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Abstract

In this paper, new inequalities related to the Berezin norm and Berezin radius of functional Hilbert space operators are
established. The main inequalities are derived by utilizing a mapping that was recently introduced by Stojiljkovié and
Dragomir.
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1. Introduction

A functional Hilbert space (shortly FHS) is a Hilbert space % = H(O) of complex-valued functions on some set O such that
the evaluation functionals ¢ (f) = f(7), 7 € O, are continuous on H and for every 7 € O there exists a function f, € H such
that f,(7) # 0 (or, equivalently, there is no 7y € O such that f(7y) = 0 for all f € H). The Riesz representation theorem
guarantees the existence of a unique element %, for each 7 € O, such that f(7) = (f, k;) holds for every f in #. The set
{k; : 7 € O} is referred to as the reproducing kernel of #. The function

K, = HZTH, with 7 € O,

is called the normalized reproducing kernel of . A detailed presentation of the theory of reproducing kernels and FHSs is
given in [1]. Reproducing kernels play an important role in many branches of mathematics; for instance, see Jorgensen’s
book [16].

Let B (H) denote the collection of all bounded linear operators defined on a complex Hilbert space H with the identity
operator 14 in B(#). The absolute value of a positive operator P is denoted by |P| = (P*P)%. For a bounded linear operator
P on H (i.e., for P € B(H)), its Berezin symbol P is defined (see [7,17]) on O by

P(7) := (PK.(2), K.(2)), T € O.

In other words, the Berezin symbol P is a function on O defined by restriction of the quadratic form (Pz,z) with z € # to
the subset of all normalized reproducing kernels of the unit sphere in #. It is clear from the Cauchy-Schwarz inequality
that P is the bounded function on O whose values lie in the numerical range of the operator P. So, the Berezin radius
ber(P) and the Berezin set Ber(P) of operator P are defined respectively by

ber(P) := sup {‘]3(7)’ iTE O} and Ber(P) := {P(7) : 7 € O}.

It is obvious that ber(P) < w(P) < ||P|| and ber(P) C W(P), where w(P) denotes the numerical radius and W (P) is the

numerical range of operator P. Moreover, the Berezin radius of an operator P; satisfies the following properties:
I. ber (Py) = ber (Py),
IL. ber ((Py) = |¢| ber(P,) for every ¢ € C,

II1. ber(P1 + PQ) < ber(Pl) + ber(Pg) for all P, P e B(H)
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In general, the Berezin radius does not define a norm. However, if  is a functional Hilbert space of analytic functions
(for instance on the unit disc D), then ber(.) defines a norm on B(#(D)). Extensive analysis has already been conducted
on the Berezin symbol, especially with regard to its relationship with Toeplitz and Hankel operators on the Hardy and
Bergman spaces. For example, the Berezin symbol ﬁ, on the Toeplitz operator T}, (y € L>°(D)) on H?*(D) coincides with
the harmonic extension ¢ of the function ¢ into the unit disc D; in particular, if ¢ € H*°(D), i.e., if the symbol function
¢ is a bounded analytic function on D, then ip = . Also, it is well known that the Toeplitz operator on the Bergman
space L?(D) is compact if and only if its Berezin symbol ﬁ, vanishes on the boundary 9D, i.e., if lim,_,, TZO(T) = 0 for
every v € 0D (see [3]). Berezin symbol has extensive applications in a variety of analytical problems and is essential for
uniquely characterizing operators. Readers who are interested in learning more about the Berezin symbol are encouraged
to consult [4,6,8,10-12,18, 19, 23,24] and the comprehensive references provided therein.

The so-called Berezin norm of an operator P € B () is defined as follows:

[Pllper := sup [[PE-] .
T€O

It is obvious that || P||,, determines a new operator norm in B (# (O)). It is also trivial that ber (P) < ||P||,.. < [|IP|l.
Since the family {k, : p € F } is complete in #, it is elementary to verify that || P||ve = 0 if and only if P = 0. Thus, it is
easy to verify that || P||pe shares the properties I-IIT with ber(P), and hence ||.||per is the norm in B(#). Since ber(P) <
w(P) and || P||per < || P||, the inequality ber(P) < || P||ver is in general better than the inequality ber(P) < || P||. A significant

inequality for ber (P) is the power inequality stating that
ber (P™) < ber” (P) (1)
for n = 1,2,...; more generally, if P is not nilpotent, then
Cyber™ (P) < ber (P") < Cyber™ (P),
for some positive constants C; and Cs. Also, It is well known that H2LH <w (P) <|P| and
ber (P) <w (P) <P, ey
for any P € B (#). In 2022, Huban et al. [14, 15] proved the following inequalities:
ber (P) < 2 I1PL+ 1P s < 5 (1Pl + 72115, ®

and )
bex (P) < 5 | |PI"+ P

, Where r > 1.
ber

In [14, Theorem 3.1], Huban et al. significantly improved the upper bound in (2) by demonstrating that if P € B (#), then
ber (P) < 3 121+ 1P yer- @
Another improvement for the inequality (2) was provided by Huban et al. [13, Corollary 3.3.] as
ber® (P) < % [1PE+ 127 6)
which was further improved in [5] by Basaran and Giirdal as
ber? (P) < ¢ [ 1P+ 1P+ Sber (P)IIP]+ Pl ©
It was shown in [13] and [15], respectively, that if P € B (H (O)), then

1 2 2 2 1 2 2
= l|P|” + | P* <b P<7HP + |P* H 7
4H| | |77 ber er()_2 1Pl [P ber @

e

and

. 1 r -
ber” (P) < 5 1P+ 1P| ®)

where r > 1.
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Furthermore, Huban et al. [14, Theorems 3.2 and 3.3] established refinements of (3) and (7), respectively, that can be
presented as

1 _
and
ber”(P) < ||¢ P + (1 =) 1P| (10)
er
where P e B(H),0<¢ <1,andn >1.
Recently, Basaran and Giirdal [5] obtained some inequalities, showing the following for P, P, € B(H):
1 1
ber” (P1) < 75 1P| + [P [l + gPer (P) 1Pt + 1P e (11)
1 *1112 1 *
< g NP+ [P llber + gber (Pu) 1P+ 1P e
and ) )
ber? (P} Py) < G NP + 127 e + her(P3 1) [P+ 1PF 2] - (12)
Bagaran and Girdal [5, Theorem 3.7 and Corollary 3.8] also obtained
-2 ber \/i ber

IN

1 2an *x12(l—a)n
5 1P P

b

ber

forallmn>1and 0 < a,B < 1.
The upper bounds on the Berezin radius that are important to us in the present study also include the one due to Huban
et al. in [13, Theorem 3.11]. If P, P, € B(H) and n > 1, then

1
ber" (B P < 3 1P+ 7, o

The primary aim of the present study is to make several improvements to the Berezin radius inequalities mentioned
above for functional Hilbert space operators.

2. Some preliminary inequalities

To prove our Berezin radius inequalities, we need some existing results.
The Schwarz inequality states that for all vectors 2 and y in an inner product space,

[, ) < |l [y (15)

On the other hand, the classical Schwarz inequality for positive operators reads that if P € B () is a positive operators,
then
|(Pz,y)|* < (Pz,z) (Py,y) (16)

for any x,y € H.
A companion of Schwarz inequality (16) known as Kato’s inequality, or the so-called mixed Cauchy-Schwarz inequality,
was first proposed by Kato [20] in 1952. It states:

(P, y)? < (|PPa,a) ([P P10y, y), a € [0,1] an

for any operator P € B(H) and any x,y € H. In order to generalize this result, Furuta [9] established the following
inequality:
[(PIP|* 7 e, )2 < ([P, 2)(|P* [y, y), (18)

for any z,y € Hand o, 8 € [0,1] with o + 5 > 1.
The following lemma follows from the spectral theorem for positive operators and Jensen’s inequality (see [21]):

Lemma 2.1. Let P € B(#H) and P > 0. Let x € H be any unit vector. Then

(Pr,z)" < (>)(P"z,z), n>1 (ne0,1]). (19)
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The next result is concerned with non-negative convex functions and can be found in [2].

Lemma 2.2. Let f be a non-negative convex function on [0,+00) and Pi, P, € B(H) be positive operators. Then

()<

‘ (20)

Lemma 2.3 (see [22]). Let u,v € H and let n > 1. Let J be a set such that (0,1) C J C R. Let g be a mapping such that
g :J — RT, provided that g(©) + g(1 — ©) = 1. Then

[, 0) 27 < g(©) [[ull ™™ o™ + (1 = ©) [, o)|" [fu]™ o)™ < [l *" [Jo]*" - 2D

3. Main results

Throughout this section, we assume that g : J — RT is a mapping such that g(©) + g(1—©) =1 and (0,1) C J C R, unless
otherwise stated.

Lemma 3.1. If P\, P5, P3, Py € B(H), then
[(PsPsPyPLK -, Kp) [ < (P |Po|* PLK-, Ko ) (Pa| Py [P Py K, Kp). (22)

Proof. If we take u = P, P, K, and v = P; P; K, then we have (u,v) = (P,PsP,P, K., K,), ||[ul|* = (P} |P,|* PLK,, K,) and
|v||> = (P4 |Pf|? P; K,, K,). Now, by utilizing (15), we deduce the desired result. O

The inequality given in the following theorem is a refinement of (22).

Theorem 3.1. If P, P>, P;, Py, € B(H) and n > 1, then

[(PiPsPa P, Kp) [P < g(©)(PY | Po* PLEr, K7)" (Pa| P3P Py K, )"

+9(1— O)(PP PP K, K" (P BPPK, Ky (Pil Py 2P, K,y)
< (PHPRPK, K (PP PP K, Ky (23)
Proof. Let 7,p € O be arbitrary. Elementary calculations show that
|PP K| = (PP K,, P K,) = (Pf P} PP K., K,) = (P}| PP K, K,)
and ||P; P; K, | = (P4|P;|2P; K,, K,). If we take u = P, P, K, and v = P{ P} K, in the inequality (21), we obtain
(PaPLK, P PER) P < g(O) [ PoPUK P | PEPLK P + g(1 — ©)(PaPy K, Py PIE) ™ | PoP | | PP

2n % 7% 2n
S|P PLKC (™ || Py Py K|

and hence
[(PsP3PyPLK -, Kp) [ < g(©)(P|Po* PLE, Kp)™ (Pa| Py | P K, Kp)"
+9(1 = O)(PuPsPaPL K, Kp)|" \%/<PT|P2\2P1K77KT> 3<P4|P§|2PIK;” Kp)
< (PP’ PLK,, K7)™ (Py| PP Py Ky, K)",
as desired. O

We get the inequality (22) by putting n = 1 in (23). Also, the following corollaries are consequences of (23).

Corollary 3.1. If P € B(H), then for «, 8 > 0 with o + 3 > 1, we have

(PP 7 G ) [ < g(O)(| PP Ky, Kp)" (| PHP K, )"

+g(1 — O)[(P|PIH 1K, K\ JPPOK,, Ky (| P*?PK

< (|P]**K., K.)" (|P*|*’K,, K, )" (24)
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Proof. Let P = U|P| be the polar decomposition of the operator P, where U is partial isometry and the kernel
N(U) = N(|P)).
If we take P, = U, P3 = |P|?, P, = I, and P, = |P|® in (23), then after simplification we obtain the desired result. O
The proof of the next corollary is similar to that of Corollary 3.1.
Corollary 3.2. If P € B(H) and «, 8 > 1, then
[(PIPIP~ PP KL Ky [P < g(O)(|PPY KL Kq)" (| P* PP Ky, K"
+g(1 - O)[(PP|P P|PI K, K )" (PP, Ky) (P K, K,)
SIPPOK K™ (PP K, Kp)". (25)
By taking a = f =1 and n = 1 in (25), we obtain
(P, Kp)[* < g(O){| PIPEy, Ko ){| P[P Ky, Kp) + 9(1 = ©)[(P* Ko, Kp) /(| PI2E, Ko)y /([P 2K, Kp)
< A(|PPK,, K )(|P* P Kp, Kp). (26)
Corollary 3.3. If P € B(H) and ~,6 > 0, then
([PIP?|P K, Kp) P < g(O)(|PIP2 K, K)™ (|| PP K, Kp)"
91— ©) (PP PAIPP K, K )" (P K, KL (PP K, K,)
< (|PPF2E KG)" (| PP PE,, Ky)" 27
Next, we derive an inequality involving the Berezin norm.
Lemma 3.2. If P, P,, P;, P, € B(H), then
ber (P P3P Py)? < || PFIPo 2 Py, || Pal P12 P |, s - (28)
Proof. By taking the supremum over 7,p € O in (22), we have
|PyPs PPy |7, = sup [(PAPsPoaPi K, K,)|?
7,p€0
< j;ler)O(Pf‘\PzIQPlKT, Ko )(Pi| P3P P{ K, K)
= fgg<Pf|P2|2P1KT, K,) 21618<P4IP§|2P2‘K197 Kp)
= [ Pr1P PP, ([ Pol P12 PR e
as desired. O
Lemma 3.3. If P\, P, P;, P, € B(H), then
ber” (P P3Py Py) < % H(Pf\PQPPl)” + (PP 2P|
for any n > 1.
Proof. Let 7,p € O be arbitrary. If we take 7 = p in the inequality (22), then we have
(PP Py PR K| < (P IPa P K )P P PP K )
< (Pf|P)*PLK ., K.) 4 (Py|P5|P{ K-, K-)
- 2
< (BRI o) 3 ISP K K»“)”", (29

2
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Now, using the inequality (19), we obtain

(PL|Po|*PL I, Kr)" + (Pa| P3PPI, Ko)™ (PP P)" K, Kor) + ((Pal P *Pr)" Ko, Kr)
2 = 2

<(P1*P2|2P1)" + (P4P§2PI)HKT,KT>~ (30)

2

From the inequalities (29) and (30), we have

P B)2P)" + (PP 2P
|<P4P3P2P1KT,KT>|"S<( HRlP) + (PRSP pe e

2
and
PP 12P)" + (Py| P22 PA)"

wup (PP PP, ) < sup { (PP (PARSPRD) pe e

€0 €0 2
Therefore,

n 1 * n * x\ T
ber (P4P3P2P1)g§H(Pl|P2|2P1) + (PP PY) ,

as desired. O

In the following corollary, we present a number of particular cases of Lemmas 3.2 and 3.3:

Corollary 3.4. (i). If P € B(H),n > 1l and o, 8 > O with a + 8 > 1, then

a+B— 1 an *
ber™ (P|P|"*771) < 5 H\P\Q | P26

ber

1 an *|[2am
5 1P + 1P

ber™ (PP < ;

1
ber 2 ’

and )
ber” (P|P]) < 5 | |PP" + 1P|

(ii). If PeB(H),n > 1land o, B > 1, then

b

_ _ 1
ber” (PIPI* PP < §H|P|20‘"+|P*|25” i

~1\2 1
vt ((p1011)") < et s ],

ber” (P2) < H|P|2” + 1P|

,OZ>1,
er

and

(iii). If P e B(H),n > 1 and § > 0, then

ber™ (P \p*|? P) < % H|P|2" + (P|P*2PPH)"

)
ber

1
ber” (P |p|? P) <3 H|P|2" + (P|P 2 P)"

s
ber

and
ber” (P |P*| P) < %‘|P|2” (P (P1)?)"

9
ber

1
bar (P|P|P) < 5 H\P\Z” P

ber
Theorem 3.2. If P, P,, P3, P, € B(H) and n > 1, then

n/2
ber

ber (P4 P3Py Py)*" gg(@)]|Pf|P2|2P1H’b‘erHP4|P§|2P1 b+ g(1—O)ber (Py P3P Py)" || Py P> Py || || PalPs 1P n/2

<P IR PP, [PPSR @D
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Proof. By taking the supremum in the inequality (23), we have

sup [(PyP3PoP K., K,)|*™ < sup (g(@)<Pf|P22P1KT,KT>" (Py|P;|? P K, K,)"

T,pE0 T,pEO

+ (1~ O)(PPs PP K, K /(P IBPP KL K V<P4|Pg|2PzKp,Kp>)

< supO<Pf\le2P1Kn K" (Py| PSP P K, Kp)", (32)
T,pE

whose simplification yields the left inequality in (31). To obtain the right inequality in (31), we start from the right-hand
side of (32) and apply (28), and then use the properties of the mapping g as well as of the supremum. Hence, we obtain

n/2
ber

n/2

ber (Py P3P Pr)*" < g(©) || Py | P[> Py o

| PA| P52 Py ||, + 9(1 — ©)ber (PoPs Py Py) || P P2 Py | || Pal P 1P Py ||

I
ber

< HPf|P2\2P1 |‘P4|P§\2PI

I I
ber ber ’

as desired. O
We obtain the following result by taking n = 1 in Theorem 3.2:

Corollary 3.5. If P\, P,, P3, Py € B(H), then

ber (PyP3PoPy)? < || Py |Po|2 Py, || Pa|Ps Py

||ber ||ber'

Theorem 3.3. If P, € B(H),n > 2and o € [0, 1], then

ber"™ (Py)

IN

e} e 12n(1l—a 1-6 n an *n(l—a
B2 v s ppepra-er] o S0 Ebert oy 1o+ 1P

ber ber

IN

1
5 |1z Py e (33)

ber '

Proof. Assume that K, € H is a normalized reproducing kernel. By using the inequality (17), the inequality (19) and the
AG-inequality, we have

(PLE-, Ko™ = g(©)[(P K, Ko7)[" + g(1 = ©)[(PLE, Ko )|

m

< 9O Ky, Ko ) (| PPO KL K ) E

+9(1 = O)(PLK, Ko ) |5 (|1 Ky K ) 8 (P PO K K)o

< 9O (yppok, a4 (P PO K, K ))
1O b a8 (P K ) 4 (PO ) )

< IO (P, 1) + (PO K, )
0O b kel (R B 4 1O K )

and
sup (P 16| X2 sup Py 4|y P R )
y 2129 sup (P K B (AU 4 PO K ).

Therefore, we have

g(1—©

(] n
ber"(Pl) < 9(2 ) H|P1|2om + |P1*|2n(17a) + 5 )berf(Pl) H|P1‘om + |P1*|n(1fa)

ber ber '



V. Stojiljkovi¢ and M. Giirdal / Electron. J. Math. 7 (2024) 35-44 42

By using the inequality (9) given by Huban et al. [14, Theorem 3.2] for £ = o, we obtain

C) $12n(l—a 1-06 z an * n(l—a
ver(P) < L ipypon g pppe0=o|| 4 SOty iy ppyr0— |
@ an n «@ 1 OL?’I n (o7
e I e [ L [
2 ber ber
9(9) 2an 2n(l—a) g(l - ®> H 2an x12n(l—a)
<z — ||| P P,
< 2 ippen PPt S ippen )|
1 2an % 2n(l—a)
= — ||| P P,
2 H‘ 1| * | ! | ber
which proves the second inequality in (33). O

We arrive at the following result by takingn =2,9=1,0 € [0,1], and a = % in Theorem 3.3.
Corollary 3.6. If P, € B(H), then

= B + PP, + =—5—ber(P) 1P + [ PY (e

bGI‘(Pl)2

IN

1
5 |||}Dl‘2 + |P1 | Hber

Corollary 3.6 refines the upper bound of the reﬁnement given by Gﬁrdal and Tapdigoglu [12]. Also, we obtain the
following chain of inequalities by putting ¢(0) =©,0 = £, n =2, and a = 1 in (33):

1 1
ber(P;)? |||P1\2 + | Py|? ||ber + gber(Pl) P+ [P | [[per < 3 |||]31|2 + ‘Pl*‘QHber’

which is a refinement of (7) given by Bagaran and Giirdal via (6).

Theorem 3.4. If P;, P, € B(H) and n > 1, then

S 1-0 n * n n
bert" (P P < S 1A o (oo, - S Db p R R+ (P,
1 4in 4an
< 5 1B + 12, - (34)
Proof. Setting P, = I, P; = I, P = P», K; = K, in Theorem 3.1 and using the AG-inequality and the inequality (19), we
obtain
(PSP, )2 < ()PP K (| PoP K I )
+ ol - O) (B P K" YIPPE Ky) YIPPE ;)
< IOV (P K 4 (P K ))
1-© * n n n
+ IO bk I (1P PR K 4 (K )
S}
< IOV (P i, 1) + (P )
1-0 * n n n
+ O b 1) 1 (P K ) + (P K )
and

* n @ n n
sup |(P3 P 1) 2 < SO sup 1y o By, )
T€0 T€0

1-© * n n n
+ L2 s (B3 Py K" (P + P2 K I
TE
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Therefore, we have

9(0)
2

1-06
ber® (1 7)< S 1P+ 1P+ S b () 113+ 1

2

Again, using the inequality (14), the inequality (20) and the convexity of f (z) = 2*, we have

C] 1-06
ber?™(P5 P;) < 79(2 ) H|P1|4”+|P2|4"Hber+7g( 5 )ber”(P;Pl)H|P1|2”+\P2|2”Hber
© 1-06
< 20 ey (2, + L2 R g
© 1-0©
< SZ A 1B e+ L2 0 12
9(9) . . g(1=0) || (2P + 2| Py
=IO g4 2, + LT | (AR A
ber
9(©) 11 1am a9 =) || 2P + 2B
< S 1A + 1P + =5 5 )
© 1-0©
= L NP 1P b 22 1P 4 P,
1
=5 12 + 12,
This completes the proof. O

If we take g = I and © € [0,1] in Theorem 3.4, then we obtain the following result, which was given by Bagaran and
Giirdal [5, Theorem 3.1]:

Corollary 3.7. If P, P, € B(H) and n > 1, then
2n [ p* 9 4an 4n 1-© n( p* 2n 2n
b (P ) < & [IBsp 2, + 25 b (B 1B B,

< 5 1P + 12|

ber

DO | =

The substitutions ¢g(©) =0, © = 1%1’ [ > 0,and n = 1 in Theorem 3.4 yield the next result, which was given by Giirdal
and Tapdigoglu [12, Theorem 3.1].

Corollary 3.8. If P\, P, € B(H), then

1
ber?(Py Py) < 72ber(P2*P1) |[PLI? + | P2 [1Pul* + 1 Pa)? o

|2H + L
20 + ber = 9] 4 9

IN

1
SR+ 17 @5)

4
‘ ||ber '
By taking | = 1 in (35), we obtain the next result, which was given by Bagaran and Giirdal [5].

Corollary 3.9. If P,, P, € B(H), then

ber?(Py Py) < A 12"+ | Py + glocr(P2 P)|||P]? + | P

|4Hber ‘2||ber'
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