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Abstract

A vertex u in a graph G totally dominates a vertex v if v is adjacent to u. A subset S of the vertex set of a graph G is a total
dominating set for G if every vertex of G is totally dominated by at least one vertex of S. The minimum cardinality of a total
dominating set forG is the total domination number γt(G) ofG. If S is a total dominating set of a graphG, then σS(v) denotes
the number of vertices in S that totally dominate v. A total dominating set S in a graphG is called a proper total dominating
set if σS(u) 6= σS(v) for every two adjacent vertices u and v ofG. Not all graphs possess a proper total dominating set. Those
paths and cycles possessing a proper total dominating set are determined. It is shown that every n×m grid Pn � Pm (the
Cartesian product of paths Pn and Pm of order n and m respectively) with n ≥ m ≥ 2 has a proper total dominating set.
Also, for every r-regular bipartite graph H where r ≥ 2, the graphH � P2 has a proper total dominating set. The minimum
cardinality of a proper total dominating set in G is the proper total domination number γpt(G). All pairs a, b, of positive
integers are determined for which there is a graph G with a proper total dominating set such that γt(G) = a and γpt(G) = b.
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1. Introduction

In recent decades, domination in graphs has grown in popularity in graph theory. While this area evidently began with the
work of Berge [1] in 1958 and Ore [6] in 1962, it did not become an active area of research until 1977 with the appearance of
a survey paper by Cockayne and Hedetniemi [3]. Since then, a large number of variations and applications of domination
have surfaced. A vertex u in a graph G is said to dominate a vertex v if either u = v or v is adjacent to u in G. That is, u
dominates itself and all vertices in its neighborhoodN(u). A subset S of the vertex set of G is a dominating set of G if every
vertex of G is dominated by at least one vertex in S. The minimum cardinality of a dominating set of G is the domination
number γ(G) of G.

In their 2023 book, Haynes, Hedetniemi, and Henning [4] presented the major results that have been obtained on
what they refer to as the core concepts of graph domination. One of these core concepts is standard domination where a
vertex dominates itself and each neighbor. Another core concept is total domination, introduced by Cockayne, Dawes, and
Hedetniemi [2] in 1977. In total domination, a vertex u in a graph G totally dominates a vertex v if v is adjacent to u. A
subset S of the vertex set ofG is a total dominating set if every vertex ofG is totally dominated by at least one vertex of S. In
particular, every vertex of S must be adjacent to at least one vertex of S. Therefore, a graph G has a total dominating set if
and only if G contains no isolated vertices. The minimum cardinality of a total dominating set of G is the total domination
number γt(G) of G. The 2013 book by Henning and Yeo [5] deals exclusively with total domination in graphs.

For a total dominating set S of a graph G and a vertex v of G, the number of vertices in S that totally dominate v is
denoted by σS(v). Thus, 1 ≤ σS(v) ≤ deg v for each vertex v of G, where deg v is the degree of v. It is impossible for a
graph G to possess a total dominating set S such that every two vertices of G are totally dominated by different numbers
of vertices of G.

Observation 1.1. No nontrivial connected graph G possesses a total dominating set S such that every two vertices of G are
totally dominated by different numbers of vertices of S.

We assume that all graphs under consideration are nontrivial connected graphs.
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2. Proper total domination

While it is impossible for a graph G to possess a total dominating set S such that σS(u) 6= σS(v) for every pair u, v of
distinct vertices of G, it is possible that σS(u) 6= σS(v) for every pair u, v of adjacent vertices of G. A total dominating set in
a graph G with this property is called a proper total dominating set in G. Not all graphs possess a proper total dominating
set. Those paths and cycles possessing a proper total dominating set are now determined.

Proposition 2.1. For an integer n ≥ 2, the path Pn of order n has a proper total dominating set if and only if n ≡ 3 (mod 4).

Proof. Let Pn = (v1, v2, . . . , vn) where n ≥ 2. It is straightforward to show that Pn has a proper total dominating set only
when n = 3 for 2 ≤ n ≤ 5. Thus, we may assume that n ≥ 6. First, suppose that Pn has a proper total dominating set S.
Then σS(vi) ∈ {1, 2} for 1 ≤ i ≤ n. In particular, σS(v1) = σS(vn) = 1. Hence, σS(vi) = 2 if i is even and σS(vi) = 1 if i is odd.
Since σS(v1) = σS(vn) = 1 and σS(v2) = σS(vi−1) = 2, it follows that n is odd and {v1, v2, v3, vn−2, vn−1, vn} ⊆ S. A block B
of Pn with respect to S is a maximal set of consecutive vertices of Pn such that either all vertices of B belong to S or no
vertices of B belong to S. Thus, the subgraph of Pn induced by a block is a path. The vertex set of Pn can be expressed as
a sequence (B1, B

′
1, B2, B

′
2 . . . , Bk, B

′
k, Bk+1) of 2k + 1 blocks for some positive integer k such that x ∈ Bi for 1 ≤ i ≤ k + 1 if

x ∈ S and y ∈ B′i for 1 ≤ i ≤ k if y /∈ S. First, we verify the following claim.

Claim: |Bi| = 3 for 1 ≤ i ≤ k + 1 and |B′i| = 1 for 1 ≤ i ≤ k.

Suppose that |Bi| 6= 3 for some integer i with 1 ≤ i ≤ k + 1 or |B′i| 6= 1 for some integer i with 1 ≤ i ≤ k. First, suppose
that Bi = (vt+1, vt+2, . . . , vt+p) for some integers t ≥ 0 and p 6= 3. By the argument above, i 6= 1 and i 6= k + 1. If p = 1,
then σS(vt+1) = 0. If p = 2, then σS(vt+1) = σS(vt+2) = 1. If p ≥ 4, then σS(vt+2) = σS(vt+3) = 2. Thus, 1 ≤ p ≤ 2

and p ≥ 4 are impossible. Next, suppose that B′i = (vt+1, vt+2, . . . , vt+q) for some integers t ≥ 0 and q ≥ 2. If q = 2, then
σS(vt+1) = σS(vt+2) = 1. If q ≥ 3, then σS(vt+2) = 0. In either case, a contradiction is produced. Consequently, as claimed,
|Bi| = 3 for 1 ≤ i ≤ k+1 and |B′i| = 1 for 1 ≤ i ≤ k. Therefore, n =

∑k
i=1(|Bi|+ |B′i|) + |Bk+1| = 4k+3 and so n ≡ 3 (mod 4).

For the converse, suppose that n ≡ 3 (mod 4). Let S = {vi : i 6≡ 0 (mod 4)}. This is illustrated in Figure 2.1 for n = 3, 7,
where the solid vertices are those that belong to a proper total dominating set. Since σS(vi) = 1 if i is odd and σS(vi) = 2

if i is even, it follows that S is a proper total dominating set of Pn.
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Figure 2.1: Proper total dominating sets in P3 and P7.

Proposition 2.2. For an integer n ≥ 3, the cycle Cn of order n has a proper total dominating set if and only if n ≡ 0 (mod 4).

Proof. Clearly, C3 does not have a proper total dominating set. So, we may assume that n ≥ 4. Let Cn = (v1, v2, . . . , vn, v1)

where n ≥ 4. First, suppose that Cn has a proper total dominating set S. Since σS(vi) ∈ {1, 2} for 1 ≤ i ≤ n, it follows that
n must be even. Hence, we may assume that n is even. A block B of Cn with respect to S is a maximal set of consecutive
vertices of Cn such that either all vertices ofB belong to S or no vertices ofB belong to S. Thus, the subgraph of Cn induced
by a single block is a path. The vertex set of Cn can be expressed therefore as a sequence (B1, B

′
1, B2, B

′
2 . . . , Bk, B

′
k) of 2k

blocks for some positive integer k such that x ∈ Bi if x ∈ S and y ∈ B′i if y /∈ S where 1 ≤ j ≤ k. First, we verify the
following claim.

Claim: For each integer i with 1 ≤ i ≤ k, |Bi| = 3 and |B′i| = 1.

Suppose that this claim is false. Then either |B1| 6= 3 or |B′1| 6= 1. Let B1 = (v1, v2, v3, . . . , vp) and B′1 = (vp+1, vp+2, . . . , vp+q)

where either p 6= 3 or q ≥ 2. If p ≥ 4, then σS(v2) = σS(v3) = 2. If p = 2, then σS(v1) = σS(v2) = 1. If p = 1, then σS(v1) = 0.
Thus, 1 ≤ p ≤ 2 and p ≥ 4 are impossible. Therefore, |Bi| = 3 for 1 ≤ i ≤ k. If q ≥ 3, then σS(vp+2) = 0; while if q = 2,
then σS(vp+1) = σS(vp+2) = 1. In either case, a contradiction is produced. Consequently, |B′i| = 1 for 1 ≤ i ≤ k. Therefore,
n =

∑k
i=1(|Bi|+ |B′i|) = 4k and so n ≡ 0 (mod 4).

For the converse, suppose that n ≡ 0 (mod 4). Let S = {vi : i 6≡ 0 (mod 4)}. This is illustrated in Figure 2.2 for n = 4, 8.
Since σS(vi) = 1 if i is odd and σS(vi) = 2 if i is even, it follows that S is a proper total dominating function of Cn.
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Figure 2.2: Proper total dominating sets of C4 and C8.

We now consider a class of graphs, every member of which has a proper total dominating set. For integers n and m

with n ≥ m ≥ 1, the Cartesian product Gn,m = Pn � Pm of the path Pn of order n and the path Pm of order m is referred
to as a grid graph. In particular, Gn,1 = Pn � P1

∼= Pn. The graph Gn,2 = Pn � K2 is often referred to as a ladder graph.
Next, we show that for all integers n and m with n ≥ m ≥ 2, the grid Gn,m possesses a proper total dominating set. We
begin with ladders.

Proposition 2.3. For each integer n ≥ 2, the ladder Gn,2 possesses a proper total dominating set.

Proof. Let G = Gn,2 be constructed from the two n-paths P = (u1, u2, . . . , un) and P ′ = (v1, v2, . . ., vn) by adding the edges
uivi for 1 ≤ i ≤ n. We consider two cases, according to whether n is odd or n is even.

Case 1. n ≥ 3 is odd. Let S = V (P ) ∪ {vi : i is even and 2 ≤ i ≤ n− 1}. Then

σS(x) =


1 if x = u1, un or x = vi, where i is even and 2 ≤ i ≤ n− 1‘,
2 if x = v1, vn or x = ui, where i is odd and 3 ≤ i ≤ n− 2,
3 if x = ui where i is even and 2 ≤ i ≤ n− 1 or

if x = vi where i is odd and 3 ≤ i ≤ n− 2.

Since σS(x) 6= σS(y) for every two adjacent vertices x and y in G, it follows that S is a proper total dominating set of G.
This is illustrated in Figure 2.3 for n = 3, 5, 7.
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Figure 2.3: Proper total dominating sets in Gn,2 for n = 3, 5, 7.

Case 2. n ≥ 2 is even. First, G2,2 = C4 has a proper total dominating set by Proposition 2.2 and G4,2 has a proper total
dominating set as shown in Figure 2.4.

2 3

1 3 1 2

11

Figure 2.4: A proper total dominating set in G4,2.

Thus, we may assume that n ≥ 6 and so n− 3 ≥ 3. Let H = Gn−3,2 be the subgraph of Gn,3 constructed from the subpaths
Q = (u1, u2, . . . , un−3) and Q′ = (v1, v2, . . . , vn−3) by adding the edges uivi for 1 ≤ i ≤ n − 3. Next, let S′ be the proper
total dominating set of H as defined in Case 1 and S′′ = {un−2, un−1, un, vn−1}. Now, let S = S′ ∪ S′′. If x ∈ {ui, vi} where
1 ≤ i ≤ n − 4, then σS(x) is the same as described in Case 1. Furthermore, (σS(un−3), σS(un−2), σS(un−1), σS(un)) =

(3, 1, 3, 1) and (σS(vn−3), σS(vn−2), σS(vn−1), σS(vn)) = (1, 3, 1, 2). Since σS(un−4) = 1 and σS(vn−4) = 3, it follows that S is
proper total dominating set. This is illustrated in Figure 2.5 for n = 6, 8.
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Figure 2.5: Proper total dominating sets in Gn,2 for n = 6, 8.

Let the grid Gn,m be constructed from m copies Q1, Q2, . . . , Qm of n-paths where Qi = (ui,1, ui,2, . . ., ui,n) for 1 ≤ i ≤ m

such that ui,jui+1,j ∈ E(G) for 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ n. For a path Q = (x1, x2, . . . , xn) of order n in a graph G and a
set S of vertices in G, let

σS(Q) = (σS(x1), σS(x2), . . . , σS(xn)).

Theorem 2.1. For every two integers n,m ≥ 2, the grid graph Gn,m possesses a proper total dominating set.

Proof. By Proposition 2.3, we may assume that n,m ≥ 3. Let G = Gn,m be constructed from m copies Q1, Q2, . . . , Qm of
n-paths where Qi = (ui,1, ui,2, . . . , ui,n) for 1 ≤ i ≤ m such that ui,jui+1,j ∈ E(G) for 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ n. We
consider two cases, according to whether at least one of n and m is odd or both n and m are even.

Case 1. At least one of n and m is odd, say n is odd. Then m is either odd or even. For 1 ≤ i ≤ m, the set Si is defined by

Si =

{
{ui,j : j is even and 2 ≤ j ≤ n− 1} if i is odd,

V (Qi) if i is even.

Let S = S1 ∪ S2 ∪ · · · ∪ Sm. We show that S is a proper total dominating set.

? If n = 3, then

σS(Q1) = (2, 1, 2)

σS(Qi) =

{
(1, 4, 1) if i is even and 2 ≤ i ≤ m− 1

(3, 2, 3) if i is odd and 3 ≤ i ≤ m− 1

σS(Qm) =

{
(2, 1, 2) if m is odd
(1, 3, 1) if m is even.

? If n ≥ 5, then

σS(Q1) = (2, 1, 3, 1, 3, 1, . . . , 3, 1, 2)

σS(Qi) =

{
(1, 4, 2, 4, 2, 4, . . . , 2, 4, 1) if i is even and 2 ≤ i ≤ m− 1

(3, 2, 4, 2, 4, 2, . . . , 4, 2, 3) if i is odd and 3 ≤ i ≤ m− 1

σS(Qm) =

{
(2, 1, 3, 1, 3, 1, . . . , 3, 1, 2) if m is odd
(1, 3, 2, 3, 2, 3, . . . , 2, 3, 1) if m is even.

This is illustrated in Figure 2.6. Since σS(x) 6= σS(y) for every two adjacent vertices x and y in G, it follows that S is a
proper total dominating set of G.

Case 2. Both n and m are even. Then n,m ≥ 4. Let Gn−1,m be the subgraph of Gn,m be constructed from Qi − ui,n for
1 ≤ i ≤ m. Let S1 be the proper total dominating set of Gn−1,m as defined in Case 1 and S2 = {ui,n : 1 ≤ i ≤ m − 1}. Let
S = S1 ∪ S2. We show that S is a proper total dominating set. Observe that

σS(Q1) = (2, 1, 3, 1, 3, 1, . . . , 3, 1)

σS(Qi) =

{
(1, 4, 2, 4, 2, . . . , 4, 2, 3) if i is even and 2 ≤ i ≤ m− 2

(3, 2, 4, 2, 4, . . . , 2, 4, 2) if m ≥ 6, i is odd, and 3 ≤ i ≤ m− 3
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Figure 2.6: Proper total dominating sets in Case 1 of the proof of Theorem 2.1.

σS(Qm−1) = (3, 2, 4, 2, 4, . . . , 2, 4, 1)

σS(Qm) = (1, 3, 2, 3, 2, 3, . . . , 2, 3, 1, 2).

This is illustrated in Figure 2.7. Since σS(x) 6= σS(y) for every two adjacent vertices x and y in G, it follows that S is a
proper total dominating set of G.

The grids Gn,m = Pn � Pm are a class of graphs defined as the Cartesian product of two well-known graphs. We saw
that Gn,m has a proper total dominating set for every two integers n,m ≥ 2. Another much studied class of graphs defined
as the Cartesian product of two well-known graphs are prisms Cn �K2, We investigate this class next. First, the following
result will be useful for this purpose.

Proposition 2.4. IfH is an r-regular bipartite graph for some integer r ≥ 2, thenH �K2 contains a proper total dominating
set.

Proof. Let H and H ′ be two vertex disjoint copies of the graph H in the construction of G = H � K2 where a vertex v′
of H ′ corresponds to the vertex v in H. Thus, vv′ ∈ E(G). Let U and W be the partite sets of H and let U ′ and W ′ be the
partite sets of H ′ corresponding to U and W . Let S = V (H) ∪ U ′. Then

σS(x) =


r + 1 if x ∈ U or x ∈W ′

r if ∈W
1 if x ∈ U ′.

Since σS(x) 6= σS(y) for every two adjacent vertices x and y in G, it follows that S is a proper total dominating set of G.

The n-cube Qn is K2 if n = 1, while for n ≥ 2, Qn is defined recursively as the Cartesian product Qn−1 � K2 of Qn−1

and K2. Since the n-cube Qn−1 is an (n − 1)-regular bipartite graph for n ≥ 2, it follows that the n-cube Qn possesses a
proper total dominating set for each integer n ≥ 2. Furthermore, since each even cycle is a 2-regular bipartite graph, the
following is a consequence of Proposition 2.4.

Corollary 2.1. For each even integer n ≥ 4, the prism Cn � K2 possesses a proper total dominating set.

While the prism Cn �K2 possesses a proper total dominating set for each even integer n ≥ 4, such is not the case when
n ≥ 3 is odd. For example, let G = C3 � K2 (see Figure 2.8). Suppose that G possesses a proper total dominating set S.
Since the numbers σS(u), σS(v), σS(w) are distinct and G is 3-regular, we may assume that σS(u) = 3, σS(v) = 2, and
σS(w) = 1. Thus, {v, w, x} ⊆ S. Since σS(w) = 1, it follows that {u, z} ∩ S = ∅. Thus, σS(y) = 2, which contradicts the fact
that σS(v) = 2 since vy ∈ E(G). Therefore, C3 � K2 does not possess a proper total dominating set.
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Figure 2.7: Proper total dominating sets in Case 2 of the proof of Theorem 2.1.

Figure 2.8: The graph C3 � K2.

Not only doesC3 �K2 fail to possess a proper total dominating set butCn �K2 fails to possess a proper total dominating
set for every odd integer n ≥ 5.

Theorem 2.2. For every odd integer n ≥ 3, the prism Cn � K2 does not possess a proper total dominating set.

Proof. Since we know that C3 � K2 does not possess a proper total dominating set, we may assume that n ≥ 5. Suppose,
to the contrary, that there is an odd integer n ≥ 5 such that G = Cn � K2 possesses a proper total dominating set S. Let G
be constructed from the two cycles C = (u1, u2, . . . , un, u1) and C ′ = (v1, v2, . . . , vn, v1) by adding the edges uivi for 1 ≤ i ≤ n.
Since χ(C) = χ(C ′) = 3, there are vertices x on C and vertices y on C ′ such that σS(x) = σS(y) = 3. Suppose that there are
k vertices x on C with σS(x) = 3 and k′ vertices y on C ′ with σS(y) = 3. Thus, k ≥ 1 and k′ ≥ 1. Hence, there are k blocks
on C and k′ blocks on C ′ such that σS(z) ∈ {1, 2} for every vertex z in the block. Since n is odd, there is at least one block B
consisting of an even number of vertices (an even block) on each of C and C ′. We may assume that B = (u1, u2, . . . , u2p)

is such a block where 2p ≥ 2. Thus, σS(un) = σS(u2p+1) = 3, where un = u2p+1 if k = 1. For every two integers i and j of
opposite parity where 1 ≤ i, j ≤ 2p, it follows that {σS(ui), σS(uj)} = {1, 2}. In particular, {σS(u1), σS(u2p)} = {1, 2}. Since
σS(un) = σS(u2p+1) = 3, it follows that u1, vn, u2p, v2p+1 ∈ S. Consequently, σS(v1) ≥ 2 and σS(v2p) ≥ 2.
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We claim that {σS(v1), σS(v2p)} = {2, 3}; for otherwise, either σS(v1) = σS(v2p) = 2 or σS(v1) = σS(v2p) = 3. If
σS(v1) = σS(v2p) = 2, then σS(u1) = σS(u2p) = 1, which contradicts the fact that {σS(u1), σS(u2p)} = {1, 2}. Suppose
that σS(v1) = σS(v2p) = 3. Thus, v2, v2p−1 ∈ S and so σS(u2) = σS(u2p−1) = 2. Since 2 and 2p − 1 are of opposite parity,
this is a contradiction. Therefore, {σS(v1), σS(v2p)} = {2, 3}, as claimed. Hence, we may assume that σS(v1) = 2 and
σS(v2p) = 3. Thus, σS(u1) = 1, σS(u2p) = 2, and σS(u2p−1) = 1. Since σS(v2p) = 3, it follows that u2p, v2p−1 ∈ S. However
then, σS(u2p−1) ≥ 2, which is a contradiction.

3. Proper total domination numbers

While every graph G without isolated vertices possesses a total dominating set, it is those sets of minimum cardinality
that have drawn the most interest. This minimum cardinality is of course the total domination number γt(G) of G. Con-
sequently, we now turn our attention to the corresponding parameter for graphs possessing a proper total dominating set.
The minimum cardinality of a proper total dominating set in a graph G is the proper total domination number γpt(G) of G,
namely

γpt(G) = min {|S| : S is a proper total dominating set of G} .

While every total dominating set in a graph must consist of at least two vertices, every proper total dominating set must
consist of at least three vertices, for suppose that S = {u, v} is a proper total dominating set in a graph G. Then S is also
a total dominating set of G and so uv ∈ E(G). However then, σS(u) = σS(v) = 1, which is impossible. Thus, we have the
following observation.

Observation 3.1. If a graph G has a proper total dominating set S, then γpt(G) ≥ 3.

As we saw in the proof of Proposition 2.1, the construction of a proper total dominating set in the path Pn of order n is
unique when n ≥ 3 and n ≡ 3 (mod 4). Furthermore, the construction of a proper total dominating set in the cycle Cn of
order n is also unique (up to isomorphism) when n ≥ 4 and n ≡ 0 (mod 4). Thus, we have the following.

Corollary 3.1. Let Pn be a path of order n ≥ 2 and let Cn be a cycle of order n ≥ 3. Then

γpt(Pn) =
3(n+ 1)

4
if n ≥ 3 and n ≡ 3 (mod 4)

γpt(Cn) =
3n

4
if n ≥ 4 and n ≡ 0 (mod 4).

Since proper total domination is more restrictive than total domination, it follows that γt(G) ≤ γpt(G) for every graphG
with a proper total dominating set. For the inequality γt(G) ≤ γpt(G), both strict inequality and equality are possible. For
example, for P3 = (u, v, w), the set V (P3) is a minimum proper total dominating set of P3 and {u, v} is a minimum total
dominating set. Thus, γt(P3) = 2 and γpt(P3) = 3. To illustrate equality, let G be the corona cor(K2,3) of the graph K2,3,
where G is obtained from K2,3 by adding a pendant edge at each vertex of K2,3. Then the subset S = V (K2,3) of V (G) is
both a minimum total dominating set and a minimum proper total dominating set of G. Therefore, γt(G) = γpt(G) = 5.
This leads to the following question.

For which pairs a, b of positive integers with a ≤ b, does there exist a graph G such that γt(G) = a and γpt(G) = b?

The primary goal of this section is to provide an answer to this question. We saw in Observation 3.1 that if G is a graph
with a proper total dominating set, then γpt(G) ≥ 3. First, we show that if 3 ≤ γpt(G) ≤ 4, then γt(G) < γpt(G).

Proposition 3.1. If G is a graph with γpt(G) ∈ {3, 4}, then γt(G) ≤ γpt(G)− 1. In particular, if γpt(G) = 3, then γt(G) = 2.

Proof. Let S be a minimum proper total dominating set of G. Since |S| ∈ {3, 4}, it follows that G[S] is a locally irregular
subgraph of order 3 or 4. Thus, eitherG[S] = K1,2 orG[S] = K1,3. Let w be the central vertex ofG[S], whereG[S] = {w, y, z}
if |S| = 3 or G[S] = {w, y1, y2, z} if |S| = 4. Let T = S − {z}. We show that T is a total dominating set of G. Since every
vertex of S is totally dominated by a vertex of T , it remains only to show that every vertex not in S is totally dominated by a
vertex of T . Suppose that there is a vertex v of G not in S that is not totally dominated by a vertex of T . Since S is a proper
total dominating set of G, it follows that z is the only vertex of S that totally dominates v. Thus, σS(v) = 1. However, z is
only totally dominated by w and so σS(z) = 1, which is impossible.

By Proposition 3.1, if G is a graph with γpt(G) = 3, then γt(G) = 2. On the other hand, if γpt(G) = 4, then it is
possible that γt(G) = 3 or γt(G) = 2, as we will see later. Furthermore, by Proposition 3.1, there is no graph G such that
γt(G) = γpt(G) = k if k ∈ {3, 4}. We saw, however, that if G = cor(K2,3), then γt(G) = γpt(G) = 5. This example can be
extended to provide a proof of the next result.

64



R. Chatterjee, E. Jent, S. Osborn, and P. Zhang / Electron. J. Math. 7 (2024) 58–68 65

Proposition 3.2. For each integer k ≥ 5, there exists a connected graph G such that γpt(G) = γt(G) = k.

Proof. Let H = Ks,t where 2 ≤ s < t and s + t = k and let G = cor(H) be the corona of H. Let S = V (H). Thus,
{σS(u), σS(w)} is a 2-element subset of {1, s, t} for every two adjacent vertices u and w of G. Thus, S is a proper total
dominating set of G and so γpt(G) ≤ k. Since S is a minimum total dominating set of G, it follows that γt(G) = k.
Therefore, γpt(G) = γt(G) = k.

We saw that there is a graph G such that γt(G) = 2 and γpt(G) = 3. We show next that for each integer k ≥ 3, there is
a graph G such that γt(G) = 2 and γpt(G) = k. Figure 3.1 shows graphs G such that γt(G) = 2 and γpt(G) ∈ {4, 5}, where
the vertices in a minimum proper total dominating set are indicated by solid vertices and the set {u, v} is a minimum total
dominating set in each graph.

v

2

2

2

3 1

23

1

11
1

1

1

u v
u

Figure 3.1: Graphs G with γt(G) = 2 and γpt(G) ∈ {4, 5}.

Two (nonadjacent) vertices u and v in a graph G are called twins (or false twins) if N(u) = N(v). If u and v are adjacent
vertices in a graph G such that N [u] = N [v], then u and v are adjacent twins (or true twins). Suppose that u and v are
adjacent twins in a graph G and S is a total dominating set of G. If {u, v} ⊆ S or {u, v} ∩ S = ∅, then σS(u) = σS(v). This
observation yields the following result.

Observation 3.2. LetG be a nontrivial connected graph. If S is a proper total dominating set ofG and u and v are adjacent
twins of G, then exactly one of u and v belongs to S.

Proposition 3.3. For each integer k ≥ 3, there is a connected graph G such that γt(G) = 2 and γpt(G) = k.

Proof. Since the statement is known to be true for k ∈ {3, 4, 5}, we may assume that k ≥ 6. First, let H = K2 ∨ (k − 3)K2

be the join of K2 and (k− 3)K2, where V (H) = {u, v} ∪ {ui, vi : 1 ≤ i ≤ k− 3} and uv ∈ E(H) with degH u = degH v = 2k− 5

and uivi ∈ E(H) with degH ui = degH vi = 3 for 1 ≤ i ≤ k− 3. The graph G is obtained from H by adding the pendant edge
uu′ at u and the pendant edge vv′ at v. This graph is shown in Figure 3.2 for k = 6. Since {u, v} is a total dominating set
of G, it follows that γt(G) = 2. It remains to show that γpt(G) = k.

v’

v

u

51

41

3 3 2 32 2

u’

Figure 3.2: A graph G with γt(G) = 2 and γpt(G) = 6.

Let S = {v, u, u′, u1, u2, . . . , uk−3}. Then

σS(x) =



1 if x = u′ or x = v′

2 if x = ui where 2 ≤ i ≤ k − 3

3 if x = vi where 2 ≤ i ≤ k − 3

k − 2 if x = v

k − 1 if x = u.
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Since S is a proper total dominating set ofG, it follows that γpt(G) ≤ |S| = k. Next, we show that γpt(G) ≥ k. Assume, to the
contrary, that γpt(G) ≤ k−1. Let T be a proper total dominating set ofG. Since each of u and v is adjacent to an end-vertex
of G, it follows that u, v ∈ T . For 1 ≤ i ≤ k − 3, the vertices ui and vi are adjacent twins of G and so exactly one of ui and
vi belongs to T by Observation 3.2. We may assume that ui ∈ T for 1 ≤ i ≤ k − 3. Thus, A = {u, u′, u1, u2, . . . , uk−3} ⊆ T .
Since σT (u) = σT (v) = k − 2, it follows that A ⊂ T . Hence, |T | ≥ k and so γpt(G) ≥ k. Therefore, γpt(G) = k.

We saw that there is a graph G such that γpt(G) = k and γt(G) = k − 1 for k = 3. We now show that there is such a
graph when k ≥ 4 as well.

Proposition 3.4. For each integer k ≥ 4, there exists a connected graph G such that γt(G) = k − 1 and γpt(G) = k.

Proof. Let H = K1,k−1 be the star of order k ≥ 4, where V (H) = {v0, v1, v2, . . . , vk−1} with deg v0 = k − 1. The graph G is
constructed from H by adding

(
k−1
2

)
+ 1 vertices u0 and ui,j , where 1 ≤ i < j ≤ k − 1, the edge u0v0, and the edges ui,jvi

and ui,jvj for all i, j with 1 ≤ i < j ≤ k− 1. Thus, G has order
(
k
2

)
+ 2 and size (k− 1)2 + 1. This is illustrated in Figure 3.3

for k = 4 and k = 5, where the H = K1,k−1 is drawn in bold. We show that γpt(G) = k and γt(G) = k − 1.

Figure 3.3: Graphs constructed from H = K1,k−1 for k = 4, 5.

First, we show that γpt(G) = k. Let S = V (H). Then

σS(v) =


k − 1 if v = v0

1 if v = vi where 0 ≤ i ≤ k − 1

2 if v = ui,j where 1 ≤ i < j ≤ k − 1.

Since σS(x) 6= σS(y) for every two adjacent vertices x and y, it follows that S is a proper total dominating set of G and so
γpt(G) ≤ |S| = k. Assume, to the contrary, that there is a proper total dominating set T of G where |T | ≤ k−1. Necessarily,
v0 ∈ T . Suppose that vi /∈ T for some integer i with 1 ≤ i ≤ k − 1, say v1 /∈ T . Since σT (ui,j) ≥ 1 for 1 ≤ i < j ≤ k − 1, it
follows that T = {v0, v2, v3, . . . , vk−1}. However then, σT (v1) = σT (u1,2) = 1, which is impossible. Therefore, γpt(G) ≥ k and
so γpt(G) = k.

Next, we show that γt(G) = k−1. Since {v0, v1, v2, . . . , vk−2} is a total dominating set ofG, γt(G) ≤ k−1. Let S be a total
dominating set of G. Necessarily, v0 ∈ S. Suppose that two of the vertices v1, v2, . . . , vk−2 do not belong to S, say v1, v2 /∈ S.
Then u1,2 is not totally dominated by any vertex of S. Thus, S must contain at least k− 2 of the vertices v1, v2, . . . , vk−1 and
so γt(G) ≥ k − 1. Therefore, γt(G) = k − 1.

Not only for each integer k ≥ 3 is there a graph G such that γpt(G) = 2 and γt(G) = k, for each integer k ≥ 4 there is a
graph G such that γpt(G) = 3 and γt(G) = k.

Proposition 3.5. For each integer k ≥ 4, there is a connected graph G such that γt(G) = 3 and γpt(G) = k.

Proof. By Proposition 3.4, there is a connected graph G with γt(G) = 3 and γpt(G) = 4. The graph G of in Figure 3.4 has
γt(G) = 3 and γpt(G) = 5. Thus, we may assume that k ≥ 6.

2

1 1

43

2

1

Figure 3.4: A graph G with γt(G) = 3 and γpt(G) = 5.
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Let H be the graph constructed in the proof of Proposition 3.3, that is, H = K2 ∨ (k − 3)K2 is the join of K2 and
(k − 3)K2, where V (H) = {u, v} ∪ {ui, vi : 1 ≤ i ≤ k − 3} and uv ∈ E(H) with degH u = degH v = 2k − 5 and uivi ∈ E(H)

with degH ui = degH vi = 3 for 1 ≤ i ≤ k − 3. Let F be the graph obtained from H by adding the pendant edge uu′ at u
and the pendant edge vv′ at v. As in the proof of Proposition 3.3, γt(F ) = 2 and γpt(F ) = k. We now construct a graph G

from F by subdividing the edge uv in F exactly once, denoting the resulting new vertex of degree 2 by w, and then adding
the pendant edge ww′ at w. Since {u, v, w} is the unique minimum total dominating set of G, it follows that γt(G) = 3.

It remains to show that γpt(G) = k. Necessarily, every proper total dominating set must contain u, v, and w. For each
integer i with 1 ≤ i ≤ k − 3, the vertices ui and vi are adjacent twins of G and so exactly one of ui and vi belongs to every
proper total dominating set by Observation 3.2. Thus, γpt(G) ≥ k. For the set S = {u, v, w} ∪ {ui : 1 ≤ i ≤ k − 3}, it follows
that

σS(x) =



1 if x ∈ {u′, v′, w′}
2 if x = w or x ∈ {ui : 1 ≤ i ≤ k − 3}

3 if x ∈ {vi : 1 ≤ i ≤ k − 3}

k − 2 if x ∈ {u, v}.

Since σS(x) 6= σS(y) for every two adjacent vertices x and y, it follows that S is a proper total dominating set of G. Thus,
γpt(G) ≤ |S| = k and so γpt(G) = k.

We are now prepared to determine all pairs a, b of integers with 2 ≤ a ≤ b that are realizable as the total domination
number and the proper total domination number, respectively, of some graph.

Theorem 3.1. For each pair a, b of integers with 2 ≤ a ≤ b, there exists a connected graph G such that γt(G) = a and
γpt(G) = b if and only if (1) a ∈ {2, 3, 4} and b ≥ a+ 1 or (2) 5 ≤ a ≤ b.

Proof. First, suppose thatG is a graph such that γt(G) = a and γpt(G) = b. If a ∈ {2, 3, 4}, then b ≥ a+1 by Observation 3.1
and Proposition 3.1 and so (1) holds. Since a ≤ b, it follows that (2) hold if a ≥ 5. Thus, it remains to verify the converse.
By Propositions 3.3 and 3.5, we may assume that a ≥ 4. By Propositions 3.4 and 3.2, we may further assume that
a ≥ 4 and b ≥ a + 2. We construct a connected graph G for which γt(G) = a and γpt(G) = b. Let F be the corona of
the complete bipartite graph K2,a−2 with partite sets U = {u, v} and W = {w1, w2, . . . , wa−2} and let H = (b − 2)K2 with
V (H) = {ui, vi : 1 ≤ i ≤ b − a} where uivi ∈ E(H). Let G be the graph obtained from F and H joining u and v to every
vertex of H. This is illustrated in Figure 3.5 for (a, b) = (4, 6) and (a, b) = (5, 7). Since V (K2,a−2) = U ∪W is the unique
minimum total dominating set of G, it follows that γt(G) = a.
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Figure 3.5: Graphs G with γt(G) = a and γpt(G) = b, where (a, b) = (4, 6) or (a, b) = (5, 7).

It remains to show that γpt(G) = b. Let S be a proper total dominating set of G. Since each vertex in U ∪W is adjacent
to an end-vertex of G, it follows that U ∪W ⊆ S. For 1 ≤ i ≤ b − a, the vertices ui and vi are adjacent twins of G and so
exactly one of ui and vi belongs to S by Observation 3.2. Thus,

|S| ≥ |U ∪W |+ (b− a) = b.

Consequently, γpt(G) ≥ b.
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Now, let S = U ∪W ∪ {ui : 1 ≤ i ≤ b− a}. Thus, |S| = b. Then

σS(x) =



1 if deg x = 1

2 if x = wi for 1 ≤ i ≤ a− 2 or x = ui for 1 ≤ i ≤ b− a

3 if x = vi for 1 ≤ i ≤ b− a

b− 2 if x = u or x = v.

Since σS(x) 6= σS(y) for every two adjacent vertices x and y, it follows that S is a proper total dominating set of G. Thus,
γpt(G) ≤ b and so γpt(G) = b.
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