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Abstract

We consider a suspension bridge system of a given length where Timoshenko’s theory models the deck. We use semigroup
theory. We obtain the existence and uniqueness of the solution by the Lumer-Phillips theorem. For asymptotic behavior,
we give under particular constraints a necessary and sufficient condition to guarantee exponential stability. However,
regardless of the relationship between the system’s coefficients, in a specific case, we lack exponential decay; in this case,
we demonstrate the polynomial decay and the optimality of this rate.
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1. Introduction

In 1921, Stephen Timoshenko and Paul Ehrenfest worked on the following pioneer beam model (see [2,12]):

ρ1utt − k(ux + ψ)x = 0,

ρ2ψtt − bψxx + k(ux + ψ) = 0.

Compared to the Euler-Bernoulli beam model, this model has the advantage of considering both shear deformation and
rotational inertia in vibrating beams. Also, by introducing a friction-type dissipative mechanism into both equations, the
solution of this model has exponential decay. However, to have exponential decay, when this dissipative mechanism is
introduced in just one of the equations, it is necessary and sufficient to consider ρ1

k = ρ2
b , see [11]. Many researchers

have investigated the Timoshenko beam model with the most diverse stabilization mechanisms. According to [2], a simple
search on Google Scholar produced about 78,000 hits on the term “Timoshenko beam”.

Dealing with bridges is an essential engineering problem. Bridges were thought to have been constructed for the first
time about 4000 BC, and throughout history, it has been important to comprehend how these structures respond to artificial
and natural forces such as wind and earthquakes. For example, the Tacoma Narrows Bridge collapsed in November 1940
after three months of operation. Also, in 2000, the Millennium Bridge, a steel suspension bridge for pedestrians that
connects Bankside to London (costing more than 20 million pounds and inaugurated by Queen Elizabeth II), suffered an
unexpected lateral vibration due to a resonant structural response, causing its closure within a few days after opening,
and repairs took over a year to complete.

In 1945, Timoshenko published a work about suspension bridges; namely, “The Theory of Suspension Bridges” (see [13,
14]). In 1984, Hayashikawa and Watanabe used Hamilton’s principle and Timoshenko’s beam theory to study the Inoshima
Suspension Bridge (that connects Honshu and Shikoku in Japan), see [4]. A thermal-Timoshenko-beam system with
suspenders and Kelvin-Voigt damping type, where Cattaneo’s law produced the heat, was considered in [6]. A suspension
bridge with internal damping was considered in [10], where it was found that the solution not only decays exponentially
but is also analytical. Recently, Raposo [9] considered a suspension bridge, where laminated beams model the deck.

We study a model of a suspension bridge (see Figure 1.1), which is a mechanical structure that carries vertical loads
through the main cables modeled by an elastic string u = u(x, t) that is coupled to the deck employing suspension cables,
where x denotes the distance along the center line of the deck in its equilibrium configuration and t denotes the time
variable.
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Figure 1.1: Suspension Bridge. This figure is taken from the reference [9].

Since the deck has negligible transversal section dimensions compared to the length (span of the bridge), it is modeled in
Timoshenko’s theory [12]. Denote by ϕ = ϕ(x, t) the displacement of the cross-section on the point x ∈ (0, l). Let ψ = ψ(x, t)

be the rotation angle of the cross-section. Then, we have the following coupled system:

utt − αuxx − λ(ϕ− u) + γ1ut = 0, in (0, l)× R+, (1)
ρ1ϕtt − κ(ϕx + ψ)x + λ(ϕ− u) + γ2ϕt = 0, in (0, l)× R+, (2)

ρ2ψtt − bψxx + κ(ϕx + ψ) + γ3ψt = 0, in (0, l)× R+. (3)

The suspender cables are assumed to be linear elastic strings with standard stiffness λ > 0. The constant α > 0 is the
elastic modulus of the string (holding the main cable to the deck). The positive coefficients ρ1 and ρ2 are the mass density
and the moment of mass inertia of the beam, respectively. Moreover, b represents the cross section’s rigidity coefficient and
κ denotes the elasticity’s shear modulus. Finally, γ1, γ2, and γ3 are non-negative parameters related to friction damping.
System (1)–(3) is subject to the initial data given as

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, l),

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), x ∈ (0, l),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), x ∈ (0, l),

and the following boundary conditions of Dirichlet-Dirichlet-Neumann:

u(0, t) = u(l, t) = ϕ(0, t) = ϕ(l, t) = ψx(0, t) = ψx(l, t) = 0, t ≥ 0. (4)

2. Energy of the system

In this section, we deduce the energy associated with the considered model and show that the energy decreases in time,
which proves the system’s dissipative character. We start multiplying (1) by ut and integrating on (0, l):∫ l

0

ututtdx− α
∫ l

0

utuxxdx− λ
∫ l

0

ut(ϕ− u)dx = −γ1
∫ l

0

|ut|2dx.

Integrating by parts and using boundary conditions, we have

d

dt

1

2

∫ l

0

|ut|2dx+ α

∫ l

0

utxuxdx− λ
∫ l

0

ut(ϕ− u)dx = −γ1
∫ l

0

|ut|2dx,

that is,

d

dt

1

2

∫ l

0

|ut|2dx+
d

dt

α

2

∫ l

0

|ux|2dx− λ
∫ l

0

ut(ϕ− u)dx = −γ1
∫ l

0

|ut|2dx. (5)

Multiplying (2) by ϕt and integrating on (0, l), we get

ρ1

∫ l

0

ϕtϕttdx− κ
∫ l

0

ϕt(ϕx + ψ)xdx+ λ

∫ l

0

ϕt(ϕ− u)dx = −γ2
∫ l

0

|ϕt|2dx.

Integrating by parts and using boundary conditions, we have

d

dt

ρ1
2

∫ l

0

|ϕt|2dx+ κ

∫ l

0

ϕtx(ϕx + ψ)dx+ λ

∫ l

0

ϕt(ϕ− u)dx = −γ2
∫ l

0

|ϕt|2dx. (6)
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Multiplying (3) by ψt and integrating on (0, l), we obtain

ρ2

∫ l

0

ψtψttdx− b
∫ l

0

ψtψxxdx+ κ

∫ l

0

ψt(ϕx + ψ)dx = −γ3
∫ l

0

|ψt|2dx,

Integrating by parts and using boundary conditions, we get

d

dt

ρ2
2

∫ l

0

|ψt|2dx+ b

∫ l

0

ψtxψxdx+ κ

∫ l

0

ψt(ϕx + ψ)dx = −γ3
∫ l

0

|ψt|2dx,

that is,

d

dt

ρ2
2

∫ l

0

|ψt|2dx+
d

dt

b

2

∫ l

0

|ψx|2dx+ κ

∫ l

0

ψt(ϕx + ψ)dx = −γ3
∫ l

0

|ψt|2dx. (7)

Adding (5), (6), and (7), and noting that

−λ
∫ l

0

ut(ϕ− u)dx+ λ

∫ l

0

ϕt(ϕ− u)dx = λ

∫ l

0

(ϕ− u)t(ϕ− u)tdx

=
d

dt

λ

2

∫ l

0

|ϕ− u|2dx,

and

−κ
∫ l

0

ϕt(ϕx + ψ)xdx+ κ

∫ l

0

ψt(ϕx + ψ)dx = κ

∫ l

0

(ϕx + ψ)(ϕx + ψ)tdx

=
d

dt

κ

2

∫ l

0

|ϕx + ψ|2dx,

we deduce the following equation:

d

dt

1

2

∫ l

0

[
|ut|2 + α|ux|2 + b|ψx|2 + ρ1|ϕt|2 + ρ2|ψt|2 + λ|ϕ− u|2 + κ|ϕx + ψ|2

]
dx

= −γ1
∫ L

0

|ut|2dx− γ2
∫ L

0

|ϕt|2dx− γ3
∫ L

0

|ψt|2dx.

Denoting the energy by E(t), we define

E(t) =
1

2

∫ l

0

[|ut|2 + α|ux|2 + b|ψx|2 + ρ1|ϕt|2 + ρ2|ψt|2 + λ|ϕ− u|2 + κ|ϕx + ψ|2]dx,

and we have that

d

dt
E(t) = −γ1

∫ l

0

|ut|2dx− γ2
∫ l

0

|ϕt|2dx− γ3
∫ l

0

|ψt|2dx. (8)

3. Semigroup setting: existence of solution

This section studies the existence and uniqueness of weak and strong solutions of the system (1)–(4). First, we present
preliminaries including notations and technical lemmas.

Notations and assumptions
We use throughout this paper the standard Lebesgue spaces Lr(0, l), r ≥ 1, with the norm denoted by ‖ · ‖r. We denote by
〈·, ·〉 the inner product in L2(0, l); that is, 〈f , g〉 =

∫ l
0
fḡ dx, where ḡ is the conjugate of g. Given the boundary condition in

(4), we consider the following Sobolev spaces

H2
∗ (0, l) =

{
f ∈ H2(0, l) :

∫ l

0

f dx = 0

}
.

For the Sobolev spacesH1
0 (0, L) andH1

∗ (0, L), the Poincaré’s inequality holds: λ1‖f‖22 ≤ ‖fx‖22, ∀f ∈ H1
0 (0, l) or ∀f ∈ H1

∗ (0, l),

where λ1 > 0 is the Poincaré’s constant (the smallest eigenvalue of −∂xx).

3
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To show the existence and uniqueness of the solution for the system (1)–(4), we use semi-group theory. We prove that
the operator A defined in (12) generates a contraction semigroup in the Hilbert space H given by

H :=
[
H1

0 (0, l)× L2(0, l)
]2 ×H1

∗ (0, l)× L2(0, l). (9)

We define in H the following inner product:

〈U, Ũ〉H = 〈v , ṽ〉+ α〈ux , ũx〉+ ρ1〈w , w̃〉+ ρ2〈z , z̃〉+ b〈ψx , ψ̃x〉+ λ〈(ϕ− u) , (ϕ̃− ũ)〉+ k〈(ϕx + ψ) , (ϕ̃x + ψ̃)〉,

where U = (u, v, ϕ, w, ψ, z)′, Ũ = (ũ, ṽ, ϕ̃, w̃, ψ̃, z̃)′, and H is a Hilbert space with ‖U‖2H = 〈U,U〉H.
Clearly, there exists a positive constant κ0 such that

‖ϕx‖22 ≤ κ0
(
‖ψx‖22 + ‖ϕx + ψ‖22

)
. (10)

By Poincaré’s inequality and (10), we obtain the following useful inequality:

‖ϕ‖22 ≤ γ
(
‖ψx‖22 + ‖ϕx + ψ‖22

)
, (11)

where γ = κ0λ
−1
1 with λ1 being the Poincaré’s constant.

Existence and uniqueness of solutions
Let us write the system (1)–(4) as a first-order Cauchy evolution problem. We introduce the following vector function:

U = (u, v, ϕ, w, ψ, z)′,

where, ut = v, ϕt = w, and ψt = z. Then,

Ut =


ut
vt
ϕt
wt
ψt
zt

 =



v
αuxx + λ(ϕ− u)− γ1v

w
κ
ρ1

(ϕx + ψ)x − λ
ρ1

(ϕ− u)− γ2
ρ1
w

z
b
ρ2
ψxx − κ

ρ2
(ϕx + ψ)− γ3

ρ2
z

 = AU,

where

A =



0 I 0 0 0 0

α∂xx − λI −γ1I λI 0 0 0

0 0 0 I 0 0

λ
ρ1
I 0 κ

ρ1
∂xx − λ

ρ1
I −γ2ρ1

κ
ρ1
∂x 0

0 0 0 0 0 I

0 0 − κ
ρ2
∂x 0 b

ρ2
∂xx − κ

ρ2
∂x −γ3ρ2 I


. (12)

System (1)–(4) is reduced to the following abstract initial problem for a first-order evolution equation:{
Ut −AU = 0,

U(0) = U0,
(13)

where A : D(A) ⊂ H → H is an unbounded linear operator on the energy space H with domain

D(A) = [H1
0 (0, l) ∩H2(0, l)×H1

0 (0, l)]2 ×H2
∗ (0, l)×H1

∗ (0, l).

It is clear that D(A) is dense in H.
We will prove that A generates a C0-semigroup of contractions S(t) = eAt, t ≥ 0, on H. For this, we first prove two

lemmas.

Lemma 3.1. The operator A is dissipative.

Proof. For any U = (u, v, ϕ, w, ψ, z)′ ∈ D(A), by a straightforward calculation, we have

Re〈AU,U〉H = −γ1‖v‖22 − γ2‖w‖22 − γ3‖z‖22 ≤ 0.

Hence, A is dissipative.

4
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Lemma 3.2. If ρ(A) is the resolvent set of A, then 0 ∈ ρ(A).

Proof. Given F = (f1, f2, f3, f4, f5, f6)′ ∈ H, the resolvent equation −AU = F in H, in terms of the component coordinates
of U and F , leads to

−v = f1 in H1
0 (0, L), (14)

−αuxx − λ(ϕ− u) + γ1v = f2 in L2(0, L), (15)
−w = f3 in H1

0 (0, L), (16)
−κ(ϕx + ψ)x + λ(ϕ− u) + γ2w = ρ1f4 in L2(0, L), (17)

−z = f5 inH1
0 (0, L), (18)

−bψxx + κ(ϕx + ψ) + γ3z = ρ2f6 in L2(0, L). (19)

By substituting (14), (16), (18) in (15), (17), (19), respectively, we obtain

−αuxx − λ(ϕ− u) = γ1f1 + f2 := g1 ∈ L2(0, L), (20)
−κ(ϕx + ψ)x + λ(ϕ− u) = γ2f3 + ρ1f4 := g2 ∈ L2(0, L), (21)

−bψxx + κ(ϕx + ψ) = γ3f5 + ρ2f6 := g3 ∈ L2(0, L). (22)

Multiplying (20), (21), and (22) by the conjugates of the functions ũ ∈ H1
0 (0, l), ϕ̃ ∈ H1

0 (0, l), and ψ̃ ∈ H1
∗ (0, l), respectively,

and integrating by parts, we obtain

α〈ux, ũx〉 − λ〈ϕ− u, ũ〉 = 〈g1, ũ〉, (23)
κ〈ϕx + ψ, ϕ̃x〉+ λ〈ϕ− u, ϕ̃〉 = 〈g2, ϕ̃〉, (24)

b〈ψx, ψ̃x〉+ κ〈ϕx + ψ, ψ̃〉 = 〈g3, ψ̃〉. (25)

Denoting V = H1
0 (0, l)×H1

0 (0, l)×H1
∗ (0, l) and adding (23), (24), (25), we build a variational problem

B((u, ϕ, ψ), (ũ, ϕ̃, ψ̃)) = L(ũ, ϕ̃, ψ̃), (26)

where B : V × V → C is given by

B((u, ϕ, ψ), (ũ, ϕ̃, ψ̃)) = α〈ux, ũx〉+ λ〈ϕ− u, ϕ̃− ũ〉+ κ〈ϕx + ψ, ϕ̃x + ψ̃〉+ b〈ψx, ψ̃x〉

and L : V → C is a continuous and linear operator given as L(ũ, ϕ̃, ψ̃) = 〈g1, ũ〉+ 〈g2, ϕ̃〉+ 〈g3, ψ̃〉. We define in V the norm
||(u, ϕ, ψ)||2V = B((u, ϕ, ψ), (u, ϕ, ψ)). It is easy to see that with this norm, B is a continuous coercive sesquilinear form on
V. Therefore, by Lax-Milgram theorem, there exists a unique (u, ϕ, ψ) ∈ V solution of (26), for all (ũ, ϕ̃, ψ̃) ∈ V. By the
standard theory in the elliptic equations, (20), (21), and (22) leads to u, ϕ, ψ ∈ H2(0, l), and then u, ϕ ∈ H1

0 (0, l) ∩H2(0, l)

and ψ ∈ H2
∗ (0, l). From (14), (16), and (18), we have v, w ∈ H1

0 (0, l) and z ∈ H1
∗ (0, l). Consequently, we have U ∈ D(A), and

hence the unique solution of −AU = F follows. Note that ‖U‖H ≤ K‖F‖H, where K is a positive constant independent of
U ; that is, ‖A−1F‖H ≤ K‖F‖H. Thus, we conclude that 0 ∈ ρ(A).

Proposition 3.1. The operator A generates a C0-semigroup of contractions S(t) = eAt, t ≥ 0, on the Hilbert space H.

Proof. By Lemma 3.1, A is dissipative and by Lemma 3.2, 0 ∈ ρ(A). Since A is densely defined, the conclusion of the
lemma is a consequence of Lummer-Philips’s Theorem.

By Proposition 3.1, we have the next result.

Theorem 3.1. If U0 ∈ H, then there exists a unique weak solution U of problem (15) satisfying

U ∈ C0([0,+∞);H). (27)

Moreover, if U0 ∈ D(A), then
U ∈ C0([0,+∞);D(A)) ∩ C1([0,+∞);H). (28)

Proof. By semigroup theory (see Page 100 in [7]), U(t) = etAU0 is the unique solution of (15) satisfying (27) and (28).
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4. Asymptotic behavior

In this section, we show that when γ1, γ3 6= 0 and γ2 = 0, or γ1, γ2 6= 0 and γ3 = 0, the relationship between the wave
propagation speeds given by

κ

ρ1
=

b

ρ2
, (29)

is a necessary and sufficient condition to guarantee exponential stability. However, when γ1 = 0 and γ2, γ3 6= 0, we lack
exponential decay regardless of the relationship between the system’s coefficients. To carry out this asymptotic analysis,
we use the next two theorems.

Theorem 4.1 (Gearhart-Herbst-Prüss-Huang). Let S(t) = eAt be a C0-semigroup of contractions on a Hilbert space H.
Then, S(t) is exponentially stable if and only if

iR ⊂ ρ(A) (30)

and

lim
|β|→∞

‖(iβI −A)−1‖L(H) <∞. (31)

For more details about Theorem 30, see [3,5,8].

Theorem 4.2 (see Theorem 2.4 in [1]). Let S(t) be a C0-semigroup in the Hilbert space H associated with the operator A
such that iR ⊂ ρ(A). Then,

1

|β|ε
‖(iβI −A)−1‖L(H) ≤ C, β ∈ R,when |β| → ∞ ⇐⇒ ‖S(t)A−1‖L(H) ≤

C

t1/ε
(32)

where C does not depend on β.

Conditions γ1 6= 0, γ2 = 0, and γ3 6= 0

The main results of this subsection are in the form of the next two theorems.

Theorem 4.3. Let γ1 6= 0, γ2 = 0, and γ3 6= 0. Then, the associated semigroup S(t) = eAt is exponentially stable if and only
if the relation (29) is true.

Theorem 4.4. Let γ1 6= 0, γ2 = 0, and γ3 6= 0. If (29) is not true, then the C0-semigroup S(t) associated with the system is
polynomially stable and satisfies

‖S(t)U0‖L(H) ≤
C

t1/2
‖U0‖H ∀ U0 ∈ D(A), (33)

where C is a positive constant. Also, this stability rate is optimal.

The proofs of Theorems 4.3 and 4.4 are based on some lemmas (to be established). In all these lemmas, we use the
resolvent equation given by

(iβI −A)U = F, (34)

where U = (u, v, ϕ, w, ψ, z)′ ∈ D(A), F = (f1, f2, f3, f4, f5, f6)′ ∈ H, and β ∈ R. Hence, because of (34), we obtain the
following system:

iβu− v = f1, (35)
iβv − αuxx − λ(ϕ− u) + γ1v = f2, (36)

iβϕ− w = f3, (37)
iρ1βw − κ(ϕx + ψ)x + λ(ϕ− u) = ρ1f4, (38)

iβψ − z = f5, (39)
iρ2βz − bψxx + κ(ϕx + ψ) + γ3z = ρ2f6. (40)

6
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Lemma 4.1. The set formed by the resolvents of the operator A contains the set iR; that is, iR ⊂ ρ(A).

Proof. From Lemma 3.2, it follows that 0 ∈ ρ(A). Now, take β ∈ R\{0}. Suppose that there is some iβ that is an eigenvalue
of the operator A; that is,

AU = iβU with U 6= 0. (41)

Multiplying (41) by U , we get
〈AU,U〉H = iβ‖U‖2H.

Taking the real part of the last equation and using the identity obtained in Lemma 3.1, we deduce that ‖v‖22 = ‖z‖22 = 0,
and hence v = z = 0. Take F = (0, 0, 0, 0, 0, 0). Then, because of (35) and (39), we have u = ψ = 0, and because of (36), we
have ϕ = 0 and because of (37), we have w = 0. This is a contradiction and hence there are no imaginary eigenvalues.

Throughout the proof of the following lemmas, we assume that β 6= 0. Thus, we routinely use the fact that there is a
constant c such that 0 <

1

|β|
< c < 1 (which will be explained later).

Lemma 4.2. If U = (u, v, ϕ, w, ψ, z)′ is the solution of the system (35)–(40), then there exists a positive constant C1 such that

‖v‖22 + ρ2‖z‖22 ≤ C1‖F‖H‖U‖H. (42)

Proof. Note that
iβ‖U‖2H − 〈AU,U〉H = 〈F,U〉H,

from the identity obtained in Lemma 3.1, we get

γ1‖v‖22 + γ3‖z‖22 ≤ <〈F,U〉H.

Now, using Hölder’s inequality, we have the required conclusion.

Lemma 4.3. If U = (u, v, ϕ, w, ψ, z)′ is the solution of system (35)–(40), then there exists a positive constant C2 such that

α‖ux‖22 −
C2

β2
‖w‖22 ≤ C2‖F‖H‖U‖H. (43)

Proof. Multiplying (36) by u and integrating over (0, l), we obtain

iβ〈v, u〉+ α‖ux‖22 + λ‖u‖22 − λ 〈ϕ, u〉+ γ1 〈v, u〉 = 〈f2, u〉. (44)

From (35) and (37), we have −iβu = −v − f1 and ϕ = − i
β (w + f3). Hence, it follows that

−‖v‖22 + α‖ux‖22 + λ‖u‖22 +
iλ

β
〈w, u〉+ γ1 〈v, u〉 = 〈f2, u〉+ 〈v, f1〉 −

iλ

β
〈f3, u〉 . (45)

The required conclusion is obtained by using Hölder’s inequality, Young’s inequality, Poincaré’s inequality, and (42).

Lemma 4.4. Let U = (u, v, ϕ, w, ψ, z)′ be the solution of system (35)–(40). Then, there exists a positive constant C3 such that

κ‖ϕx + ψ‖22 −
C3

|β|
(
‖ψx‖22 + ‖z‖22 + ‖w‖22

)
≤ C3

(
|β|
∣∣∣ρ1
κ
− ρ2

b

∣∣∣ |〈ψx, w〉|+ ‖F‖H‖U‖H) . (46)

Proof. Multiplying (40) by ϕx + ψ and integrating over (0, l), we obtain

−iβρ2〈zx, ϕ〉+ iβρ2〈z, ψ〉+ b 〈ψx, (ϕx + ψ)x〉+ κ‖ϕx + ψ‖22 + γ3 〈z, ϕx + ψ〉 = ρ2 〈f6, ϕx + ψ〉 . (47)

On the other hand, from (38), it follows that

−iβρ1w − κ(ϕx + φ)x + λ(ϕ− u) = ρ1f4. (48)

Multiplying (48) by b

κ
ψx and integrating over (0, l), we obtain

−iβ bρ1
κ
〈ψx, w〉 − b 〈ψx, (ϕx + ψ)x〉+

bλ

κ
〈ψx, ϕ〉+

bλ

κ
〈ψ, ux〉 =

bρ1
κ
〈ψx, f4〉. (49)

7
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Adding (47) and (49), we get

−iβρ2〈zx, ϕ〉 − iβ
bρ1
κ
〈ψx, w〉+ iβρ2〈z, ψ〉+ κ‖ϕx + ψ‖22 + γ3 〈z, ϕx + ψ〉

+
bλ

κ
〈ψx, ϕ〉+

bλ

κ
〈ψ, ux〉 = ρ2 〈f6, ϕx + ψ〉+

bρ1
κ
〈ψx, f4〉.

From (37), it follows that iβϕ = w + f3 and ϕ = − i
β (w + f3). Hence,

ρ2〈zx, w〉 − iβ
bρ1
κ
〈ψx, w〉+ iβρ2〈z, ψ〉+ κ‖ϕx + ψ‖22 + γ3 〈z, ϕx + ψ〉+ i

bλ

κβ
〈ψx, w〉+

bλ

κ
〈ψ, ux〉

= ρ2 〈f6, ϕx + ψ〉+
bρ1
κ
〈ψx, f4〉 − ρ2〈zx, f3〉 − i

bλ

κβ
〈ψx, f3〉.

From (39), it follows that z = iβψ − f5, iβψ = z + f5, and ψ = − i
β (z + f5). Thus,

iβ

(
ρ2 −

bρ1
κ

)
〈ψx, w〉 − ρ2‖z‖22 + κ‖ϕx + ψ‖22 + γ3 〈z, ϕx + ψ〉+ i

bλ

κβ
〈ψx, w〉 − i

bλ

κβ
〈z, ux〉

= ρ2 〈f6, ϕx + ψ〉+
bρ1
κ
〈ψx, f4〉 − ρ2〈zx, f3〉+ ρ2〈f5x, w〉+ ρ2〈z, f5〉 − i

bλ

κβ
〈ψx, f3〉+ i

bλ

κβ
〈f5, ux〉.

Consequently, we have

κ‖ϕx + ψ‖22 = −iβ
(
ρ2 −

bρ1
κ

)
〈ψx, w〉+ ρ2‖z‖22 − γ3 〈z, ϕx + ψ〉+ i

bλ

κβ
〈ψx, w〉 − i

bλ

κβ
〈z, ux〉+

+ρ2 〈f6, ϕx + ψ〉+
bρ1
κ
〈ψx, f4〉 − ρ2〈zx, f3〉+ ρ2〈f5x, w〉+ ρ2〈z, f5〉 − i

bλ

κβ
〈ψx, f3〉+ i

bλ

κβ
〈f5, ux〉.

Now, using Hölder’s inequality, Young’s inequality, (42), and (43), we arrive at the required conclusion.

Lemma 4.5. Let U = (u, v, ϕ, w, ψ, z)′ be the solution of system (35)–(40). Then, there exists a positive constant C4 such that

b‖ψx‖22 −
C4

|β|
(
‖ψx‖22 + ‖z‖22 + |w‖22

)
≤ C4

(
|β|
∣∣∣ρ1
κ
− ρ2

b

∣∣∣ |〈ψx, w〉|+ ‖F‖H‖U‖H) . (50)

Proof. Multiplying (40) by ψ and integrating over (0, l), we obtain

iβρ2 〈z, ψ〉+ b‖ψx‖22 + κ〈ϕx + ψ,ψ〉+ γ3 〈z, ψ〉 = ρ2 〈f6, ψ〉 .

By (39), we get iβψ = z + f5. Substituting appropriately, we get the following equation:

−ρ2‖z‖22 + b‖ψx‖22 + κ〈ϕx + ψ,ψ〉+ γ3 〈z, ψ〉 = ρ2 〈f6, ψ〉+ ρ2 〈z, f5〉 .

Now, the required conclusion is obtained by using Hölder’s inequality, Young’s inequality, Poincaré’s inequality, (42), and
(46).

Lemma 4.6. Let U = (u, v, ϕ, w, ψ, z)′ be the solution of system (35)–(40). Then, there exists a positive constant C5 such that

ρ1‖w‖22 −
C5

|β|
(
‖ψx‖22 + ‖z‖22 + ‖w‖22

)
≤ C5

(
|β|
∣∣∣ρ1
κ
− ρ2

b

∣∣∣ |〈ψx, w〉|+ ‖F‖H‖U‖H) . (51)

Proof. Multiplying (38) by ϕ and integrating over (0, l), we obtain

iβρ1〈w,ϕ〉+ κ 〈ϕx + ψ,ϕx〉+ λ‖ϕ‖22 − λ〈u, ϕ〉 = ρ1〈f4, ϕ〉.

From (37), it follows that iβϕ = w + f3. Substituting appropriately, we get the following equality

ρ1‖w‖22 = κ 〈ϕx + ψ,ϕx〉+ λ‖ϕ‖22 − λ〈u, ϕ〉 − ρ1〈f4, ϕ〉 − ρ1〈w, f3〉.

Using Hölder’s inequality, Young’s inequality, Poincaré’s inequality, (10), (11), (43), and (46), we arrive at the required
result.

Now, we are in a position to prove Theorem 4.3.
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Proof of Theorem 4.3. Assume that (29) is true. Because of Lemmas 4.4, 4.5, and 4.6, we have

κ‖ϕx + ψ‖22 −
C3

|β|
(
‖ψx‖22 + ‖z‖22 + ‖w‖22

)
≤ C3‖F‖H‖U‖H, (52)

b‖ψx‖22 −
C4

|β|
(
‖ψx‖22 + ‖z‖22 + ‖w‖22

)
≤ C4‖F‖H‖U‖H, (53)

and

ρ1‖w‖22 −
C5

|β|
(
‖ψx‖22 + ‖z‖22 + ‖w‖22

)
≤ C5‖F‖H‖U‖H. (54)

Using Hölder’s inequality, Young’s inequality, Poincaré’s inequality, and (11), we obtain a constant C ′ such that

‖U‖2H ≤ C ′
(
‖v‖22 + ρ1‖w‖22 + ρ2‖z‖22 + α‖ux‖22 + κ ‖ϕx + ψ‖22 + b‖ψx‖22

)
.

Also, by Lemmas 4.2, 4.3, 4.4, 4.5, and 4.6, we obtain a positive constant C such that

‖U‖2H −
C

|β|
(
‖ψx‖22 + ‖z‖22 + ‖w‖22+

)
≤ C‖F‖H‖U‖H.

Taking c =
1

2C
, we obtain

‖U‖H ≤ 2C‖F‖H. (55)

Therefore, lim|β|→∞ ‖(iβI − A)−1‖L(H) ≤ 2C < ∞. Furthermore, from Lemma 4.1, it follows that iR ⊂ ρ(A). Therefore,
Gearhart-Herbst-Prüss-Huang theorem guarantees that the semigroup S(t) is exponentially stable.

Now, assume that (29) is not true. Our goal now is to show that (31) does not happen. To this end, let us make explicitly
a sequence βn ∈ R and a sequence of bounded functions Fn = (f1n, f2n, f3n, f4n, f5n, f6n)′ such that

lim sup
|β|→∞

‖(iβI −A)−1‖L(H) =∞.

By (34), we have

iβu− v = f1n, (56)
iβv − αuxx − λ(ϕ− u) + γ1v = f2n, (57)

iβϕ− w = f3n, (58)
iρ1βw − κ(ϕx + ψ)x + λ(ϕ− u) = ρ1f4n, (59)

iβψ − z = f5n, (60)
iρ2βz − bψxx + κ(ϕx + ψ) + γ3z = ρ2f6n. (61)

Taking f1n = f3n = f5n = 0, we have

−β2u− αuxx − λ(ϕ− u) + iγ1βu = f2n, (62)
−ρ1β2ϕ− κ(ϕx + ψ)x + λ(ϕ− u) = ρ1f4n, (63)

−ρ2β2ψ − bψxx + κ(ϕx + ψ) + iγ3βψ = ρ2f6n. (64)

Because of the boundary conditions (4), we can suppose that u(x) = A sin(θnx), ϕ(x) = B sin(θnx), and ψ(x) = C cos(θnx),
where θn = nπ

l , with n ∈ N . Hence, we have

[P1A− λB] sin(θnx) = f2n, (65)
[−λA+ P2B + κθnC] sin(θnx) = ρ1f4n, (66)

[κθnB + P3C] cos(θnx) = ρ2f6n, (67)

where

P1 = −β2 + αθ2n + λ+ iγ1β, P2 = λ− ρ1β2 + κθ2n, and P3 = −ρ2β2 + bθ2n + κ+ iγ3β.

9
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Now, taking f2n = 0, f4n = ρ−11 sin(θnx), and f6n = ρ−12 cos(θnx), we have the following system:

P1A− λB = 0, (68)
−λA+ P2B + κθnC = 1, (69)

κθnB + P3C = 0. (70)

Solving the this system, we obtain

B =
P1P3

P3 (P1P2 − λ2)− κ2θ2nP1
. (71)

Choosing β =
√

κ
ρ1
θn, we get

P1P3 = ρ2

(
α− κ

ρ1

)(
b

ρ2
− κ

ρ1

)
θ4n + i

[(
α− κ

ρ1

)
γ3 + γ1ρ2

(
b

ρ2
− κ

ρ1

)]√
κ

ρ1
θ3n

+

[
κ

(
α− κ

ρ1

)
+ λρ2

(
b

ρ2
− κ

ρ1

)
− γ1γ3

κ

ρ1

]
θ2n +

[
i (λγ3 + γ1κ)

√
κ

ρ1

]
θn + λκ,

and

P3

(
P1P2 − λ2

)
− κ2θ2nP1 = λρ2

[(
b

ρ2
− κ

ρ1

)
− κ2

](
α− κ

ρ1

)
θ4n + iλ

[(
α− κ

ρ1

)
γ3 + γ1ρ2

(
b

ρ2
− κ

ρ1

)
− γ1κ2

]√
κ

ρ1
θ3n

+ λ

[
κ

(
α− κ

ρ1

)
− γ1γ3

κ

ρ1
− κ2

]
θ2n + iλγ1κ

√
κ

ρ1
θn.

Thus, for κ

ρ1
6= b

ρ2
, we get

|B| →
ρ2

(
b
ρ2
− κ

ρ1

)
λρ2

(
b
ρ2
− κ

ρ1

)
− κ2

6= 0, when β →∞. (72)

Therefore, when β →∞, we have

‖U‖H ≥ ρ1‖w‖22 =
ρ1l

2
β2|B|2 → +∞. (73)

This completes the proof of Theorem 4.3.

Proof of Theorem 4.4. Assume that (29) is not true; that is,

κ

ρ1
6= b

ρ2
.

Because of Lemmas 4.2, 4.3, 4.4, 4.5, and 4.6, we obtain a constant C ′, which is independent of β, such that

‖U‖2H ≤ C ′ (|β| |〈ψx, w〉|+ ‖F‖H‖U‖H) . (74)

Using (37) and (39), we get
〈ψx, w〉 = 〈z, ϕx〉+ 〈f6, ϕx〉 − 〈ψx, f3〉.

Using Hölder’s inequality, we obtain
‖U‖2H ≤ C (|β||〈z, ϕx〉|+ 2‖F‖H‖U‖H) .

Using Young’s inequality and Lemma 4.2, we obtain a positive constant C such that

‖U‖2H ≤ C ′|β|2‖F‖H‖U‖H. (75)

Thus,

1

|β|2
‖(iβI −A)−1‖L(H) ≤ C,when |β| → ∞. (76)

10
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Using Theorem 4.2, we obtain

‖S(t)A−1‖L(H) ≤
C

t1/2
, (77)

implying that

‖S(t)A−1F‖H ≤
C

t1/2
‖F‖H, (78)

for all F ∈ H. As zero is in the resolvent of the operator A, it follows that A is onto over H. Now, taking U0 ∈ D(A) such
that AU0 = F , we get

‖S(t)U0‖H ≤
C

t1/2
‖U0‖H, ∀ t ≥ 0. (79)

Therefore, the semigroup S(t) is polynomially stable. To show that the polynomial stability rate in question is optimal, we
prove it by contradiction argument. Suppose that the rate t−1/2 can be improved; that is, there exists 0 < ε < 2 such that

‖S(t)U0‖H ≤
C

t1/(2−ε)
‖U0‖H, ∀ t ≥ 0. (80)

Using Theorem 4.2, we obtain

1

|β|2−ε
‖(iλI −A)−1‖L(H) ≤ C,when |β| → ∞. (81)

However, by (73), we obtain a sequence of real numbers (β) and a sequence of limited functions F in H such that

1

|β|2−ε
‖U‖H ≥

ρ1l

2
|β|εB2 →∞,when |β| → ∞. (82)

Hence,

1

|β|2−ε
‖(iβI −A)−1‖L(H) →∞,when |β| → ∞. (83)

So, we have a contradiction. Therefore, the rate cannot be improved. This completes the proof of Theorem 4.4.

Conditions γ1 6= 0, γ2 6= 0, and γ3 = 0

The main results of this subsection are in the form of the following two theorems:

Theorem 4.5. Assume that γ1 6= 0, γ2 6= 0, and γ3 = 0. The associated semigroup S(t) = eAt is exponentially stable if and
only if the relation (29) is true.

Theorem 4.6. Assume that γ1 6= 0, γ2 6= 0, and γ3 = 0. If (29) is not true, then the C0-semigroup S(t) associated with the
system is polynomially stable and satisfies

‖S(t)U0‖L(H) ≤
C

t1/2
‖U0‖D(A) ∀ U0 ∈ D(A), (84)

where C is a positive constant. Furthermore, this stability rate is optimal.

Before proving Theorems 4.5 and 4.6, we first establish some lemmas. Consider the resolvent equation

(iβI −A)U = F, (85)

where U = (u, v, ϕ, w, ψ, z)′ ∈ D(A), F = (f1, f2, f3, f4, f5, f6)′ ∈ H, and β ∈ R. Because of (34), we obtain the following
system:

iβu− v = f1, (86)
iβv − αuxx − λ(ϕ− u) + γ1v = f2, (87)

iβϕ− w = f3, (88)
iρ1βw − κ(ϕx + ψ)x + λ(ϕ− u) + γ2w = ρ1f4, (89)

iβψ − z = f5, (90)
iρ2βz − bψxx + κ(ϕx + ψ) = ρ2f6. (91)

11
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Lemma 4.7. The set formed by the resolvents of the operator A contains the set iR; that is, iR ⊂ ρ(A).

Proof. From Lemma 3.2, it follows that 0 ∈ ρ(A). Now, take β ∈ R\{0}. Suppose that there is some iβ that is an eigenvalue
of operator A; that is,

AU = iβU with U 6= 0. (92)

On the other hand, multiplying (92) by U , we get

〈AU,U〉H = iβ‖U‖2H.

Taking the real part of the last equation and using the identity obtained in Lemma 3.1, we have ‖v‖22 = ‖w‖22 = 0, and
hence v = w = 0. Next, take F = (0, 0, 0, 0, 0, 0). Because of (86) and (88), we have u = ϕ = 0. Because of (89), we have
ψ = 0, and because of (90), we obtain z = 0. This is a contradiction and hence there are no imaginary eigenvalues.

Throughout the proof of the subsequent lemmas, we assume that β 6= 0. Consequently, we routinely use the fact that
there is a constant c such that 0 <

1

|β|
< c < 1 (which will be explained later).

Lemma 4.8. Let U = (u, v, ϕ, w, ψ, z)′ be the solution of system (86)–(91). Then, there exists a positive constant C such that

‖v‖22 + ρ1‖w‖22 ≤ C‖F‖H‖U‖H. (93)

Proof. Note that
iβ‖U‖2H − 〈AU,U〉H = 〈F,U〉H.

By Lemma 3.1, we get
γ1‖v‖22 + γ2‖w‖22 = <〈F,U〉H.

Now, by Hölder’s inequality, the required conclusion is obtained.

Lemma 4.9. Let U = (u, v, ϕ, w, ψ, z)′ be the solution of system (35)–(40). Then, there exists a positive constant C1 such that

α‖ux‖22 ≤ C1‖F‖H‖U‖H. (94)

Proof. Multiplying (36) by u and integrating over (0, l), we obtain

iβ〈v, u〉+ α‖ux‖22 + λ‖u‖22 − λ 〈ϕ, u〉+ γ1 〈v, u〉 = 〈f2, u〉. (95)

From (35) and (37), we have −iβu = −v − f1 and ϕ = − i
β (w + f3). Hence,

−‖v‖22 + α‖ux‖22 + λ‖u‖22 +
iλ

β
〈w, u〉+ γ1 〈v, u〉 = 〈f2, u〉+ 〈v, f1〉 −

iλ

β
〈f3, u〉 . (96)

Now, by using Hölder’s inequality, Young’s inequality, Poincaré’s inequality, (93), and 1

|β|
< 1, we arrive at the desired

conclusion.

Lemma 4.10. Let U = (u, v, ϕ, w, ψ, z)′ be the solution of system (35)–(40). Then, there exists a positive constant C2 such
that

b‖ψx‖22 − C2‖z‖22 ≤ C2‖F‖H‖U‖H. (97)

Proof. Multiplying (40) by ψ and integrating over (0, l), we obtain

iβρ2 〈z, ψ〉+ b‖ψx‖22 + κ〈ϕx + ψ,ψ〉 = ρ2 〈f6, ψ〉 . (98)

Multiplying (38) by −
∫ x
0
ψ(s) ds and integrating over (0, l), we obtain

−iβρ1
〈
w,

∫ x

0

ψ(s) ds

〉
− κ〈ϕx + ψ,ψ〉+ λ

〈
ϕ,

∫ x

0

ψ(s) ds

〉
− λ

〈
u,

∫ x

0

ψ(s) ds

〉
− γ2

〈
w,

∫ x

0

ψ(s) ds

〉

= −ρ1
〈
f4,

∫ x

0

ψ(s) ds

〉
. (99)
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Adding (98) and (99), we get

iβρ2 〈z, ψ〉 − iβρ1
〈
w,

∫ x

0

ψ(s) ds

〉
+ b‖ψx‖22 + λ

〈
ϕ,

∫ x

0

ψ(s) ds

〉
− λ

〈
u,

∫ x

0

ψ(s) dx

〉
− γ2

〈
w,

∫ x

0

ψ(s) dx

〉

= ρ2 〈f6, ψ〉 − ρ1
〈
f4,

∫ x

0

ψ(s) dx

〉
.

From (37) and (39), we get iβϕ = w+ f3 and iβψ = z+ f5, respectively. So, substituting appropriately, we get the following
equation:

−ρ2‖z‖22 + ρ1

〈
w,

∫ x

0

z(s) ds

〉
+ b‖ψx‖22 − i

λ

β

〈
w,

∫ x

0

ψ(s) ds

〉
− λ

〈
u,

∫ x

0

ψ(s) ds

〉
− γ2

〈
w,

∫ x

0

ψ(s) ds

〉

= ρ2 〈f6, ψ〉 − ρ1
〈
f4,

∫ x

0

ψ(s) ds

〉
+ ρ2 〈z, f5〉 − ρ1

〈
w,

∫ x

0

f5(s) dx

〉
+ i

λ

β

〈
f3,

∫ x

0

ψ(s) ds

〉
.

Now, using Hölder’s inequality, Young’s inequality, Poincaré’s inequality, (93), and 1

|β|
< 1, we arrive at the required

conclusion.

Lemma 4.11. Let U = (u, v, ϕ, w, ψ, z)′ be the solution of system (35)–(40). Then, there exists a positive constant C3 such
that

κ‖ϕx + ψ‖22 −
C3

|β|
‖z‖22 ≤ C3‖F‖H‖U‖H. (100)

Proof. Multiplying (38) by ϕ and integrating over (0, l), we obtain

iβρ1〈w,ϕ〉+ κ 〈ϕx + ψ,ϕx〉+ λ‖ϕ‖22 − λ〈u, ϕ〉+ γ2〈w,ϕ〉 = ρ1〈f4, ϕ〉.

Note that

〈ϕx + ψ,ϕx〉 = ‖ϕx + ψ‖22 − 〈ϕx + ψ,ψ〉 , (101)

hence, iβρ1〈w,ϕ〉+κ‖ϕx+ψ‖22−κ 〈ϕx + ψ,ψ〉+λ‖ϕ‖22−λ〈u, ϕ〉+γ2〈w,ϕ〉 = ρ1〈f4, ϕ〉. From (88) and (90), we get iβϕ = w+f3

and ψ = − i
β (z + f5). So, substituting appropriately, we obtain the following equation:

−ρ1‖w‖22 + κ‖ϕx + ψ‖22 − i
κ

β
〈ϕx + ψ, z〉+ λ‖ϕ‖22 − i

λ

β
〈u,w〉+ i

γ2
β
‖w‖22

= ρ1〈f4, ϕ〉+ ρ1〈w, f3〉+ i
λ

β
〈u, f3〉 − i

γ2
β
〈w, f3〉+ i

κ

β
〈ϕx + ψ, f5〉 .

Now, using Hölder’s inequality, Young’s inequality, Poincaré’s inequality, (93), and (97), we arrive at the desired result.

Lemma 4.12. Let U = (u, v, ϕ, w, ψ, z)′ be the solution of system (86)–(91). Then, there exists a positive constant C4 such
that

ρ2‖z‖22 − C4

(
1

|β|
|〈ψx, w〉|+ |〈ψ, ux〉|+ | 〈ψx, w〉 |

)
≤ C4

(
|β|
∣∣∣ρ1
κ
− ρ2

b

∣∣∣ |〈ψx, w〉|+ ‖F‖H‖U‖H) . (102)

Proof. Multiplying (91) by ϕx + ψ and integrating over (0, l), we obtain

−iβρ2〈zx, ϕ〉+ iβρ2〈z, ψ〉+ b 〈ψx, (ϕx + ψ)x〉+ κ‖ϕx + ψ‖22 = ρ2 〈f6, ϕx + ψ〉 . (103)

From (89), it follows that

−iβρ1w − κ(ϕx + φ)x + λ(ϕ− u) + γ2w = ρ1f4. (104)

Multiplying (104) by b

κ
ψx and integrating over (0, L), we obtain

−iβ bρ1
κ
〈ψx, w〉 − b 〈ψx, (ϕx + ψ)x〉+

bλ

κ
〈ψx, ϕ〉+

bλ

κ
〈ψ, ux〉+

bγ2
κ
〈ψx, w〉 =

bρ1
κ
〈ψx, f4〉. (105)

Adding (103) and (105), we get

−iβρ2〈zx, ϕ〉−iβ
bρ1
κ
〈ψx, w〉+ iβρ2〈z, ψ〉+ κ‖ϕx + ψ‖22 +

bλ

κ
〈ψx, ϕ〉+

bλ

κ
〈ψ, ux〉+

bγ2
κ
〈ψx, w〉 = ρ2 〈f6, ϕx + ψ〉+ bρ1

κ
〈ψx, f4〉.

13
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From (88), it follows that iβϕ = w + f3. Hence, we have

ρ2〈zx, w〉 − iβ
bρ1
κ
〈ψx, w〉+ iβρ2〈z, ψ〉+ κ‖ϕx + ψ‖22 + i

bλ

κβ
〈ψx, w〉+

bλ

κ
〈ψ, ux〉+

bγ2
κ
〈ψx, w〉

= ρ2 〈f6, ϕx + ψ〉+
bρ1
κ
〈ψx, f4〉 − ρ2〈zx, f3〉 − i

bλ

κβ
〈ψx, f3〉.

From (90), we obtain z = iβψ − f5 and iβψ = z + f5. Hence, we have

iβ

(
ρ2 −

bρ1
κ

)
〈ψx, w〉 − ρ2‖z‖22 + κ‖ϕx + ψ‖22 + i

bλ

κβ
〈ψx, w〉+

bλ

κ
〈ψ, ux〉+

bγ2
κ
〈ψx, w〉

= ρ2 〈f6, ϕx + ψ〉+
bρ1
κ
〈ψx, f4〉 − i

bλ

κβ
〈ψx, f3〉 − ρ2〈zx, f3〉+ ρ2〈f5x, w〉+ ρ2〈z, f5〉.

Consequently, we have

ρ2‖z‖22 = κ‖ϕx + ψ‖22 + iβ

(
ρ2 −

bρ1
κ

)
〈ψx, w〉+ i

bλ

κβ
〈ψx, w〉+

bλ

κ
〈ψ, ux〉+

bγ2
κ
〈ψx, w〉

− ρ2 〈f6, ϕx + ψ〉 − bρ1
κ
〈ψx, f4〉+ i

bλ

κβ
〈ψx, f3〉+ ρ2〈zx, f3〉 − ρ2〈f5x, w〉 − ρ2〈z, f5〉.

Now, using Hölder’s inequality, Young’s inequality, and (100), we arrive at the desired conclusion.

Now, we are ready to prove Theorem 4.3.

Proof of Theorem 4.3. Assuming that (29) is true. Because of Lemma 4.5, we obtain

ρ2‖z‖22 − C4

(
1

|β|
|〈ψx, w〉|+ |〈ψ, ux〉|+ | 〈ψx, w〉 |

)
≤ C4‖F‖H‖U‖H

and

b‖ψx‖22 − C2C4

(
1

|β|
|〈ψx, w〉|+ |〈ψ, ux〉|+ | 〈ψx, w〉 |

)
≤ C2‖F‖H‖U‖H.

Using Hölder’s inequality, Young’s inequality, Poincaré’s inequality, and (11), we obtain a positive constant C ′ such that

‖U‖2H ≤ C ′
(
‖v‖22 + ρ1‖w‖22 + ρ2‖z‖22 + α‖ux‖22 + κ ‖ϕx + ψ‖22 + b‖ψx‖22

)
.

By Lemmas 4.8, 4.9, 4.10, 4.11, and 4.12, we obtain a positive constant C6 such that

‖U‖2H − C6

(
1

|β|
|〈ψx, w〉|+ |〈ψ, ux〉|+ | 〈ψx, w〉 |

)
− C6

|β|
‖z‖22 ≤ C6‖F‖H‖U‖H.

Hence, there exists a positive constant C satisfying

‖U‖2H −
C

|β|
(ρ2‖z‖22 + b‖ψx‖22 + ρ1‖w‖22) ≤ C‖F‖H‖U‖H,

and hence

‖U‖2H −
C

|β|
‖U‖2H ≤ C‖F‖H‖U‖H.

Taking c =
1

2C
, we obtain

‖U‖H ≤ 2C‖F‖H.

Therefore,
lim
|β|→∞

‖(iβI −A)−1‖L(H) ≤ 2C <∞.

Furthermore, from Lemma 4.1, it follows that iR ⊂ ρ(A). Consequently, Gearhart-Herbst-Prüss-Huang theorem guaran-
tees that the semigroup S(t) is exponentially stable.

Next, we assume that (29) is not true. Our goal now is to show that (31) does not happen. For this, let us make explicitly
a sequence βn ∈ R and a sequence of bounded functions Fn = (f1n, f2n, f3n, f4n, f5n, f6n)′ ∈ H such that

lim sup
|β|→∞

‖(iβI −A)−1‖L(H) =∞.

14
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Using (85), we obtain

iβu− v = f1n,

iβv − αuxx − λ(ϕ− u) + γ1v = f2n,

iβϕ− w = f3n,

iρ1βw − κ(ϕx + ψ)x + λ(ϕ− u) + γ2w = ρ1f4n,

iβψ − z = f5n,

iρ2βz − bψxx + κ(ϕx + ψ) = ρ2f6n.

Taking f1n = f3n = f5n = 0, we arrive at the following equations:

−β2u− αuxx − λ(ϕ− u) + iγ1βu = f2n,

−ρ1β2ϕ− κ(ϕx + ψ)x + λ(ϕ− u) + iγ2βϕ = ρ1f4n,

−ρ2β2ψ − bψxx + κ(ϕx + ψ) = ρ2f6n.

Because of the boundary conditions (4), we suppose that u(x) = A sin(θnx), ϕ(x) = B sin(θnx), and ψ(x) = C cos(θnx), where
θn =

nπ

l
with n ∈ N. Hence, we have

[P1A− λB] sin(θnx) = f2n,

[−λA+ P2B + κθnC] sin(θnx) = ρ1f4n,

[κθnB + P3C] cos(θnx) = ρ2f6n,

where

P1 = −β2 + αθ2n + λ+ iγ1β,

P2 = λ− ρ1β2 + κθ2n + iγ2β,

P3 = −ρ2β2 + bθ2n + κ.

Now, taking f2n = f4n = 0 and f6n = ρ−12 cos(θnx), we have the following system:

P1A− λB = 0,

−λA+ P2B + κθnC = 0,

κθnB + P3C = 1.

Solving this system, we obtain

C =
P1P2 − λ2

P3(P1P2 − λ2)− κθ2nP1
.

Choosing β =
√

b
ρ2
θn, we obtain

P1P2 − λ2 = ρ1

(
α− b

ρ2

)(
b

ρ2
− κ

ρ1

)
θ4n + i

[(
α− b

ρ2

)
γ2 + γ1ρ1

(
b

ρ2
− κ

ρ1

)]√
b

ρ2
θ3n

+

[
λ

(
α− b

ρ2

)
− γ1γ2

b

ρ2

]
θ2n + iλ [γ1 + γ2]

√
b

ρ2
θn,

and

P3(P1P2 − λ2)− κ2θ2nP1 = κ

[
ρ1

(
b

ρ2
− κ

ρ1

)
− κ
](

α− b

ρ2

)
θ4n + iκ

[(
α− b

ρ2

)
γ2 + γ1ρ1

(
b

ρ2
− κ

ρ1

)
− κγ1

]√
b

ρ2
θ3n

+ κ

[
λ

(
α− b

ρ2

)
− γ1γ2

b

ρ2
− λκ

]
θ2n + iλκ [γ1 + γ2]

√
b

ρ2
θn.

Thus, for κ

ρ1
6= b

ρ2
, we get

|C| →
ρ1

(
b
ρ2
− κ

ρ1

)
κρ1

(
b
ρ2
− κ

ρ1

)
− κ2

6= 0, when β →∞.

15
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Consequently, when β →∞, we have

‖U‖H ≥ ρ2‖z‖22 =
ρ2l

2
β2|C|2 → +∞.

Therefore, Gearhart-Herbst-Prüss-Huang theorem guarantees the lack of exponential stability of the semigroup S(t). This
completes the proof of Theorem 4.3

Proof of Theorem 4.6. Assume that (29) is not true; that is,

κ

ρ1
6= b

ρ2
.

Because of Lemmas 4.8, 4.9, 4.10, 4.11, and 4.12, we obtain a constant C ′, which is independent of β, such that

‖U‖2H ≤ C ′ (|β| |〈ψx, w〉|+ ‖F‖H‖U‖H) .

Using Young’s inequality and (97), we obtain a positive constant C such that

‖U‖2H ≤ C|β|2‖F‖H‖U‖H.

Hence,

1

|β|2
‖(iβI −A)−1‖L(H) ≤ C, when |β| → ∞.

Using Theorem 4.2, we obtain

‖S(t)A−1‖L(H) ≤
C

t1/2
.

Thus, for every F ∈ H, we have

‖S(t)A−1F‖H ≤
C

t1/2
‖F‖H.

As 0 belongs to the resolvent of the operator A, it follows that A is onto over H. Taking U0 ∈ D(A) such that AU0 = F , we
obtain

‖S(t)U0‖H ≤
C

t1/2
‖U0‖H, ∀ t ≥ 0.

Therefore, the semigroup S(t) is polynomially stable. To prove that the polynomial stability rate in question is optimal, we
use the approach of contradiction. Suppose that the rate t−1/2 can be improved; that is, there exists 0 < ε < 2 such that

‖S(t)U0‖H ≤
C

t1/(2−ε)
‖U0‖H, ∀ t ≥ 0.

Using Theorem 4.2, we have

1

|β|2−ε
‖(iλI −A)−1‖L(H) ≤ C,when |β| → ∞.

However, by (73), we obtain a sequence of real numbers (β) and a sequence of bounded functions F in H such that

1

|β|2−ε
‖U‖H ≥

ρ2l

2
|β|εB2 →∞,when |β| → ∞.

Hence,

1

|β|2−ε
‖(iβI −A)−1‖L(H) →∞,when |β| → ∞.

So, we arrive at a contradiction. Therefore, the rate cannot be improved. This completes the proof of Theorem 4.6.

Conditions γ1 = 0, γ2 6= 0, and γ3 6= 0

The main result of this subsection is in the form of the following theorem:

Theorem 4.7. Assume that γ1 = 0, γ2 6= 0, and γ3 6= 0. The associated semigroup S(t) = eAt is not exponentially stable.

16



L. Gutemberg, C. Raposo, L. Correia, and J. Ribeiro / Electron. J. Math. 8 (2024) 1–18 17

Proof. We take explicitly a sequence βn ∈ R and a sequence of bounded functions Fn = (f1n, f2n, f3n, f4n, f5n, f6n)′ such
that

lim sup
|β|→∞

‖(iβI −A)−1‖L(H) =∞.

Similar to system (86)–(91), we have

iβu− v = f1n,

iβv − αuxx − λ(ϕ− u) = f2n,

iβϕ− w = f3n,

iρ1βw − κ(ϕx + ψ)x + λ(ϕ− u) + γ2w = ρ1f4n,

iβψ − z = f5n,

iρ2βz − bψxx + κ(ϕx + ψ) + γ3z = ρ2f6n.

Taking f1n = f3n = f5n = 0, we arrive at

−β2u− αuxx − λ(ϕ− u) = f2n,

−ρ1β2ϕ− κ(ϕx + ψ)x + λ(ϕ− u) + iγ2βϕ = ρ1f4n,

−ρ2β2ψ − bψxx + κ(ϕx + ψ) + iγ3βψ = ρ2f6n.

Because of the boundary conditions (4), we suppose that u(x) = A sin(θnx), ϕ(x) = B sin(θnx), and ψ(x) = C cos(θnx), where
θn =

nπ

l
with n ∈ N . Then, we have

[P1A− λB] sin(θnx) = f2n,

[−λA+ P2B + κθnC] sin(θnx) = ρ1f4n,

[κθnB + P3C] cos(θnx) = ρ2f6n,

where

P1 = −β2 + αθ2n + λ,

P2 = λ− ρ1β2 + κθ2n + iγ2β,

P3 = −ρ2β2 + bθ2n + κ+ iγ3β.

Taking f2n = sin(θnx) and f4n = f6n = 0, we obtain the following system:

P1A− λB = 1, (106)
−λA+ P2B + κθnC = 0,

κθnB + P3C = 0.

Choosing β =
√
αθ2n + λ, we have P1 = 0. By (106), we obtain B = − 1

λ . Consequently, when β →∞, we have

‖U‖H ≥ ρ1‖w‖22 =
ρ1l

2
β2|B|2 → +∞.

Therefore, Gearhart-Herbst-Prüss-Huang theorem guarantees the lack of exponential stability of the semigroup S(t).

5. Conclusion

In this work, we have used the Timoshenko-Ehrenfest theory to study a suspension bridge with partial internal frictional
damping. We also have used a suitable Hilbert space to build a semigroup to prove that its energy is dissipative and have
applied the Lummer-Phillips theorem to obtain the system’s solution. Furthermore, if the condition k

ρ1
= b

ρ2
is valid, we

have found that the mentioned semigroup has exponential decay; otherwise, the semigroup has polynomial decay. The
suspension bridge with other types of damping can be studied in further work.
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