∞) is a Cesàro limit. A quick review of the distributional integral,
distributional limits and Cesàro integrals and limits is given in Section 2.

Actually, we are able to prove a very general form of this equivalence, valid for distributions in (0,∞) whether those
distributions are “regular” in the sense that they are evaluations with respect to some integral or not. We show that if f is
a distribution of D′ (0,∞) then all primitives of

f (ax)− f (bx)

x
, (12)

have a distributional limit as x → 0+ for every a, b > 0 if and only if f (0+) (dist) exists. We also show that all primitives
have a Cesàro limit at infinity for every a, b > 0 if and only if the Cesàro limit at infinity f (∞) (C) exists. If the limits exist
at both 0+ and at∞ then for any primitive Fa,b formula (1) becomes

lim
x→0+

Fa,b (x)− lim
x→∞

Fa,b (x) =
(
f (∞)− f

(
0+
))

ln
(a
b

)
. (13)

Here limx→0+ Fa,b (x) is a distributional limit and limx→∞ Fa,b (x) is a Cesàro limit.
The plan of the article is as follows. Section 2 gives a summary of ideas from the theory of distributions needed in our

analysis, including the concept of “regular” distributions. In Section 3 we give a general equivalence result, that holds for
all distributions –whether they are regular or not– for the existence of distributional Frullani-type limits. Next, in Section
4 we apply the general results to the distributional integral, proving the announced equivalence of the existence of the
Frullani integrals and the existence of the distributional limit at zero and the corresponding results in the Cesàro sense at
infinity. We show that the ideas are related to finite parts in Section 5 and then give applications to sequences in Section
6. The question of whether it is enough to assume the existence of the integrals for some pairs (a, b) is treated in Section
7 while the final section gives several examples.

2. Distributions, functions, and distributional integration

Basic ideas from the theory of distributions and details about the topological vector space structure of the spaces of test
functions and distributions can be found in the textbooks [3, 16, 25, 29]; for the local behavior of distributions we refer
to [11, 13, 23, 24, 30]. Our distributions will be from the space D′ (0,∞) , dual of the space of test functions D (0,∞) . The
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spaceD (0,∞) consists of those smooth functions defined in (0,∞) with compact support, that is, whose support is contained
in an interval of the form [a, b] where 0 < a < b. The space E (0,∞) consists of all smooth functions in (0,∞) and its dual
E ′ (0,∞) is the subspace of D′ (0,∞) formed by those distributions with compact support, that is, with support contained
in a closed interval [c, d] for some 0 < c < d.

Since we would like to separate the analysis at 0 and at infinity, it is sometimes convenient to work with distributions
whose support is bounded on the right. In other cases, we would need to consider distributions f ∈ D′ (0,∞) whose support
is bounded on the left, that is, is contained in an interval of the form [c,∞) for some c > 0.†

Distributions will be denoted as f, g, h, and so on, while functions will be denoted as f, g, h, etc. Several distributions f

are regular [9] in the sense that they correspond to a measurable function f, f ↔ f, such that

〈f (x) , φ (x)〉 =

∫ ∞
0

f (x)φ (x) dx , (14)

when φ ∈ D (0,∞) . If the integral in (14) is the Lebesgue integral, the term is just ‘regular’, but one can also employ Denjoy-
Perron-Henstock-Kurzweil integrable functions [19] or even the more general distributionally integrable functions [12].
Since the tradition gives the plain term regular to those distributions obtained from Lebesgue integrable functions, we will
call those distributions given by (14) with f distributionally integrable dist-regular, while the term DPHK-regular could
be used if f is Denjoy-Perron-Henstock-Kurzweil integrable. Independently of the integral method used, the function f

needs to be locally integrable in the open interval (0,∞) which means that f is integrable in every closed interval [a, b]

for 0 < a < b. If f is locally Denjoy-Perron-Henstock-Kurzweil integrable in the open interval (0,∞) and the limit of the
integrals exists at 0+ then it is Denjoy-Perron-Henstock-Kurzweil integrable in every closed interval [0, b] for 0 < b and
similarly if it is locally distributionally integrable in the open interval (0,∞) and the distributional limit of the integrals
exists at 0+ then the function is distributionally integrable in every closed interval [0, b] for 0 < b; corresponding results
hold at infinity. However, there are improper Lebesgue integrals at 0+ or at∞.

If f is dist-regular then the corresponding measurable function f is related to f through the distributional point values,
since the values f (x) (dist) exist almost everywhere in (0,∞) and actually [12]

f (x) = f (x) (a.e.) . (15)

Distributional point values were introduced by Łojasiewicz [18] as follows. The point value at the point x0 is

f(x0) = lim
ε→0

f(x0 + εx) , (16)

if the limit exists in D′(R), that is, if limε→0 〈f(x0 + εx), φ(x)〉 = f(x0)
∫∞
−∞ φ(x) dx, for each φ ∈ D(R). The existence of the

distributional point value f(x0) = γ is equivalent to the existence of n ∈ N, and a primitive of order n of f, that is F(n) = f,
which corresponds, near x0, to a continuous function F that satisfies limx→x0 n!F (x) (x− x0)

−n
= γ .One can also define

point values by using the operator
∂x0

(f) = ((x− x0) f (x))
′
, (17)

since f1(x0) = γ if and only if f(x0) = γ, where f = ∂x0 (f1) . Therefore [13] f has a distributional value equal to γ at x = x0

if and only if there exists n ∈ N and a function fn, continuous at x = x0, with fn (x0) = γ, such that f = ∂nx0
(fn) , where

fn ↔ fn. We also say that the distributional lateral value f(0+) (dist) exists if f(0+) = limε→0+ f(εx) in D′(0,∞), that is,

lim
ε→0+

〈f(εx), φ(x)〉 = f(0+)

∫ ∞
0

φ(x) dx , φ ∈ D(0,∞) . (18)

Lateral limits can also be characterized by primitives and by the operator ∂x0
= ∂ in the same fashion. When f ↔ f and

f (x0) (dist) exists we will also say that the distributional point value of f exists, and denote it also as f (x0) (dist) .

The well-known Cesàro summability behavior of functions is extended to distributions [8,11] by using the order symbols
O (xα) and o (xα) in the Cesàro sense. If f ∈ D′(R) and α ∈ R\ {−1,−2,−3, ...}, we say that f(x) = O (xα) as x → ∞ in the
Cesàro sense and write

f(x) = O (xα) (C) , as x→∞ , (19)

if there exists N ∈ N such that every primitive F of order N , i.e., F(N) = f, corresponds for large arguments to a locally
integrable function, F ↔ F , that satisfies the ordinary order relation F (x) = p(x) + O

(
xα+N

)
, as x → ∞, for a suitable

polynomial p of degree at most N − 1. If we want to specify the value N , we write (C, N) instead of just (C). A similar
†In the study of integral equations in spaces of distributions [10] one needs to consider such spaces of mixed type, where one condition is satisfied at

one endpoint and a different one at the other. In that reference the notation D′
12 (0,∞) is used for those elements of D′ (0,∞) with support bounded on

the right while D′
21 (0,∞) is employed for those with support bounded on the left.
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definition applies to the little o symbol. Using these ideas, one can define the limit of a distribution at ∞ in the Cesàro
sense. We say that f ∈ D′(R) has a limitL at infinity in the Cesàro sense and write limx→∞ f(x) = L (C), if f(x) = L+o(1) (C),
as x→∞.

We will also need the following known result [12] when we make the change of variables t = 1/x :

Lemma 2.1. Let f ∈ D′(0,∞). The distributional limit of f from the right at x = 0 exists and equals γ if and only if the
Cesàro limit of f (1/t) as t → ∞ exists and equals γ. A function f is distributionally integrable over [0, 1] if and only if
f
(
t−1
)
t−2 is distributionally Cesàro integrable over [1,∞) and∫ 1

0

f (x) dx =

∫ ∞
1

f
(
t−1
)
t−2 dt (C) . (20)

3. Distributions at the origin

Let us consider the equivalence of distributional limits at the origin and the existence of a distributional form of Frullani’s
integral. We start with the case when f (0+) (dist) exists.

Proposition 3.1. Suppose f ∈ D′ (0,∞) . If f (0+) (dist) exists then for all a, b > 0 any primitive of (f (ax)− f (bx)) /x has a
distributional limit as x → 0+. If f ∈ D′ (0,∞) has support bounded on the right and Fa,b is the primitive in D′ (0,∞) that
has support bounded on the right then

Fa,b
(
0+
)

= f
(
0+
)

ln
(a
b

)
.

Proof. For a general f ∈ D′ (0,∞) we decompose it as f1 + f2 where f1 ∈ D′ (0,∞) has support bounded on the right and
where f2 vanishes in a neighborhood of the origin. Since any primitive of (f2 (ax)− f2 (bx)) /x is constant in a neighborhood
of the origin, its limit at 0+ exists; hence, it is enough to prove the result for f1. Therefore, let us suppose f = f1 ∈ D′ (0,∞)

has support bounded on the right. Let φ ∈ D (0,∞) and put Φ (y) = 〈f (yx) , φ (x)〉 . If f (0+) (dist) exists then Φ admits a
continuous extension to [0,∞), with Φ (0) = f (0+)

∫∞
0
φ (x) dx. On the other hand,

〈Fa,b (εx) , φ (x)〉 = −
∫ b

a

Φ (εx)

x
dx , (21)

since the derivative of the left side is

d

dε
(〈Fa,b (εx) , φ (x)〉) =

〈
f (aεx)− f (bεx)

ε
, φ (x)

〉

=
Φ (aε)− Φ (bε)

ε
,

while that of the right side is also

− d

dε

∫ b

a

Φ (εx)

x
dx = −

∫ b

a

Φ′ (εx) dx =
Φ (aε)− Φ (bε)

ε
,

and both functions in (21) vanish as ε→∞. Hence,

lim
ε→0+

〈Fa,b (εx) , φ (x)〉 = −Φ (0) ln

(
b

a

)
= f

(
0+
)

ln
(a
b

)∫ ∞
0

φ (x) dx ,

so that Fa,b (0+) exists and equals f (0+) ln (a/b) .

Let us now consider the converse. We need to start with a preliminary result. Suppose f ∈ D′ (0,∞) has support
bounded on the right. Then f (0+) (dist) exists if and only if for all φ ∈ D (0,∞) the function Φ (y) = 〈f (yx) , φ (x)〉 has a limit
as y → 0+ in the ordinary sense, limy→0+ Φ (y) = f (0+)

∫∞
0
φ (x) dx. What happens if Φ has a limit in the average sense?

Lemma 3.1. Let f ∈ D′ (0,∞) with support bounded on the right. Suppose that for all φ ∈ D (0,∞) the function
Φ (y) = 〈f (yx) , φ (x)〉 satisfies that ∫ 1

0+
Φ (y) dy exists and lim

ε→0+

1

ε

∫ ε

0+
Φ (y) dy exists. (22)

Then f (0+) (dist) exists and the limit in (22) equals f (0+)
∫∞
0
φ (x) dx.
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Proof. Let us define the distribution F ∈ D′ (0,∞) as

〈F (x) , φ (x)〉 =

∫ 1

0

〈f (yx) , φ (x)〉 dy =

∫ 1

0+
Φ (y) dy , (23)

for φ ∈ D (0,∞) . Notice that the distributional limit F (0+) (dist) exists since

lim
ε→0+

〈F (εx) , φ (x)〉 = lim
ε→0+

∫ 1

0

〈f (εyx) , φ (x)〉 dy

= lim
ε→0+

1

ε

∫ ε

0

〈f (yx) , φ (x)〉 dy ,

the limit in (22), which exists for all φ. If we show that ∂F = f it would follow that f (0+) (dist) exists and equals F (0+)

(dist) . But we have that

〈∂F (x) , φ (x)〉 = −〈F (x) , xφ′ (x)〉 = −
∫ 1

0

〈f (yx) , xφ′ (x)〉 dy

=

∫ 1

0

〈
∂

∂x
(xf (yx)) , φ (x)

〉
dy =

∫ 1

0

∂

∂y
〈yf (yx) , φ (x)〉 dy = 〈f (x) , φ (x)〉 .

We can now prove the following result:

Proposition 3.2. Suppose f ∈ D′ (0,∞) . Suppose that for all a, b > 0 any primitive of (f (ax)− f (bx)) /x has a distributional
limit as x→ 0+. Then f (0+) (dist) exists.

Proof. Denote as before the primitive as Fa,b. If φ ∈ D (0,∞) and Φ (y) = 〈f (yx) , φ (x)〉 then formula (21) holds. A simple
manipulation thus gives

〈Fa,b (εx) , φ (x)〉 =

∫ ∞
ε

Φ (ax)− Φ (bx)

x
dx . (24)

Since the distributional limit Fa,b (0+) (dist) exists it follows that the limit of (24) when ε→ 0+ exists. Iyengar equivalence
implies that

∫ 1

0+
Φ (t) dt exists and the limit (22) also exists. Lemma 3.1 yields that f (0+) (dist) exists, as required.

Corresponding results hold at infinity.

Proposition 3.3. Let f ∈ D′ (0,∞) . The Cesàro limit f (∞) (C) exists if and only if for all a, b > 0 any primitive of
(f (ax)− f (bx)) /x has a Cesàro limit as x → ∞. If supp f ⊂ [c,∞) for some c > 0 and Ga,b is the primitive with support
in [c,∞) then

Ga,b (∞) = f (∞) ln
(a
b

)
. (25)

Proof. We just need to apply Propositions 3.1 and 3.2 and Lemma 2.1 to the distribution h (x) = f (1/x) .

Combining the results at the origin and at infinity, we obtain the ensuing summary.

Proposition 3.4. Let f ∈ D′ (0,∞) . The distributional limit f (0+) (dist) and the Cesàro limit f (∞) (C) both exist if and
only if for all a, b > 0 any primitive Ha,b of (f (ax)− f (bx)) /x has a distributional limit at 0+ and a Cesàro limit as x→∞.
In such a case,

Ha,b (∞)− Ha,b
(
0+
)

=
(
f (∞)− f

(
0+
))

ln
(a
b

)
. (26)

4. Integrals

Let f be distributionally integrable in each compact of (0,∞) . Then the corresponding distribution f ↔ f, given by the
formula

〈f (x) , φ (x)〉 =

∫ ∞
0

f (x)φ (x) dx , (27)

belongs to D′ (0,∞) . The primitives of (f (ax)− f (bx)) /x are also regular and correspond to the functions

x A+

∫ x

1

f (at)− f (bt)

t
dt , (28)

23
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for a certain constant A. If f ∈ D′ (0,∞) has support bounded on the right then the primitive Fa,b ∈ D′ (0,∞) with support
bounded on the right corresponds to the Łojasiewics function Fa,b, Fa,b ↔ Fa,b, given by

Fa,b (x) = −
∫ ∞
x

f (at)− f (bt)

t
dt . (29)

The distributional limit Fa,b (0+) (dist) exists when (f (ax)− f (bx)) /x is distributionally integrable in [0,∞) and

Fa,b
(
0+
)

= −
∫ ∞
0

f (ax)− f (bx)

x
dx . (30)

Propositions 3.1 and 3.2 thus immediately give the following equivalence.

Proposition 4.1. Let f be distributionally integrable in each compact of (0,∞) . The distributional limit f (0+) (dist) exists
if and only if the distributional integral ∫ 1

0

f (ax)− f (bx)

x
dx , (31)

exists for all a, b > 0. If additionally f has support bounded on the right then∫ ∞
0

f (ax)− f (bx)

x
dx = −f

(
0+
)

ln
(a
b

)
. (32)

Observe that the existence of f (0+) (dist) implies that f is distributionally integrable in [0, c] for any c > 0. The converse
is not true, of course, and thus there are functions that are distributionally integrable in [0, c] for any c > 0 for which the
integrals (31) do not exist for some a and b.

Furthermore, Proposition 3.3 yields the ensuing result.

Proposition 4.2. Let f be distributionally integrable in each compact of (0,∞) . The Cesàro limit f (∞) (C) exists if and
only if for all a, b > 0 the integral ∫ ∞

1

f (ax)− f (bx)

x
dx (C) , (33)

is Cesàro summable at infinity. If additionally f (x) = 0 for x < c for some c > 0 then∫ ∞
0

f (ax)− f (bx)

x
dx = f (∞) ln

(a
b

)
(C) . (34)

If we combine the conclusions of Propositions 4.1 and 4.2, we obtain that (f (ax)− f (bx)) /x is Cesàro distributionally
integrable over [0,∞) for all a, b > 0 if and only if f (0+) (dist) and f (∞) (C) both exist, and then Frullani’s integral equals
(f (∞)− f (0+)) ln (a/b) .

5. Finite parts

There is a connection between Frullani’s integrals and the Hadamard finite part of the generically divergent integral∫∞
0
f (x) dx/x (see [20]).
Suppose f has support bounded on the right. When the Hadamard finite part of the divergent integral

∫∞
0
f (x) dx/x,

F.p.

∫ ∞
0

f (x)

x
dx =

∫ ∞
0

f (x)−H (1− x) f (0)

x
dx , (35)

is a convergent integral, then the change of variables formula for finite part integrals [11],

F.p.

∫ ∞
0

f (λx)

λx
dx = F.p.

∫ ∞
0

f (x)

x
dx− f (0) lnλ , (36)

immediately yields Frullani’s formulas, by writing a convergent integral as a difference of divergent integrals,∫ ∞
0

f (ax)− f (bx)

x
dx = F.p.

∫ ∞
0

f (ax)

ax
dx− F.p.

∫ ∞
0

f (bx)

bx
dx . (37)

However, this nice derivation cannot be applied to all cases, since there are functions for which Frullani’s integrals converge
but for which the Hadamard finite part (35) does not. Indeed, let η ∈ (0, 1) and consider the function

g (x) =
H (η − x)

lnx
. (38)
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It is continuous in [0,∞) with g (0) = 0. Consequently, Frullani’s integrals∫ ∞
0

(
H (η − ax)

ln ax
− H (η − bx)

ln bx

)
dx

x
, (39)

are convergent at x = 0 for any a, b > 0, and in fact are equal to 0.

On the other hand, the improper integral ∫ ∞
0

g (x)

x
dx , (40)

diverges, to −∞. The Hadamard finite part

F.p.

∫ ∞
0

g (x)

x
dx =

∫ ∞
0

g (x)−H (1− x) g (0)

x
dx , (41)

does not exist, since it just reduces to (40).
Interestingly, we have the ensuing result, observed by Ostrowski [22] for improper Lebesgue integrals.

Proposition 5.1. Suppose f is distributionally integrable in (0,∞). There is at most one constant c such that∫ 1

0

f (x)− c
x

dx , (42)

exists. In such a case, f (0+) (dist) exists and equals c. There are functions f such that f (0+) = c (dist) exists but with (42)
divergent.

Proof. Let g (x) = (f (x)− c)H (1− x) . If g (x) /x is distributionally integrable at 0, then it is valid to make changes of
variables, to obtain ∫ ∞

0

g (x)

x
dx =

∫ ∞
0

g (ax)

x
dx , (43)

for any a > 0. Therefore the Frullani integrals
∫∞
0

(g (ax)− g (bx)) dx/x exist and vanish for all a, b > 0. We thus conclude
that g (0+) = 0 (dist) and so f (0+) = c (dist) .

6. Sequences

We can obtain information on the Cesàro behavior of a sequence {cn}∞n=1 by studying the Cesàro behavior of the associated
train of deltas

f (x) =

∞∑
n=1

cnδ (x− n) . (44)

In fact limn→∞ cn = L (C) if and only if limx→∞ f (x) = L (C) , see [11]. Also
∞∑
n=1

cn = S (C)

if and only if 〈f (x) , 1〉 = S (C) . Let us observe that if a ≥ b > 0 then〈
f (ax)− f (bx)

x
, 1

〉
= lim
x→∞

∑
bx≤n<ax

cn
n
, (45)

as ordinary evaluation and limit or as both in the Cesàro sense. The equivalence result of Proposition 3.3 immediately
gives us the ensuing result.

Proposition 6.1. If {cn}∞n=1 is a sequence of complex numbers then

lim
n→∞

cn = L (C) , (46)

if and only if
lim
x→∞

∑
bx≤n<ax

cn
n

= L ln
(a
b

)
(C) , (47)

whenever a ≥ b > 0.
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It is interesting to observe that if the ordinary limit limn→∞ cn = L exists, then it is true that

lim
x→∞

∑
bx≤n<ax

cn/n = L ln (a/b)

for a ≥ b > 0 since
∑
n≤ax 1/n = ln ax+ γ +O (1) as x→∞. However, if cn = (−1)

n then we have

lim
x→∞

∑
bx≤n<ax

(−1)
n
/n = 0

but limn→∞ cn does not exist. The equivalence of Proposition 6.1 does not hold in the ordinary sense.
We also obtain the next corollary.

Corollary 6.1. If the series
∑∞
n=1 an is Cesàro summable then limn→∞ nan = 0 (C) . The converse does not hold.

Proof. If cn = nan then the Cesàro summability of
∑∞
n=1 cn/n implies that the limit in (47) vanishes and thus (46) yields

the result. That the converse is not true can be seen by taking an = (n lnn)
−1
.

Notice that it is well known that the convergence of the series
∑∞
n=1 an does not give that limn→∞ nan = 0 but it does

yield the average limit limn→∞N−1
∑N
n=1 nan = 0.

Consider now a sequence {an}∞n=−∞ with indices in Z. For convergence or for a sense of summability we can consider
several different meanings for the series S =

∑∞
n=−∞ an. The series is convergent (summable) if both S− =

∑−1
n=−∞ an and

S+ =
∑∞
n=0 an are convergent (summable) and then S = S− + S+. The series is principal value convergent (summable) if

p.v.

∞∑
n=−∞

an = lim
N→∞

N∑
n=−N

an = S . (48)

Summability is too strong but principal value summability is too weak. A convenient intermediate notion is that of e.v.

summability,

e.v.

∞∑
n=−∞

an = lim
x→∞

∑
−N≤n≤αN

an = S . (49)

In fact [7], if g ∈ D′ (R) is a periodic distribution of period 2π with Fourier series
∑∞
n=−∞ ane

inθ, then the distributional
point value g (θ0) (dist) exists if and only if

e.v.

∞∑
n=−∞

ane
inθ0 = g (θ0) (C) . (50)

Proposition 6.2. The series
∑∞
n=−∞ an is e.v. Cesàro summable if and only if it is p.v. Cesàro summable and

lim
n→∞

nan = 0 (C) .

The periodic distribution g (θ) =
∑∞
n=−∞ ane

inθ has a distributional point value g (θ0) (dist) at the point θ0 if and only if

p.v.

∞∑
n=−∞

ane
inθ0 = g (θ0) (C) and lim

n→∞
nane

inθ0 = 0 (C) . (51)

Proof. The first part follows at once from Proposition 6.1, while the second part is a particular case of the first.

In fact, the distributional jump behavior of periodic distributions was characterized by the Cesàro behavior of the
e.v. finite sums [27, 28]. A distribution f has distributional jump behavior at x0 if the two lateral distributional limits
f
(
x±0
)

= γ± (dist) exist and f has no delta functions at x0; this can also be expressed by saying that f has the following
asymptotic behavior,

〈f (x0 + εx) , φ (x)〉 = γ−

∫ 0

−∞
φ (x) dx+ γ+

∫ ∞
0

φ (x) dx+ o (1) , (52)

as ε→ 0+. Using Proposition 6.1 we obtain the ensuing result.

Proposition 6.3. The periodic distribution g (θ) =
∑∞
n=−∞ ane

inθ has a distributional jump behavior at θ0 if and only if

p.v.

∞∑
n=−∞

ane
inθ0 = d1 =

g
(
θ−0
)

+ g
(
θ+0
)

2
(C) , (53)

and
lim
n→∞

ane
inθ0 =

d2
2πi

=
g
(
θ+0
)
− g

(
θ−0
)

2πi
(C) . (54)
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Proof. Indeed [27,28], g has distributional jump behavior at θ0 if and only if

lim
x→∞

∑
−x≤n<ax

ane
inθ0 = d1 +

d2
2πi

ln a (C) , (55)

where d1 =
(
g
(
θ−0
)

+ g
(
θ+0
))
/2 and d2 = g

(
θ+0
)
− g

(
θ−0
)
.

7. Other results

It was observed by several authors that it is enough to assume the existence of the Frullani integrals for some set of
pairs (a, b) in order to obtain the existence for all a, b > 0. In fact, the set S = {a/b :integral exists} is a subgroup of the
multiplicative group (0,∞) , and it is not hard to see that such subgroups have zero measure or coincide with (0,∞) .Hence
if the set of quotients a/b for which the integral exist, at 0+ or at infinity, has positive measure then the integrals exist for
all a, b > 0.

The function f (x) = xiH (x− 1) provides an example where S = {e2kπ : k ∈ Z} is non empty but not the whole (0,∞) .

Employing a Wiener-type Tauberian theorem, Agnew [2] proves that if the function f is bounded in a neighborhood of the
origin and vanishes for x ≥ c, and S contains two elements λ1 and λ2 such that lnλ1/ lnλ2 is irrational, then S = (0,∞) ,

and a corresponding result at infinity; he also gives an example of an unbounded function for which S 6= (0,∞) .

For the distributional limits, we can employ the notion of distributional boundedness of [13] to obtain the following.

Proposition 7.1. Suppose f ∈ D′ (0,∞) . Suppose that for two pairs (a1, b1) and (a2, b2) such that ln (a1/b1) / ln (a2/b2) is
irrational there are primitives of (f (ajx)− f (bjx)) /x that have distributional limits as x → 0+. If f is bounded at 0+ then
f (0+) (dist) exists.

Proof. Indeed, let φ ∈ D (0,∞) . The fact that f is bounded at 0+ means that the function Φ (y) = 〈f (yx) , φ (x)〉 , y > 0, is
bounded as y → 0+. A primitive of (f (ax)− f (bx)) /x has a limit for a pair (a, b) if and only if the improper integrals∫ 1

0+

Φ (ax)− Φ (bx)

x
dx , (56)

exist for all φ. They exist for the two pairs (a1, b1) and (a2, b2), so Agnew result shows that they exist for all pairs with
a, b > 0. Therefore all primitives of (f (ax)− f (bx)) /x for any a, b > 0 have distributional limits at 0+, and the existence of
f (0+) (dist) follows from Proposition 3.2.

We immediately obtain the next result for the distributional integration.

Proposition 7.2. Let f be a distributionally integrable function in [0,∞). Suppose f is distributionally bounded at 0+. If
the distributional integrals ∫ 1

0

f (ax)− f (bx)

x
dx , (57)

exists for two pairs (a1, b1) and (a2, b2) such that ln (a1/b1) / ln (a2/b2) is irrational, then f (0+) (dist) exists.

8. Examples

Here we give several examples of distributional Frullani’s integrals.

Example 8.1. Recently the integral ∫ ∞
0

|sin
√
ax| − |sin

√
bx|

x
dx , (58)

was considered by several researchers in an online forum [26]; they gave various methods of solution. We would like to
point out that this integral is already covered by the Iyengar-Ostrowski-Agnew results, since a substitution yields the
Frullani integral

2

∫ ∞
0

|sin
√
au| − |sin

√
bu|

u
dx . (59)

Of course m∗ = limx→0+ | sinx| = 0 while f(x) = |sinx| is a periodic function with period π, so that

M∗ =
1

π

∫ π

0

|sinx| dx =
2

π
. (60)

Thus, Frullani’s integral formula gives the result of (58) as 2 ((2/π)− 0) ln
(√

a/
√
b
)

= (2/π) ln (a/b).
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Example 8.2. We now consider a very general integral that generalizes Example 8.1, namely the finite part integral

F.p.

∫ ∞
0

|sin (ax+ c)|β − |sin (bx+ c)|β

x
dx , (61)

where a, b > 0 and 0 ≤ c ≤ π/2. If Ha,b is a primitive of the pseudofunction distribution

Pf
(
|sin (ax+ c)|β − |sin (bx+ c)|β

x

)
, (62)

then the finite part integral is actually equal to the expression Ha,b (∞) − Ha,b (0+) , the value at 0+ in the distributional
sense and that at infinity in the Cesàro sense. The integral is an ordinary integral when <e β > −1 but it becomes a
distributional evaluation otherwise, if we take the finite part at all the zeros of sin (ax+ c) and of sin (bx+ c). We can apply
Frullani’s integral formula with f(x) = |sin (x+ c)|β . First, if c > 0 and any β or if c = 0 and <e β > 0

m∗ = lim
x→0+

|sin (x+ c)|β = sinβ c .

The integral (61) will be divergent if c = 0 and <e β ≤ 0 and β 6= 0. Next, observe that f(x) is a periodic distribution with
a period π so that [11, Chapter 6] the Cesàro limit f (∞) (C) exists and equals the value

M∗ (β) =
1

π
F.p.

∫ π

0

| sin (x+ c)|β dx . (63)

The formula

M∗ (β) =
1√
π

Γ
(
β+1
2

)
Γ
(
β
2 + 1

) , (64)

holds when <e β > −1, that is, when the integral is an ordinary integral [17]. Formula (64) remains true by analytic
continuation when the integral (63) is the finite part of a divergent integral at all points where the right side of (64) is
analytic, namely, whenever β 6= −1, −3, −5, . . . . Thus, Proposition 3.4 gives that (61) equals 1√

π

Γ
(
β+1
2

)
Γ
(
β
2 + 1

) − sinβ c

 ln
(a
b

)
,

if c > 0 and β 6= −1, −3, −5, . . . or if c = 0 and <e β > 0. Notice the special case

F.p.

∫ ∞
0

sin−2k (ax+ c)− sin−2k (bx+ c)

x
dx = − sin−2k c ln

(a
b

)
,

for c > 0 and k = 1, 2, 3, . . . . Interestingly, the distributional evaluation is possible if c > 0 even for β = −1, −3, −5, . . .

since the finite part still exists (but it is not obtained by analytic continuation). Formula (64) cannot be applied, of course.
We need to take the finite part of the analytic function M∗ (β) at each of the poles, that is, at −1, −3, −5, . . . . In fact, Γ (z)

has poles at precisely 0, −1, −2, . . . with residue (−1)
k
/k! and finite part

F.p.z=−kΓ (z) = F.p. lim
z→−k

Γ (z) = lim
z→−k

(
Γ (z)− (−1)

k

k! (z + k)

)
=

(−1)
k
ψ (k + 1)

k!
,

where ψ (z) = Γ′ (z) /Γ (z) is the digamma function [11]; notice that ψ (k + 1) = −γ +
∑k
n=1 (1/n) [17]. The result of (63)

when β = −2k − 1 is

F.p.β=−2k−1M∗ (β) =
1√
π

(−1)
k
ψ (k + 1)

k!Γ
(−2k+1

2

) ,

and (61) equals (
1√
π

(−1)
k
ψ (k + 1)

k!Γ
(−2k+1

2

) − sin−2k−1 c

)
ln
(a
b

)
.

Example 8.3. The function
f (x) =

1 + cxα

xα
cos

1

xβ
,

satisfies f (0+) = 0 (dist) for any α, β > 0. Also f (∞) = c. We thus obtain

∫ ∞
0

bα (1 + caαxα) cos
1

aβxβ
− aα (1 + cbαxα) cos

1

bβxβ

xα+1
dx = caαbα ln

(a
b

)
.

This is a distributional integral; in general it is not a convergent improper Lebesgue integral.
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Example 8.4. Let the series
∑∞
n=1 cn be Cesàro summable to S. Putting f (x) =

∑
n≤x cn we obtain∫ ∞

0

f (ax)− f (bx)

x
dx =

∫ ∞
0

1

x

∑
bx<n≤ax

cn dx = S ln
(a
b

)
(C) .

Also, x−1
∑
b/x<n≤a/x cn is distributionally integrable at 0 and∫ ∞

0

1

x

∑
b/x<n≤a/x

cn dx = S ln
(a
b

)
.

In particular, we obtain the following integral∫ ∞
0

1

x

∑
bx<n≤ax

(−1)
n
nα dx =

(
2α+1 − 1

)
ζ (−α) ln

(a
b

)
(C) ,

for any α ∈ C (for α = −1 we take the limit of the right side) since [11]
∞∑
n=1

(−1)
n
nα =

(
2α+1 − 1

)
ζ (−α) (C) .

Example 8.5. Using the ideas of Example 8.4 we obtain∫ ∞
0

1

x

∑
bx<n≤ax

nα dx = ζ (−α) ln
(a
b

)
, <e α < −1 .

The series
∑∞
n=1 n

α is not Cesàro summable if <e α ≥ −1, but we have [11, Example 132]

lim
x→∞

∑
n≤x

nα − xα+1

α+ 1

 = ζ (−α) (C) , <e α > −1 .

Thus ∫ ∞
0

 1

x

∑
bx<n≤ax

nα − aα+1 − bα+1

α+ 1
xα

 dx = ζ (−α) ln
(a
b

)
(C) , <e α > −1 .

When α = k ∈ N then ∑
n≤x

nk =
1

k + 1
(Bk+1 ([[ x ]] + 1)−Bk+1 (1)) ,

where Bk+1 (x) is the Bernoulli polynomial of order k + 1 (see [11] ). Hence,∫ ∞
0

{
1

x
(Bk+1 ([[ ax ]] + 1)−Bk+1 ([[ bx ]] + 1))−

(
ak+1 − bk+1

)
xk
}

dx = Bk+1 ln
(a
b

)
(C) ,

since (k + 1) ζ (−k) equals the Bernoulli number Bk+1. Observe that the function

gk (x) =
1

k + 1

(
Bk+1 ( [[ 1/x ]] + 1)−Bk+1 (1)− 1

xk+1

)
,

has a distributional limit at 0+, equal to Bk+1/ (k + 1) . This limit is the mean value limit

lim
x→0+

x−1
∫ x

0

g0 (x) dx

when k = 0, but not for k ≥ 1, since the integral
∫ x
0
gk (x) dx diverges.

Naturally, many more examples can be given.
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