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Abstract

Based on the level index, a Wiener-like topological index proposed by Balaji and Mahmoud [J. Appl. Probab. 54 (2017),
701–709], we define the level matrix and study the level energy and the level characteristic polynomial of rooted trees.
We establish relations between the level matrix and the usual distance matrix. We also determine various bounds on the
level energy and calculate the level energy for specific tree families. Moreover, we provide an explicit expression of the
level characteristic polynomial of the so-called rooted double stars and rooted binary caterpillars. Finally, we propose (and
provide evidence to support) a conjecture that the rooted path maximises the level energy among all trees with a given
number of vertices.
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1. Introduction

Topological indices are numerical graph invariants aimed at describing characteristics of the underlying molecular struc-
tures. The first topological index is distance-based and was introduced by Wiener in 1947 [14]. The distances between
the vertices of graphs can be shown with a matrix, which is called the distance matrix. Moreover, the sum of the absolute
values of the eigenvalues of the distance matrix is known as the distance energy. The distance energy was introduced by
Indulal, Gutman, and Vijaykumar, who computed the distance energy of graphs with a diameter of two [8], and several
bounds were obtained in [3, 7, 9, 10] thereafter. More details about the distance spectra of graphs can be found in the
survey [1,4].

The level index, a Wiener-like topological index, was proposed by Balaji and Mahmoud for rooted trees in 2017 [2].
The authors introduced the level index for statistical investigations and used it as a measure of disparity/balance within
a rooted tree.

In this paper, we build from the level index by defining the level matrix and studying the level energy and the level
characteristic polynomial of rooted trees. We also obtain some relations between the level matrix and the distance matrix
of rooted trees. Moreover, we establish bounds on the level energy and calculate the level energy of some classes of rooted
trees. Finally, we compute the level characteristic polynomial of the so-called rooted binary caterpillars, also known as
binary Gutman trees or binary benzenoid trees in chemical graph theory [5].

In Section 2, we introduce some preliminaries regarding the distance matrix of connected graphs and the level index of
rooted trees. Thereafter, we build the level matrix from the level index and provide basic illustrations. The remainder of
this paper is devoted to the study of the level energy and level characteristic polynomial. In Subsection 3.1, we establish
various bounds on the level energy of rooted trees, while we examine the level characteristic polynomial in specific tree
classes, such as all rooted versions of stars, so-called rooted double stars and rooted binary caterpillars in Subsection 3.2.
Finally, we conjecture that the rooted path has the maximum level energy among all trees, given the number of vertices,
and conclude with some remarks.
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2. Preliminaries

We consider only simple, connected, and undirected graphs. A graph G consists of a vertex set V (G) and an edge set E(G).
The notation d(u, v) is used to represent the distance between two vertices u and v in a graph.

Definition 2.1 (see [8]). Let G be a connected graph and let its vertices be labelled as v1, v2, ..., vn. The distance matrix of
G is defined as the square matrix D = D(G) = [dij ] where dij is the distance between vertices vi and vj in G.

Definition 2.2 (see [8]). The eigenvalues of the distance matrix D(G) are denoted by λ1, λ2, . . . , λn and are called the
D-eigenvalues of G.

Since the distance matrix is symmetric, its eigenvalues are real and can be ordered as λ1 ≥ λ2 ≥ · · · ≥ λn.

Definition 2.3 (see [8]). The distance energy ED = ED(G) of a graph G is defined as

ED(G) =

n∑
i=1

|λi| .

Definition 2.4. Let T be a rooted tree and let its vertices be labelled as v1, v2, ..., vn. The level of v ∈ V (T ) is the distance
from the root of T to v. The level matrix of T is defined as the square matrix L = L(T ) = [lij ] where lij is the absolute value
of the levels’ difference of vertices vi and vj in T .

Some basic properties of the level matrix are immediate: it is clearly always a symmetric matrix, and the diagonal
entries are all equal to 0. The eigenvalues of the level matrix L(T ) are called the L-eigenvalues of T .

Definition 2.5 (see [2]). The level index of a rooted tree T , denoted by LI(T ), is given by:

LI(T ) =
∑

1≤i<j≤n

|li(T )− lj(T )| ,

where li(T ) shows the level of the vertex vi in T .

The level of a most distant vertex of T is called the maximum level and we denote it by lmax. We can define the level
energy and the level characteristic polynomial as follows.

Definition 2.6. The level energy EL = EL(T ) of a rooted tree T is defined as

EL(T ) =

n∑
i=1

|λi| ,

where λ1, λ2, . . . , λn are the L-eigenvalues of T .

Figure 2.1: A rooted tree T .

For example, consider the tree shown in Figure 2.1 whose root is the black vertex. The level matrix of T is given as
follows:

L(T ) =


0 1 1 2 2 2
1 0 0 1 1 1
1 0 0 1 1 1
2 1 1 0 0 0
2 1 1 0 0 0
2 1 1 0 0 0

 ,

and the level index of T is computed by

LI(T ) =
1

2

6∑
i=1

6∑
j=1

lij = 14 .
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Before stating the main theorems of the paper, we also have to report on some important results about distance matrix,
distance energy, and determinant of block matrices.

Lemma 2.1 (see [8]). Let G be a connected n-vertex graph and let λ1, λ2, . . . , λn be its D-eigenvalues. Then
n∑

i=1

λi = 0 and
n∑

i=1

λ2i = 2
∑

1≤i<j≤n

d2ij .

Lemma 2.2 (see [8]). Let G be a connected n-vertex graph and 4 be the absolute value of the determinant of the distance
matrix D(G). Then √

2
∑

1≤i<j≤n

d2ij + n(n− 1)4 2
n ≤ ED(G) ≤

√
2n

∑
1≤i<j≤n

d2ij .

Lemma 2.3 (see [9]). If G is a connected graph with n vertices, then√
n(n− 1) ≤ ED(G) .

Lemma 2.4 (see [12]). Let A,B,C,D be square matrices of the same order, and M =

(
A B
C D

)
be a block matrix such that

CD = DC. Then det(M) = det(AD −BC).

3. Main results

In this section, we give several properties of the level energy and compute the level characteristic polynomial of stars,
double stars, and binary caterpillars. We also formulate a conjecture on a rooted tree with a prescribed number of vertices
that maximises the level energy. To begin with, we first establish further intermediate results that are crucial to proving
our main theorems.

By a rooted path, we mean a path whose root is one of the end vertices. The n-vertex rooted path is denoted by Pn.

Lemma 3.1. Let T be a rooted tree but not a rooted path. Then

det(L(T )) = 0 .

Proof. If T is a rooted path, then there is only one vertex on each level. Therefore, differences between the levels can be
computed as distances between the vertices. Thus, we get

L(Pn) = D(Pn).

If T is a rooted tree different from a rooted path, then there are two vertices with the same level. This means that two
rows of the matrix L(T ) are identical and we obtain that det(L(T )) = 0.

The Wiener index of a connected graphG is the sum of distances between all unordered pairs of vertices ofG. Lemma 3.2
below shows, in particular, that the level index of a tree never exceeds its Wiener index and that the two indices coincide
only for the rooted path.

Lemma 3.2. Let T be a rooted tree. The following relation is attained between the entries lij and dij of L(T ) and D(T ):

lij ≤ dij .

Equality holds if and only if vertices vi and vj are on the same path from the root of T . In particular, LI(T ) < W (T ) for
T 6= Pn.

Proof. If vertex vi and vertex vj are on the same path from the root of T , then lij = |li(T )− lj(T )| is precisely the distance
between vi and vj .

If vi and vj are not on the same path from the root of T , then let u be the last vertex on the common subpath from the
root (possibly, u can coincide with the root of T ): in this case, we have

li(T )− lj(T ) = d(vi, u)− d(vj , u) and dij = d(vi, u) + d(vj , u) .

Therefore, we get lij = |li(T ) − lj(T )| < dij since none of the vertices vi and vj coincides with u. Now, it is clear that
LI(T ) ≤W (T ) with equality only for the rooted path.
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Lemma 3.3. Let T be a rooted tree. The following relation is attained between entries lij and dij of L(T ) and D(T ):

dij ≤ li + lj .

Proof. The connected components that remain upon deletion of the root of T are called the branches of T . If vi and vj

are in different branches of T , then dij is computed by sum of the distances from the root to the vertices vi and vj , i.e.
dij = li + lj . If vi and vj are in the same branch of T , it is clear that dij ≤ li + lj .

By tr(M) we mean the trace of a square matrix M . We obtain an analogue of Lemma 2.1 for the level matrix.

Lemma 3.4. Let T be a rooted tree and let λ1, λ2, . . . , λn be the L-eigenvalues of T . Then
n∑

i=1

λi = 0 and
n∑

i=1

λ2i = 2
∑

1≤i<j≤n

l2ij .

Proof. We have
n∑

i=1

λi = tr(L(T )) =

n∑
i=1

lii = 0 .

A (i, i)-component of L(T )2 equals
n∑

j=1

lij lji =

n∑
j=1

l2ij .

Thus, we get
n∑

i=1

λi
2 = tr(L(T )2) =

n∑
i=1

n∑
j=1

l2ij = 2
∑

1≤i<j≤n

l2ij .

3.1. Bounds on the level energy
In what follows, we consistently assume n > 1. Our first main theorem on the level energy states as follows.

Theorem 3.1. Let T be an n-vertex rooted tree and4 be the absolute value of the determinant of the level matrix L(T ). Then√
2

∑
1≤i<j≤n

l2ij + n(n− 1)4 2
n ≤ EL(T ) ≤

√
2n

∑
1≤i<j≤n

l2ij .

In particular, the inequality

EL(Pn) ≥
√

2
∑

1≤i<j≤n

l2ij + n(n− 1)
(
(n− 1)2n−2

) 2
n

holds.

Proof. The upper bound can be established by the Cauchy-Schwartz inequality together with Lemma 3.4:(
n∑

i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
. (1)

Put ai = 1 and bi = |λi| in (1) to obtain (
n∑

i=1

|λi|

)2

≤ n
n∑

i=1

λi
2 ,

which is equivalent to
EL(T )2 ≤ 2n

∑
1≤i<j≤n

l2ij .

The lower bound on the level energy is computed as follows:

EL(T )2 =

(
n∑

i=1

|λi|

)2

≥
n∑

i=1

λi
2 = 2

∑
1≤i<j≤n

l2ij .
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If T is not a rooted path, then 4 = 0 (see Lemma 3.1) and we are done. If T is a rooted path, then T = Pn and
L(Pn) = D(Pn) (see the proof of Lemma 3.1). Thus, EL(Pn) = ED(Pn). Furthermore, a result by Graham and Pollack [6]
implies ∆ = (n− 1)2n−2. By virtue of Lemma 2.2, we conclude that

EL(Pn) = ED(Pn) ≥
√

2
∑

1≤i<j≤n

l2ij + n(n− 1)
(
(n− 1)2n−2

) 2
n .

To the best of our knowledge, no one knows a neat formula for ED(Pn), although ED(Pn) ≈ 0.69482n2 − 0.7964 seems to
hold [1]. Our next result shows an inequality between the level energy and the distance energy.

Theorem 3.2. Let T be a rooted tree with n vertices and with maximum level lmax. Then

EL(T ) ≤ lmax

√
nED(T ).

Proof. We know an upper bound on level energy from Theorem 3.1 as

EL(T ) ≤
√

2n
∑

1≤i<j≤n

l2ij .

The difference between the levels of any two vertices of T satisfies

lij = |li − lj | ≤ lmax

with equality if and only if one of the vertices vi and vj is the root and another is the most distant from the root. Thus, we
get √

2n
∑

1≤i<j≤n

l2ij ≤
√

2n
∑

1≤i<j≤n

l2max ≤ lmax

√
2n
n(n− 1)

2
≤ lmax

√
nED(T )

since
√
n(n− 1) ≤ ED(T ) by Lemma 2.3.

In the next theorem, we derive another upper bound on the level energy of a rooted tree with n vertices as well as of
the rooted path with n vertices.

Theorem 3.3. Let T be a rooted tree on n vertices. Then

EL(T ) ≤
√

2n
∑

1≤i<j≤n

d2ij and EL(Pn) ≤
√
n5 − n3

6
.

If the first equality holds, then T = Pn.

Proof. Using Theorem 3.1 and Lemma 3.2, we obtain

EL(T ) ≤
√

2n
∑

1≤i<j≤n

l2ij ≤
√

2n
∑

1≤i<j≤n

d2ij

with the second equality holding only if L(T ) = D(T ), i.e. if T = Pn. For the rooted path Pn, we have

∑
1≤i<j≤n

d2ij =

n∑
i=1

i(n− i)2 = n2
n−1∑
i=1

i− 2n

n−1∑
i=1

i2 +

n−1∑
i=1

i3

= n2
n(n− 1)

2
− 2n

n(n− 1)(2n− 1)

6
+
n2(n− 1)2

4
=
n4 − n2

12
.

It follows that
EL(Pn) ≤

√
n5 − n3

6
.

It is known that the path maximises the distance energy among all trees with a given number of vertices. Since
EL(Pn) = ED(Pn), we can formulate the following.

Conjecture 3.1. If T is a rooted tree with n vertices, then

EL(T ) ≤ EL(Pn) .
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Figure 3.1: The rooted star S6.

3.2. Level characteristic polynomials of some rooted trees
The identity matrix of order n is denoted by In. By a rooted star, we mean a star whose root is the central vertex. The
n-vertex rooted star is denoted by Sn. We show in Figure 3.1 the rooted star with 6 vertices.

Theorem 3.4. The level energy of the rooted star Sn is given by:

EL(Sn) = 2
√
n− 1 .

Proof. We obtain the level matrix and the characteristic matrix of the rooted star Sn as follows:

L(Sn) =


0 1 1 · · · 1
1 0 0 · · · 0
1 0 0 · · · 0
...

...
... . . . ...

1 0 0 · · · 0

 , det(λIn − L(Sn)) =

∣∣∣∣∣∣∣∣∣∣∣

λ −1 −1 · · · −1
−1 λ 0 · · · 0
−1 0 λ · · · 0
...

...
... . . . ...

−1 0 0 · · · λ

∣∣∣∣∣∣∣∣∣∣∣
.

Since L(Sn) has rank 2, then there are only two non-zero eigenvalues. Moreover, we note that L(Sn) is the same as the
adjacency matrix of Sn. Therefore,

ϕ(λ) = λn−2(λ2 − (n− 1)) and λ1,2 = ±
√
n− 1 ,

implying that EL(Sn) = 2
√
n− 1.

Denote by Rn the n-vertex star rooted at one of its non-central vertices, see Figure 3.2.

Figure 3.2: The star R6.

Theorem 3.5. The level characteristic polynomial of Rn is given by:

ϕ(λ) = λn−3
(
λ3 + (−5n+ 9)λ− 4n+ 8

)
.

Proof. We obtain the level matrix and the level characteristic matrix of Rn as follows:

L(S) =


0 1 2 · · · 2
1 0 1 · · · 1
2 1 0 · · · 0
...

...
... . . . ...

2 1 0 · · · 0

 and det(λIn − L(S)) =

∣∣∣∣∣∣∣∣∣∣∣

λ −1 −2 · · · −2
−1 λ −1 · · · −1
−2 −1 λ · · · 0
...

...
... . . . ...

−2 −1 0 · · · λ

∣∣∣∣∣∣∣∣∣∣∣
.

We can compute the determinant of the characteristic matrix of L(S) by adding minus two times of the second row to the
first row, giving us

det(λIn − L(Rn)) = det


λ+ 2 −2λ− 1 0 · · · 0
−1 λ −1 · · · −1
−2 −1 λ · · · 0
...

...
... . . . ...

−2 −1 0 · · · λ

 .
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Next, we compute the determinant with respect to the first row:

det(λIn − L(Rn)) = (λ+ 2)det


λ −1 −1 · · · −1
−1 λ 0 · · · 0
−1 0 λ · · · 0
...

...
... . . . ...

−1 0 0 · · · λ

+ (2λ+ 1)det


−1 −1 −1 · · · −1
−2 λ 0 · · · 0
−2 0 λ · · · 0
...

...
... . . . ...

−2 0 0 · · · λ

 .

We notice that the matrix in the first term equals the characteristic matrix of L(Sn−1). Moreover, we can subtract the
second row from all the remaining rows in the matrix of the second term. This yields

det(λIn − L(Rn)) = (λ+ 2)det(λIn − L(Sn−1)) + (2λ+ 1)det


−1 −1 −1 · · · −1
−2 λ 0 · · · 0
0 −λ λ · · · 0
...

...
... . . . ...

0 −λ 0 · · · λ

 .

It follows that ϕ(λ) = (λ+ 2)λn−3(λ2 − (n− 2)) + (2λ+ 1)(−λn−2 − 2(n− 2)λn−3) = λn−3(λ3 + (−5n+ 9)λ− 4n+ 8).

By the rooted double star, we mean the tree DSn rooted at vertex v1 and depicted in Figure 3.3.

v2 v3 vn−1

v1

u1 u2 un

vn

Figure 3.3: The rooted double star DSn.

Theorem 3.6. The level characteristic polynomial of DSn is given by: ϕ(λ) = λ2n−3
(
λ3 − (n2 + 4n− 1)λ− 4n2 + 4n

)
.

Proof. The level matrix of DSn can be given in the following block form:

v1 v2 · · · vn u1 u2 · · · un
v1 0 1 · · · 1 2 2 · · · 2
v2 1 0 · · · 0 1 1 · · · 1
...

...
... . . . ...

...
... . . . ...

vn 1 0 · · · 0 1 1 · · · 1
u1 2 1 · · · 1 0 · · · · · · 0

u2
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

un 2 1 · · · 1 0 · · · · · · 0

.

Thus, the level characteristic polynomial of DSn is the determinant of the following matrix in block form:

λ −1 −1 · · · −1 −1 −2 · · · · · · · · · −2
−1 λ 0 · · · 0 0 −1 · · · · · · · · · −1
... 0

. . . . . . . . . ...
...

...
...

...
...

...
... . . . . . . . . . ...

...
...

...
...

...

−1 0 · · ·
. . . λ 0

...
...

...
...

...
−1 0 0 · · · 0 λ −1 · · · · · · · · · −1
−2 −1 −1 · · · −1 −1 λ 0 · · · · · · 0
...

...
...

...
...

... 0
. . . . . . . . . ...

...
...

...
...

...
...

... . . . . . . . . . ...
...

...
...

...
...

...
... . . . . . . . . . 0

−2 −1 −1 · · · −1 −1 0 · · · · · · 0 λ

:=
A B
BT λIn

.
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We apply Lemma 2.4 to obtain det(λI2n − L(DSn)) = det(λA−BBT ) . On the other hand, we have

BBT =


4n 2n · · · 2n
2n n · · · n
...

... . . . ...
2n n · · · n


and

λA−BBT =



λ2 − 4n −λ− 2n · · · · · · · · · · · · −λ− 2n
−λ− 2n λ2 − n −n · · · · · · · · · −n

... −n λ2 − n −n · · · · · · −n

...
... −n

. . . . . . . . . ...
...

...
... . . . . . . . . . ...

...
...

... . . . . . . . . . −n
−λ− 2n −n −n · · · · · · −n λ2 − n


.

In order to compute the determinant of this matrix, we perform some elementary row and column operations. First, we
add all the remaining rows to the first row to obtain the following matrix:

λ2 + (1− n)λ− 2n2 − 2n λ2 − λ− n2 − n · · · · · · · · · · · · λ2 − λ− n2 − n
−λ− 2n λ2 − n −n · · · · · · · · · −n

... −n λ2 − n −n · · · · · · −n

...
... −n

. . . . . . . . . ...
...

...
... . . . . . . . . . ...

...
...

... . . . . . . . . . −n
−λ− 2n −n −n · · · · · · −n λ2 − n


.

Next, we subtract the second column from every other column to obtain the equivalent matrix:

(2− n)λ− n2 − n λ2 − λ− n2 − n 0 · · · · · · · · · 0
−λ2 − λ− n λ2 − n −λ2 · · · · · · · · · −λ2
−λ− n −n λ2 0 · · · · · · 0

...
... 0

. . . . . . . . . ...
...

...
... . . . . . . . . . ...

...
...

... . . . . . . . . . 0
−λ− n −n 0 · · · · · · 0 λ2


.

Next, we expand the determinant with respect to the first row. This gives us:

(
(2− n)λ− n2 − n

)
det



λ2 − n −λ2 · · · · · · · · · −λ2
−n λ2 0 · · · · · · 0
... 0

. . . . . . . . . ...
...

... . . . . . . . . . ...
...

... . . . . . . . . . 0
−n 0 · · · · · · 0 λ2



−
(
λ2 − λ− n2 − n

)
det



−λ2 − λ− n −λ2 · · · · · · · · · −λ2
−λ− n λ2 0 · · · · · · 0

... 0
. . . . . . . . . ...

...
... . . . . . . . . . ...

...
... . . . . . . . . . 0

−λ− n 0 · · · · · · 0 λ2


,
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where each submatrix is of order n− 1. Finally, for each of these submatrices, we add all the remaining rows to the first:

(
(2− n)λ− n2 − n

)
det



λ2 − n(n− 1) 0 · · · · · · · · · 0
−n λ2 0 · · · · · · 0
... 0

. . . . . . . . . ...
...

... . . . . . . . . . ...
...

... . . . . . . . . . 0
−n 0 · · · · · · 0 λ2



−
(
λ2 − λ− n2 − n

)
det



−λ2 − (n− 1)(λ+ n) 0 · · · · · · · · · 0
−λ− n λ2 0 · · · · · · 0

... 0
. . . . . . . . . ...

...
... . . . . . . . . . ...

...
... . . . . . . . . . 0

−λ− n 0 · · · · · · 0 λ2


.

Since these two matrices are triangular, we arrive at:

det(λI2n − L(DSn)) =
(
(2− n)λ− n2 − n

)
λ2(n−2)

(
λ2 − n(n− 1)

)
−
(
λ2 − λ− n2 − n

)
λ2(n−2)

(
− λ2 − (n− 1)(λ+ n)

)
= λ2n−3

(
λ3 − (n2 + 4n− 1)λ− 4n2 + 4n

)
.

This completes the proof of the theorem.

We move our attention to another particular class of rooted trees to which the Gini index was applied in a broader
sense, see [2]. Define Tm to be the rooted tree depicted in Figure 3.4, whose root is v1. This tree belongs to the family of
the so-called rooted binary caterpillars [5].

v1 v2

vm+2 vm+3

vm−1 vm

v2m vm+1

Figure 3.4: The rooted binary caterpillar Tm.

Theorem 3.7. For m > 2, the characteristic polynomial of the rooted tree Tm is given by

ϕ(λ) = (2λ)m−1
(
λ · Cm(λ/2) + Cm+1(λ/2)

)
with

Cn(y) = yn −
n∑

k=2

2k−2(k − 1)
n2(n2 − 1)(n2 − 22) . . . (n2 − (k − 1)2)

k2(k2 − 1)(k2 − 22) . . . (k2 − (k − 1)2)
yn−k .

Proof. According to Lemma 3.1, we assume that λ 6= 0. For every j ∈ {2, 3, . . . ,m}, there are precisely two vertices on
the same level, namely vj and vj+m. The subtree induced by vertices v1, v2, . . . , vm+1 is a path rooted at v1. Thus, the level
matrix of T has the following block decomposition:

v1 v2 · · · vm vm+1 vm+2 vm+3 · · · v2m
v1
v2
... D(Pm+1) B
vm
vm+1

vm+2

vm+3

... A C
v2m
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Denote the rows of this matrix (as well as for the identity matrix I2m) by R1, R2, . . . , R2m in this order, starting from the
first to the last. Then Rj and Rj+m are identical rows of L(Tm) for any j ∈ {2, 3, . . . ,m}.

Now, we subtract Rj from Rj+m in both L(Tm) and I2m; so the rows Rm+2, Rm+3, . . . , R2m in L(Tm) all change to zero
rows, and the corresponding rows in I2m become

0 −1 0 · · · 0 1 0 0 · · · 0 ,
↑

Pos. m+ 2
0 0 −1 0 0 · · · 1 0 · · · 0 ,

↑
Pos. m+ 3

...
0 0 · · · 0 −1 0 0 · · · 0 1 ,

↑ ↑
Pos. m Pos. 2m

respectively. Thus, we have

det
(
xI2m − L(T )

)
= det


xIm+1 −D(Pm+1) −B

0 −x 0 0 · · · 0
0 0 −x 0 · · · 0
...

... . . . . . . . . . ...
0 0 · · · 0 −x 0

xIm−1

 .

Denote the columns of L(Tm) (as well as for I2m) by C1, C2, . . . , C2m in this order, starting from the first to the last. Then
Cj and Cj+m are identical rows of L(Tm) for any j ∈ {2, 3, . . . ,m}. Now, we subtract Cj from Cj+m in the above matrix to
obtain the following matrix: 

xIm+1 −D(Pm+1)

0 0 0 · · · 0
−x 0 0 · · · 0
0 −x 0 · · · 0
... . . . . . . . . . ...
0 · · · 0 −x 0
0 0 · · · 0 −x
0 0 · · · 0 0

0 −x 0 0 · · · 0
0 0 −x 0 · · · 0
...

... . . . . . . . . . ...
0 0 · · · 0 −x 0

2xIm−1



,

which implies that det
(
xI2m − L(Tm)

)
is also the determinant of the above block matrix. On the other hand, the product



1 2 3 · · · m− 1

1 0 0 0 · · · 0

2 −x 0 0 · · · 0

3 0 −x 0 · · · 0
...

... . . . . . . . . . ...
m 0 · · · 0 −x 0

m 0 0 · · · 0 −x

m+ 1 0 0 · · · 0 0


×

(m+ 1)× (m− 1) size


0 −x 0 0 · · · 0
0 0 −x 0 · · · 0
...

... . . . . . . . . . ...
0 0 · · · 0 −x 0


(m− 1)× (m+ 1) size

yields the square matrix 

0 0 0 0 · · · 0
0 x2 0 0 · · · 0
0 0 x2 0 · · · 0
...

... . . . . . . . . . ...
0 0 · · · 0 x2 0
0 0 0 0 · · · 0
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of order m+ 1. It is known (Schur Complement formula) that

det

(
E1 E2

E3 E4

)
= det(E4)det(E1 − E2E

−1
4 E3) ,

provided that E4 is invertible. Applying this formula for x 6= 0, we obtain:

det
(
xI2m − L(Tm)

)
= (2x)m−1det

(
xIm+1 −D(Pm+1)− 1

2
xE
)
,

where E is the (m+ 1)× (m+ 1) matrix defined by

E =



0 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

... . . . . . . . . . ...
0 0 · · · 0 1 0
0 0 0 0 · · · 0


.

Furthermore, we can write

Im+1 −
1

2
E =

1

2
Im+1 +

1

2


1 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · 0
0 · · · 0 1

 :=
1

2
(Im+1 + F ) ,

so that
xIm+1 −D(Pm+1)− 1

2
xE =

1

2
xIm+1 −D(Pm+1) +

1

2
xF ,

where

F =


1 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · 0
0 · · · 0 1

 = e1e
T
1 + em+1e

T
m+1

with

e1 =


1
0
...
0

 and em+1 =


0
...
0
1

 .

Moreover, the matrix determinant lemma gives

det(G+ uvT ) = (1 + vTG−1u)det(G) ,

provided that G is an invertible matrix. A generalisation (see [13]) of this formula to the non-invertible matrices states
that

det(G+ uvT ) = det(G) + vTadj(G)u ,

where adj(G) is the adjugate (transpose of the cofactor matrix) of G. In what follows, we use this formula twice. By setting

Gm+1 =
1

2
xIm+1 −D(Pm+1) +

1

2
xem+1e

T
m+1 ,

and vT = 1
2xe

T
1 , u = e1, we establish that

det
(
xI2m − L(Tm)

)
= (2x)m−1det(Gm+1 + uvT ) = (2x)m−1

(
det(Gm+1) + vTadj(Gm+1)u

)
.

However, adj(Gm+1)u is just the first column of the matrix adj(Gm+1). Consequently, vTadj(Gm+1)u = 1
2xgm+1 with gm+1

being the entry in first row and first column of adj(Gm+1). It follows that

det
(
xI2m − L(Tm)

)
= (2x)m−1

(
det(Gm+1) +

1

2
xgm+1

)
. (2)
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We can get a similar expression for det(Gm+1) by setting

Hm+1 =
1

2
xIm+1 −D(Pm+1), vT =

1

2
xeTm+1, u = em+1 .

This gives us

det(Gm+1) = det(Hm+1 + uvT ) = det(Hm+1) + vTadj(Hm+1)u .

On the other hand, vTadj(Hm+1)u = 1
2xhm+1 with hm+1 representing the entry in last row and last column of adj(Hm+1).

It follows that

det(Gm+1) = det(Hm+1) +
1

2
xhm+1 . (3)

We remark thatHm+1 is the characteristic matrix of the distance matrix of the path Pm+1 evaluated at 1
2x. Now we combine

equations (2) and (3) to obtain:

C
(
L(Tm);x

)
= det

(
xI2m − L(Tm)

)
= (2x)m−1

(
det(Gm+1) +

1

2
xgm+1

)
= (2x)m−1

(
det(Hm+1) +

1

2
xhm+1 +

1

2
xgm+1

)
.

for all x 6= 0, where C(M ; y) denotes the characteristic polynomial of a matrix M evaluated at y. Fortunately, Hosoya,
Murakami, and Gotoh [7] computed that

det(Hn) = C
(
D(Pn); y

)
= yn −

n∑
k=2

2k−2(k − 1)
n2(n2 − 1)(n2 − 22) . . . (n2 − (k − 1)2)

k2(k2 − 1)(k2 − 22) . . . (k2 − (k − 1)2)
yn−k .

Furthermore, we note that the (m+1,m+1)-cofactor ofHm+1 is also the determinant of the matrixHm, i.e. hm+1 = det(Hm).
Similarly, the (1, 1)-cofactor of Gm+1 is also the determinant of the matrix 1

2xIm−D(Pm) = Hm, not that of the matrix Gm.
Thus, gm+1 = det(Hm). Putting everything together, we arrive at

C
(
L(Tm);x

)
= (2x)m−1

(
det(Hm+1) +

1

2
xhm+1 +

1

2
xgm+1

)
= (2x)m−1

(
det(Hm+1) +

1

2
xdet(Hm) +

1

2
xdet(Hm)

)
= (2x)m−1

(
x · C

(
D(Pm);

1

2
x
)

+ C
(
D(Pm+1);

1

2
x
))
.

This completes the proof of the theorem.

4. Conclusion

There are many open problems concerning the level matrix [2]. Some of them are studied in this paper. Naturally, the
extremal trees in the set of rooted trees with a given number of vertices deserve to be determined. We have conjectured
that the rooted path Pn maximises the level energy, which is an analogue of the distance energy result among n-vertex
trees. We know that the level energy of Pn coincides with its distance energy. Ruzieh and Powers [11] provided in 1990
formulas for all the eigenvalues of the distance matrix of paths. However, these formulas are implicit and can only be
approximated.

As for the case of the Wiener index, it is not difficult to see that the rooted star (respectively, rooted path) uniquely
minimises (respectively, maximises) the level index among all trees with a prescribed number of vertices. In this paper,
we have shown that the Wiener index furnishes a sharp upper bound for the level index. It is natural to ask whether there
is a similar lower bound that uses other tree invariants.

Given that we have established the level characteristic of the rooted binary caterpillar as a function of the distance
characteristic polynomial of paths, we wonder whether a similar explicit formula can be obtained for the general case
where the caterpillar is formed by attaching the central vertex of Sn to every vertex of a path, see [2].

On the other hand, in chemistry, the electrons of atoms are located on the orbits with respect to their energy levels.
Energy levels are related to atomic orbital theory. Therefore, it can be more suitable to find relations between the energy
levels of electrons and the level energy of rooted trees.
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