Elliptic Sombor index of trees and unicyclic graphs

Zikai Tang, Yunping Li, Hanyuan Deng*

School of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan, China

(Received: 13 February 2024. Received in revised form: 12 March 2024. Accepted: 15 March 2024. Published online: 18 March 2024.)

© 2024 the authors. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

Let $G = G(V,E)$ be a simple connected graph with vertex set V and edge set E. The elliptic Sombor index of G is defined as

$$ESO(G) = \sum_{uv \in E(G)} (d_G(u) + d_G(v)) \sqrt{d_G^2(u) + d_G^2(v)},$$

where $d_G(u)$ denotes the degree of vertex u. In this paper, the maximal value of the elliptic Sombor index of trees with a given diameter or matching number or number of pendent vertices is determined. The extremal values of the elliptic Sombor index of unicyclic graphs are also found. Furthermore, those trees and unicyclic graphs that achieve the obtained extremal values are characterized.

Keywords: elliptic Sombor index; extremal value; tree (graph); unicyclic graph.

2020 Mathematics Subject Classification: 05C05, 05C07, 05C09, 05C35.

1. Introduction

Let G be a simple connected graph with vertex set $V(G)$ and edge set $E(G)$ such that $n = |V(G)|$ and $m = |E(G)|$. The degree of a vertex v in G, denoted by $d_G(v)$ (or $d(v)$), is the number of its neighbors. A pendent vertex is a vertex of degree one. If the vertices u and v are adjacent, then the edge connecting them is labeled as $e = uv$. The cycle and path of order n are denoted by C_n and P_n, respectively. The distance between vertices u and v in G, denoted by $d_G(u,v)$ (or $d(u,v)$), is the length of a shortest path between u and v. The diameter of G is the number $\max_{u,v \in V(G)} d_G(u,v)$.

Numerous vertex-degree-based (VDB) graph invariants – also known as “topological indices” – have been put forward in the literature on mathematical chemistry [5–9, 13]. A general formula for such topological indices is given as follows:

$$TI(G) = \sum_{uv \in E(G)} F(d_G(u), d_G(v)),$$

where $F(x, y)$ is a function with the property $F(x, y) = F(y, x)$. In the standard formulation of the theory of VDB topological indices, $TI(G)$ depends on the vertices of G, so that the single parameter associated with each vertex is its vertex degree. An alternative interpretation of VDB indices has been offered in [6]. Based on a geometric interpretation, Gutman [6] introduced the following index, namely the Sombor index, and established its basic properties:

$$SO(G) = \sum_{uv \in E(G)} \sqrt{d_G^2(u) + d_G^2(v)}.$$

Numerous studies have so far been conducted on the Sombor index, including those on its chemical applicability [10, 12], the extremal values of the Sombor index of trees with specified parameters [2], and the extremal values of the Sombor index of unicyclic and bicyclic graphs [3]. The existing bounds and extremal results related to the Sombor index and its variants were collected in [11].

Recently, a novel geometric method for constructing vertex-degree-based topological indices was proposed by Gutman, Furtula, and Oz [8]. This method is based on an ellipse whose focal points represent the degrees of a pair of adjacent vertices. The area of the ellipse induces the following vertex-degree-based topological index of remarkable simplicity, which was referred to as the elliptic Sombor index:

$$ESO(G) = \sum_{uv \in E(G)} (d_G(u) + d_G(v)) \sqrt{d_G^2(u) + d_G^2(v)}.$$

In [8], the main mathematical properties of the elliptic Sombor index, particularly its relations to some earlier known indices, were established and its potential applications were analyzed.

*Corresponding author (hydeng@hunnu.edu.cn).
For an edge subset \(M \subseteq E(G) \), if every pair of edges in \(M \) has no common endpoint, then \(M \) is called a matching of \(G \). A matching \(M \) is a maximum matching if there is no other matching \(M' \) of \(G \) such that \(|M| > |M'| \). The number of edges in a maximum matching of \(G \) is called the matching number of \(G \), denoted by \(\beta(G) \). A maximum matching \(M \) with \(|M| = \beta \) is also known as a \(\beta \)-matching. If \(M \) is a matching, the ends of every edge of \(M \) are called matched under \(M \), and every vertex incident with an edge of \(M \) is known as an \(M \)-saturated.

In this paper, we give the maximal value of the elliptic Sombor index of trees with given (i) number of pendant vertices, (ii) diameter, and (iii) matching number. We also determine extremal values of the elliptic Sombor index of unicyclic graphs. Furthermore, we characterize those trees and unicyclic graphs that achieve the obtained extremal values.

2. Preliminaries

In this section, we give some lemmas that will be used in the subsequent sections.

Lemma 2.1. Let \(g(x, y) = (x + y)\sqrt{x^2 + y^2} \) for \(x > 0 \) and \(y > 0 \). The function \(g(x, y) \) is strictly increasing in \(x \) and in \(y \).

Proof. Since
\[
\frac{\partial g}{\partial x} = \sqrt{x^2 + y^2} + \frac{x(x + y)}{\sqrt{x^2 + y^2}} > 0 \quad \text{and} \quad \frac{\partial g}{\partial y} = \sqrt{x^2 + y^2} + \frac{y(x + y)}{\sqrt{x^2 + y^2}} > 0
\]
for \(x > 0 \) and \(y > 0 \), the lemma holds. \(\square \)

Lemma 2.2. Let \(\rho(x, y) = \sqrt{x^2 + y^2} + \frac{x(x + y)}{\sqrt{x^2 + y^2}} \) with \(x > 0 \) and \(y > 0 \). The function \(\rho(x, y) \) is strictly increasing in \(x \) and in \(y \).

Proof. Since
\[
\rho_x(x, y) = \frac{x}{\sqrt{x^2 + y^2}} + \frac{(2x + y)(x^2 + y^2) - x^2(x + y)}{(x^2 + y^2)^{3/2}} = \frac{2x^2 + 3xy^2 + y^3}{(x^2 + y^2)^{3/2}} > 0
\]
and
\[
\rho_y(x, y) = \frac{y}{\sqrt{x^2 + y^2}} + \frac{x(x^2 + y^2) - xy(x + y)}{(x^2 + y^2)^{3/2}} = \frac{y^3 + x^3}{(x^2 + y^2)^{3/2}} > 0
\]
for \(x > 0 \) and \(y > 0 \), the lemma holds. \(\square \)

Lemma 2.3. Let \(G \) be a graph and \(P = v_1v_2, \ldots, v_k \) be an induced sub-path in \(G \), where \(d_G(v_1) \geq 2 \) and \(d_G(v_k) \geq 2 \). Let \(G' = G - \{v_kw : w \in N(v_k) \setminus \{v_{k-1}\}\} + \{v_1w : w \in N(v_k) \setminus \{v_{k-1}\}\} \). The process of transforming \(G \) into \(G' \) is called path-lifting transformation, see Figure 2.1. It holds that \(ESO(G) < ESO(G') \).

Figure 2.1: The path-lifting transformation.

Proof. Let \(\phi(x, y) = (2 + x)\sqrt{4 + x^2} + (2 + y)\sqrt{4 + y^2} - (x + y + 1)\sqrt{4 + (x + y - 1)^2} - 3\sqrt{5} \), where \(x \geq 2 \) and \(y \geq 2 \). If \(x - 1 > 0 \) and \(y - 1 > 0 \), then by Lemma 2.2 we have
\[
\frac{\partial \phi(x, y)}{\partial x} = \sqrt{4 + x^2} + \frac{x(2x + y)}{\sqrt{4 + x^2}} - \frac{(x + y + 1)(x + y - 1)}{\sqrt{4 + (x + y - 1)^2}} - g(x, 2) - g(x + y - 1, 2) < 0
\]
\[
\frac{\partial \phi(x, y)}{\partial y} = \sqrt{4 + y^2} + \frac{y(2y + x)}{\sqrt{4 + y^2}} - \frac{(x + y + 1)(x + y - 1)}{\sqrt{4 + (x + y - 1)^2}} - g(x, 2) - g(x + y - 1, 2) < 0.
\]
Hence, the function \(\phi(x, y) \) is strictly decreasing in \(x \geq 2 \) and in \(y \geq 2 \). In the following discussion, for convenience, let \(d_G(v_1) = x \geq 2 \) and \(d_G(v_k) = y \geq 2 \).
Case 1. $k > 2$.
By Lemma 2.1, we have

$$ESO(G) - ESO(G') = (2 + x)\sqrt{4 + x^2} + \sum_{w \in N(v_1) \setminus \{v_2\}} (x + d_G(w))\sqrt{x^2 + d_G^2(w)}$$

$$+ (2 + y)\sqrt{4 + y^2} + \sum_{w \in N(v_2) \setminus \{v_k - 1\}} (y + d_G(w))\sqrt{y^2 + d_G^2(w)}$$

$$- \sum_{w \in N(v_1) \cup N(v_2) \setminus \{v_2, v_k - 1\}} (x + y - 1 + d_G(w))\sqrt{(x + y - 1)^2 + d_G^2(w)}$$

$$- (x + y + 1)\sqrt{4 + (x + y - 1)^2 - 3\sqrt{3}}$$

$$= (2 + x)\sqrt{4 + x^2} + (2 + y)\sqrt{4 + y^2} - (x + y + 1)\sqrt{4 + (x + y - 1)^2 - 3\sqrt{3}}$$

$$+ \sum_{w \in N(v_1) \setminus \{v_2\}} \left((x + d_G(w))\sqrt{x^2 + d_G^2(w)} - (x + y - 1 + d_G(w))\sqrt{(x + y - 1)^2 + d_G^2(w)} \right)$$

$$+ \sum_{w \in N(v_2) \setminus \{v_k - 1\}} \left((y + d_G(w))\sqrt{y^2 + d_G^2(w)} - (x + y - 1 + d_G(w))\sqrt{(x + y - 1)^2 + d_G^2(w)} \right)$$

$$< (2 + x)\sqrt{4 + x^2} + (2 + y)\sqrt{4 + y^2} - (x + y + 1)\sqrt{4 + (x + y - 1)^2 - 3\sqrt{3}} \quad \text{(by Lemma 2.1)}$$

$$< \phi(2, 2) < 0.$$

Case 2. $k = 2$.
Since $1 + (x + y - 1)^2 - x^2 - y^2 = 2(xy - x - y) + 1 > 0$ for $x \geq 2$ and $y \geq 2$, by Lemma 2.1 we have

$$ESO(G) - ESO(G') = (x + y)\sqrt{x^2 + y^2} + \sum_{w \in N(v_1) \setminus \{v_2\}} (x + d_G(w))\sqrt{x^2 + d_G^2(w)}$$

$$+ \sum_{w \in N(v_2) \setminus \{v_1\}} (y + d_G(w))\sqrt{y^2 + d_G^2(w)} - (x + y)\sqrt{1 + (x + y - 1)^2}$$

$$- \sum_{w \in N(v_1) \cup N(v_2) \setminus \{v_1, v_2\}} (x + y - 1 + d_G(w))\sqrt{(x + y - 1)^2 + d_G^2(w)}$$

$$< (x + y)\left(\sqrt{x^2 + y^2} - \sqrt{1 + (x + y - 1)^2} \right) < 0.$$

In both cases, we have $ESO(G) < ESO(G')$.

If G is a graph and $P = v_1v_2$ is an induced sub-path in G, then the path-lifting transformation in Lemma 2.3 is also known as the edge-lifting transformation. Any tree T with $n \geq 4$ vertices may be transformed into the star S_n (or the path P_n) by using the edge-lifting transformation (or its inverse, respectively). This observation provides the following result established in [8].

Theorem 2.1 (see [8]). If T is a tree with $n \geq 2$ vertices, S_n is the n-vertex star, and P_n is the n-vertex path, then

$$ESO(P_n) \leq ESO(T) \leq ESO(S_n),$$

where the left and right equalities hold if and only if $T \cong P_n$ and $T \cong S_n$, respectively.

3. Elliptic Sombor index of trees

In this section, we determine the maximal value of the elliptic Sombor index of trees with a given number of pendant vertices, diameter, or matching number. Let T^*_n be the set of trees with n vertices and k pendant vertices. Let $Spider(n_1, n_2, \ldots, n_k)$ be the starlike tree (that is, a tree having exactly one vertex of degree greater than 2) such that the length of its i-th branch is n_i, where $n_1 \geq n_2 \geq \cdots \geq n_k \geq 1$. It is obvious that $Spider(n_1, n_2, \ldots, n_k) \in T^*_n$ if and only if $\sum_{i=1}^{k} n_i = n - 1$. The tree $Spider(n_1, n_2, \ldots, n_k)$ is illustrated in Figure 3.1.

Lemma 3.1. If $f(x, y) = (x + y - 2 + a)\sqrt{(x + y - 2)^2 + a^2} - (x + a)\sqrt{x^2 + a^2} - (y + b)\sqrt{y^2 + b^2}$ with $x, y \geq 3$ and $a \geq b \geq 1$, then the function $f(x, y)$ is strictly increasing in x and in y.
Let Case 1. Since strictly increasing in

Proof. Since Lemma 3.4. If

Thus, the lemma holds.

Lemma 3.2. If \(h(x, y) = (x + 1 + y)\sqrt{(x + 1)^2 + y^2} - (x + y)\sqrt{x^2 + y^2} \) with \(x, y \geq 3 \), then the function \(h(x, y) \) is strictly increasing in \(x \) and in \(y \).

Proof. Since \(x + 1 \geq x \geq 3 \), by Lemma 2.2 we have

\[
f_x(x, y) = \left(\sqrt{(x + y - 2)^2 + a^2} + \frac{(x + y - 2)(x + y - 2 + a)}{\sqrt{(x + y - 2)^2 + a^2}} \right) - \left(\sqrt{x + a} + \frac{x(x + a)}{\sqrt{x^2 + a^2}} \right) = \rho(x + y - 2, a) - \rho(x, a) > 0,
\]

\[
f_y(x, y) = \left(\sqrt{(x + y - 2)^2 + a^2} + \frac{(x + y - 2)(x + y - 2 + a)}{\sqrt{(x + y - 2)^2 + a^2}} \right) - \left(\sqrt{y^2 + b^2} + \frac{y(y + b)}{\sqrt{y^2 + b^2}} \right) = \rho(x + y - 2, a) - \rho(y, b) \geq \rho(x + y - 2, b) - \rho(y, b) > 0.
\]

Hence, the lemma holds.

Lemma 3.3. Let \(k(x, y, z) = (x + z)\sqrt{x^2 + z^2} - (y + z)\sqrt{y^2 + z^2} \) with \(x, y \geq 3 \) and \(1 \leq z \leq 2 \). Then, the function \(k(x, y, z) \) is strictly increasing in \(z \) if \(x \geq y \) and strictly decreasing in \(z \) if \(x \leq y \).

Proof. Since

\[
k_z(x, y, z) = \sqrt{x^2 + z^2} + \frac{(x + z)z}{\sqrt{x^2 + z^2}} - \frac{y^2 + z^2}{\sqrt{y^2 + z^2}} = \rho(z, x) - \rho(z, y),
\]

the lemma holds.

Lemma 3.4. If \(G \in T_n^k \) has the maximum elliptic Sombor index, then \(G \) contains at most one vertex with the degree greater than 2, where \(k \geq 3 \).

Proof. Suppose to the contrary that there are at least two vertices \(u \) and \(v \) with the degree greater than 2 in \(G \). Let \(d(u) = x \) and \(d(v) = y \), where \(x \geq y \geq 3 \).

Case 1. \(d(u, v) = 1 \).

Let \(N(u) = \{u_1, u_2, \ldots, u_{x-1}, v\} \), \(N(v) = \{v_1, v_2, \ldots, v_{y-1}, u\} \), \(d(u_1) = a, d(v_1) = b \) and \(a \geq b \geq 1 \). In addition, we define

Figure 3.1: The tree Spider\((n_1, n_2, \ldots, n_k)\).
By Case 1, \(P = u_{u_x} \ldots v_{y,v} \) is an induced sub-path in \(G \). Let \(N(u) = \{u_1, u_2, \ldots, u_{x-1}, u_x\} \), \(N(v) = \{v_1, v_2, \ldots, v_{y-1}, v_y\} \), \(d(u_1) = a, d(v_1) = b, \) and \(d(v_2) = c \), then \(1 \leq a, b, c \leq 2 \). Let \(G'' = G - \{vk : vk \in N(v) \setminus \{v_y\}\} + \{uvk : vk \in N(v) \setminus \{v_y\}\} \), see Figure 3.3. Then, \(d_{G''}(u) = x + y - 2 \) and \(d_{G''}(v) = 2 \).
By Lemma 3.3, we have

\[
ESO(G') - ESO(G) \geq \left((d_{G''}(u) + d_{G''}(u_1)) \sqrt{d_{G''}^2(u) + d_{G''}^2(u_1)} + (d_{G''}(u) + d_{G''}(u_2)) \sqrt{d_{G''}^2(u) + d_{G''}^2(u_2)} \\
+ (d_{G''}(v) + d_{G''}(v_y)) \sqrt{d_{G''}^2(v) + d_{G''}^2(v_y)} + (d_{G''}(v) + d_{G''}(v_1)) \sqrt{d_{G''}^2(v) + d_{G''}^2(v_1)} \\
+ (d_{G''}(u) + d_{G''}(v_2)) \sqrt{d_{G''}^2(u) + d_{G''}^2(v_2)} \right)
\]

\[
= \left((x + y - 2 + a) \sqrt{(x + y - 2)^2 + 2^2} + (x + y - 2 + 2) \sqrt{(x + y - 2)^2 + 2^2} \\
+ (2 + 2) \sqrt{2^2 + 2^2 + (2 + b) \sqrt{2^2 + b^2} + (x + y - 2 + c) \sqrt{(x + y - 2)^2 + c^2}} \right)
\]

\[
= \left((x + y - 1) \sqrt{(x + y - 2)^2 + 1 - (x + 1) \sqrt{x^2 + 1}} + (8 \sqrt{2} - (y + 2)) \sqrt{y^2 + 4} \right)
\]

\[
= 2(x + y - 1) \sqrt{(x + y - 2)^2 + 1 + (x + y) \sqrt{(x + y - 2)^2 + 1} - (x + 1) \sqrt{x^2 + 1} - 2(y + 2) \sqrt{y^2 + 4} - (y + 1) \sqrt{y^2 + 1} + 16 \sqrt{2}.
\]

It is easy to check that the function

\[
2(x + y - 1) \sqrt{(x + y - 2)^2 + 1} + (x + y) \sqrt{(x + y - 2)^2 + 4} - (x + 1) \sqrt{x^2 + 1} - (x + 2) \sqrt{x^2 + 4} - 2(y + 2) \sqrt{y^2 + 4} - (y + 1) \sqrt{y^2 + 1}
\]

is strictly increasing in \(x\) and in \(y\) for \(x, y \geq 3\). Hence, we have

\[
ESO(G') - ESO(G) \geq 10 \sqrt{17} + 12 \sqrt{5} - 4 \sqrt{10} - 15 \sqrt{13} - 4 \sqrt{10} + 16 \sqrt{2} > 0,
\]

a contradiction to the choice of \(G\).

\[
\square
\]

Lemma 3.5. Let \(G = \text{Spider}(n_1, \ldots, n_i, \ldots, n_j, 1, \ldots, 1) \in T^k_n\) such that \(n_i \geq 3\) and \(n_j > 1\) (1 \(\leq i \leq j\)), then

\[
ESO(\text{Spider}(n_1, \ldots, n_i, \ldots, n_j, 1, \ldots, 1)) < ESO(\text{Spider}(n_1, \ldots, n_i - 1, \ldots, n_j, 2, \ldots, 1)).
\]

Proof. Let \(v \in V(G)\) be the unique vertex with the maximum degree \(k\). Let \(vu, uz\) and \(vw\) be three edges in \(G\) such that \(d_G(u) = d_G(z) = 2\) and \(d_G(w) = 1\). Take \(N_0(v) = N(v) \backslash \{w, u\}\) and let \(G' = G - \sum_{i \in N_0(v)} vv_i + \sum_{i \in N_0(v)} vu_i, \) see Figure 3.4.
Figure 3.4: The transformation $G = \text{Spider}(n_1, \ldots, n_i, \ldots, n_j, 1, \ldots, 1) \rightarrow G' = \text{Spider}(n_1, \ldots, n_i - 1, \ldots, n_j, 2, \ldots, 1)$.

Note that $G' = \text{Spider}(n_1, \ldots, n_i - 1, \ldots, n_j, 2, \ldots, 1)$, $d_{G'}(v) = 2$ and $d_{G'}(u) = k$. By Lemma 3.2, we have

$$ESO(G') - ESO(G) = (d_{G'}(v) + d_{G'}(w)) \sqrt{d^2_{G'}(v) + d^2_{G'}(w)} + (d_{G'}(u) + d_{G'}(v)) \sqrt{d^2_{G'}(u) + d^2_{G'}(v)}$$

$$- (d(v) + d(w)) \sqrt{d^2(v) + d^2(w)} - (d(u) + d(z)) \sqrt{d^2(u) + d^2(z)}$$

$$= (k + 2) \sqrt{k^2 + 2^2} - (k + 1) \sqrt{k^2 + 1^2} + 3\sqrt{5} - 8\sqrt{2}$$

$$= h(1, k) + 3\sqrt{5} - 8\sqrt{2}$$

$$\geqslant 5\sqrt{13} - 4\sqrt{10} + 3\sqrt{5} - 8\sqrt{2} > 0,$$

as desired.

Lemma 3.6. If $G = \text{Spider}(n_1, n_2, \ldots, n_k) \in T^k_n$ with $n_1 \geqslant n_2 \geqslant \cdots \geqslant n_k \geqslant 2$, and $G' = \text{Spider}(n_1', n_2', \ldots, n_k') \in T^k_n$ with $n_1' \geqslant n_2' \geqslant \cdots \geqslant n_k' \geqslant 2$, then $ESO(G) = ESO(G')$.

Proof. Note that

$$ESO(G) = k(2 + 2)\sqrt{k^2 + 2^2} + k(1 + 2)\sqrt{1^2 + 2^2} + (n - 1 - 2k)(2 + 2)\sqrt{2^2 + 2^2}$$

$$= k(2 + 2)\sqrt{k^2 + 4} + 3k\sqrt{5} + 8(n - 1 - 2k)\sqrt{2} = ESO(G').$$

Theorem 3.1. If $G \in T^k_n$ has the maximum elliptic Sombor index, then $G \cong \text{Spider}(n_1, n_2, \ldots, n_k)$, where $\sum_{i=1}^{k} n_i = n - 1$ and $n_1 \geqslant n_2 \geqslant \cdots \geqslant n_k \geqslant 1$. If $k \geqslant \lfloor n/2 \rfloor$ then $1 \leqslant n_i \leqslant 2$ and if $k < \lfloor n/2 \rfloor$ then $n_i \geqslant 2$.

Proof. By Lemma 3.4, there is only one vertex with degree greater than 2 in G and hence $G \cong \text{Spider}(n_1, n_2, \ldots, n_k)$. If $k > \lfloor n/2 \rfloor$, then by Lemma 3.5 we have $1 \leqslant n_i \leqslant 2$ and hence there is only one graph with the maximum elliptic Sombor index. If $k < \lfloor n/2 \rfloor$, then by Lemma 3.5 we have $n_i \geqslant 2$ and hence by Lemma 3.6, the tree with the maximum elliptic Sombor index is not unique. If n is even and $k = n/2$, then by Lemma 3.5 the graph $\text{Spider}(2, 2, \ldots, 1, 1)$ is the tree with the maximum elliptic Sombor index and it satisfies $1 \leqslant n_i \leqslant 2$. Finally, if n is odd and $k = (n - 1)/2$, then by Lemma 3.5 the graph $\text{Spider}(2, 2, \ldots, 2)$ is the tree with the maximum elliptic Sombor index.

Let C^d_n be the set of trees with n vertices and d diameter. Let $C(t_1, \ldots, t_d-1)$ be the caterpillar illustrated in Figure 3.5. It is obvious that $C(t_1, \ldots, t_d-1) \in C^d_n$ if and only if $t_1 + t_2 + \cdots + t_{d-1} = n - d - 1$.

Figure 3.5: The caterpillar $C(t_1, \ldots, t_d-1)$.

Lemma 3.7. Let $d \geqslant 4$. If $G = C(t_1, \ldots, t_d-1) \in C^d_n$ has the maximum elliptic Sombor index, then $t_1 = 0$ and $t_{d-1} = 0$.

Proof. Suppose to the contrary that $t_1 \neq 0$. Let $i, i \neq 1$, be the least integer such that $t_i \neq 0$ and the corresponding vertex is v_i.

Z. Tang, Y. Li, and H. Deng / Electron. J. Math. 7 (2024) 19–34
Case 1. $d(v_1, v_i) = 1$.
In this case, we have $v_i = v_2$. For convenience, let $d(v_i) = y$. Certainly, $y \geq 2$. Define

$$G' = G - \{v_1v_k : v_k \in N(v_1) \setminus \{v_0, v_2\}\} + \{v_2v_k : v_k \in N(v_1) \setminus \{v_0, v_2\}\},$$

see Figure 3.6.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3.6.png}
\caption{The transformation $G = C(t_1, t_2, \ldots, t_{d-1}) \rightarrow G' = C(0, t_2 + t_1, \ldots, t_{d-1})$.}
\end{figure}

Note that $G' = C(0, t_2 + t_1, \ldots, t_{d-1}) \in C^d$, $d_{G'}(v_1) = 2$, $d_{G'}(v_2) = t_2 + t_1 + 2$, and the degrees of other vertices remain the same. Thus, we have

$$ESO(G') - ESO(G) = \left((d_{G'}(v_1) + d_{G'}(v_0)) \sqrt{d_{G'}^2(v_1) + d_{G'}^2(v_0)} + (d_{G'}(v_2) + d_{G'}(v_1)) \sqrt{d_{G'}^2(v_2) + d_{G'}^2(v_1)} \right)$$

$$- \left((d(v_1) + d(v_0)) \sqrt{d^2(v_1) + d^2(v_0)} + (d(v_2) + d(v_1)) \sqrt{d^2(v_2) + d^2(v_1)} \right)$$

$$+ (d(v_2) + d(v_3)) \sqrt{d^2(v_2) + d^2(v_3)} + t_1(d(v_1) + 1) \sqrt{d^2(v_1) + 1^2}$$

$$+ t_2(d(v_2) + 1) \sqrt{d^2(v_2) + 1^2}$$

$$= \left(3\sqrt{5} + (t_2 + t_1 + 4) \sqrt{(t_2 + t_1 + 2)^2 + 4 + (t_2 + t_1 + 2 + y) \sqrt{(t_2 + t_1 + 2)^2 + y^2}} \right)$$

$$+ (t_2 + t_1)(t_2 + t_1 + 3) \sqrt{(t_2 + t_1 + 2)^2 + 1} - (t_1 + 3) \sqrt{(t_1 + 2)^2 + 1}$$

$$+ (t_1 + t_2 + 4) \sqrt{(t_1 + 2)^2 + (t_2 + 2)^2 + (t_2 + 2 + y) \sqrt{(t_2 + 2)^2 + y^2}}$$

$$+ t_1(t_1 + 3) \sqrt{(t_1 + 2)^2 + 1 + t_2(t_2 + 3) \sqrt{(t_2 + 2)^2 + 1}}$$

$$\geq 3\sqrt{5} + t_1 \sqrt{(t_1 + t_1 + 2)^2 + y^2} + 2t_1t_2 \sqrt{(t_2 + t_1 + 2)^2 + 1} - (t_1 + 3) \sqrt{(t_1 + 2)^2 + 1}$$

$$\geq 3\sqrt{5} + 2t_1t_2 \sqrt{(t_2 + t_1 + 2)^2 + 1} - 3\sqrt{(t_1 + 2)^2 + 1}.$$

It is easy to check that the function $2t_1t_2 \sqrt{(t_2 + t_1 + 2)^2 + 1} - 3\sqrt{(t_1 + 2)^2 + 1}$ is strictly increasing for $t_1, t_2 \geq 1$ in t_1 and in t_2. Hence, we have $ESO(G') - ESO(G) \geq 3\sqrt{5} + 2\sqrt{17} - 3\sqrt{16} > 0$, a contradiction to the choice of G.

Case 2. $d(v_1, v_i) \geq 2$.
In the present case, we have $d(v_j) = 2$ with $2 \leq j \leq i - 1$. For convenience, let $d(v_{i+1}) = y$. Evidently, $y \geq 2$. Now, we take

$$G' = G - \{v_1v_k : v_k \in N(v_1) \setminus \{v_0, v_2\}\} + \{v_iv_k : v_k \in N(v_1) \setminus \{v_0, v_2\}\},$$

see Figure 3.7.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3.7.png}
\caption{The transformation $G = C(t_1, 0, \ldots, 0, t_i, \ldots, t_{d-1}) \rightarrow G' = C(0, \ldots, 0, t_i + t_1, \ldots, t_{d-1})$.}
\end{figure}
Note that $G' = C(0, \ldots, 0, t_i + 1, \ldots, t_{d-1}) \in C_n^d$, $d_{G'}(v_1) = 2$, $d_{G'}(v_i) = t_i + 1 + 2$, and degrees of other vertices remain the same. Hence, we have

$$ESO(G') - ESO(G) = \left((d_{G'}(v_i) + d_{G'}(v_0)) \sqrt{d_{G'}^2(v_1) + d_{G'}^2(v_0)} + (d_{G'}(v_2) + d_{G'}(v_1)) \sqrt{d_{G'}^2(v_2) + d_{G'}^2(v_1)} \right.$$
$$+ (d_{G'}(v_{i+1}) + d_{G'}(v_{i})) \sqrt{d_{G'}^2(v_{i+1}) + d_{G'}^2(v_{i-1})} + (d_{G'}(v_{i+1}) + d_{G'}(v_{i+1})) \sqrt{d_{G'}^2(v_{i+1}) + d_{G'}^2(v_{i+1})}$$
$$+ (t_i + t_i)(d_{G'}(v_{i-1}) + 1) \sqrt{d_{G'}^2(v_{i-1}) + 1^2}) - \left((d(v_1) + d(v_0)) \sqrt{d^2(v_1) + d^2(v_0)} \right.$$
$$+ (d(v_2) + d(v_1)) \sqrt{d^2(v_2) + d^2(v_1)} + (d(v_{i+1}) + d(v_{i})) \sqrt{d^2(v_{i+1}) + d^2(v_{i-1})} + (d(v_{i+1}) + d(v_{i+1})) \sqrt{d^2(v_{i+1}) + d^2(v_{i+1})} + t_1(d(v_1) + 1) \sqrt{d^2(v_1) + 1^2}$$
$$+ t_i(d(v_1) + 1) \sqrt{d^2(v_1) + 1^2} \right)$$
$$= \left(3\sqrt{5} + 8\sqrt{2} + (t_i + t_i + 1 + 4) \sqrt{(t_i + t_i + 2)^2 + 4 + (t_i + t_i + 2) + y}(t_i + t_i + 2)^2 + y^2 \right.$$
$$+ (t_i + t_i)(t_i + t_i + 3) \sqrt{(t_i + t_i + 2)^2 + 1}) - \left((t_i + 3) \sqrt{(t_i + 2)^2 + 1} \right.$$
$$+ (t_i + 4) \sqrt{(t_i + 2)^2 + 4 + (t_i + 4) \sqrt{(t_i + 2)^2 + 4 + (t_i + 2) + y}(t_i + 2)^2 + y^2}$$
$$+ t_1(t_i + 3) \sqrt{(t_i + 2)^2 + 1 + t_i(t_i + 3) \sqrt{(t_i + 2)^2 + 1} \right) \right.$$
$$\geq 3\sqrt{5} + 8\sqrt{2} + t_i \sqrt{(t_i + t_i + 2)^2 + 2} + y^2 + 2t_i t_i \sqrt{(t_i + t_i + 2)^2 + 1} - 2(t_i + 2)^2 + 4$$
$$- 2\sqrt{(t_i + 2)^2 + 4 - (t_i + 3) \sqrt{(t_i + 2)^2 + 1} \right) \geq 3\sqrt{5} + 8\sqrt{2} + 2t_i t_i \sqrt{(t_i + t_i + 2)^2 + 1 - 2\sqrt{(t_i + 2)^2 + 4 - 2\sqrt{(t_i + 2)^2 + 4 - 3\sqrt{(t_i + 2)^2 + 1}} \right.$$
$$\geq 3\sqrt{5} + 8\sqrt{2} + 2t_i t_i \sqrt{(t_i + t_i + 2)^2 + 1} - 2\sqrt{(t_i + 2)^2 + 4 - 2\sqrt{(t_i + 2)^2 + 4 - 3\sqrt{(t_i + 2)^2 + 1}} is strictly increasing for $t_i, t_i \geq 1$ and hence we have

$$ESO(G') - ESO(G) \geq 3\sqrt{5} + 8\sqrt{2} + 2\sqrt{17} - 2\sqrt{13} - 2\sqrt{13} - 3\sqrt{10} > 0,$$

a contradiction to the choice of G.

\begin{lemma}
Let $d \geq 4$. If $G = C(t_2, \ldots, t_{d-2}) \in C_n^d$ has the maximum elliptic Sombor index, then there is only one $t_i \neq 0$.
\end{lemma}

\begin{proof}
Suppose to the contrary that there are $t_i, t_j \neq 0$. Let $i, j \geq 2$, be the least integer such that $t_i \neq 0$ and suppose that the corresponding vertex is v_i. Then, we have $d(v_{i-1}) = 2$. Similarly, take $j, i + 1 \leq j \leq d - 2$, such that $t_j \neq 0$ and suppose that the corresponding vertex is v_j.

\begin{case}
$d(v_i, v_j) = 1$.
\end{case}

Here, we have $v_j = v_{i+1}$. For convenience, let $d(v_{i+2}) = y \geq 2$, and define

$$G' = G - \{v_i v_k : v_k \in N(v_i) \setminus \{v_{i-1}, v_{i+1}\}\} + \{v_{i+1} v_k : v_k \in N(v_{i+1}) \setminus \{v_{i-1}, v_{i+1}\}\},$$

see Figure 3.8.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3.8.png}
\caption{The transformation $G = C(0, \ldots, 0, t_i, t_{i+1}, \ldots, t_{d-1}) \rightarrow G' = C(0, \ldots, 0, t_{i+1} + t_i, \ldots, t_{d-1})$.}
\end{figure}
Note that $G' = C(0, \ldots, 0, t_{i+1} + t_i, \ldots, t_{d-1}) \in C_n^d$, $d_{G'}(v_i) = 2$, $d_{G'}(v_{i+1}) = t_{i+1} + t_i + 2$, and degrees of other vertices remain the same. Thus, we have
\[
ESO(G') - ESO(G) = \left((d_{G'}(v_i) + d_{G'}(v_{i-1}))\sqrt{d^2_{G'}(v_i) + d^2_{G'}(v_{i-1})} + (d_{G'}(v_i) + d_{G'}(v_{i+1}))\sqrt{d^2_{G'}(v_i) + d^2_{G'}(v_{i+1})} \right. \\
+ (d_{G'}(v_{i+1}) + d_{G'}(v_{i+2}))\sqrt{d^2_{G'}(v_{i+1}) + d^2_{G'}(v_{i+2})} \\
+ (t_i + t_{i+2})(d_{G'}(v_{i+1}) + 1)\sqrt{d^2_{G'}(v_{i+1}) + 1^2} - \left((d(v_i) + d(v_{i-1}))\sqrt{d^2(v_i) + d^2(v_{i-1})} \right.
\]
\[
+ (d(v_i) + d(v_{i+1}))\sqrt{d^2(v_i) + d^2(v_{i+1})} + (d(v_{i+1}) + d(v_{i+2}))\sqrt{d^2(v_{i+1}) + d^2(v_{i+2})} \right. \\
+ t_i(d(v_i) + 1)\sqrt{d^2(v_i) + 1^2} + t_{i+1}(d(v_{i+1}) + 1)\sqrt{d^2(v_{i+1}) + 1^2} \\
= \left(8\sqrt{2} + (t_i + t_{i+1} + 4)(t_{i+1} + t_i + 2)^2 + 4 + (t_{i+1} + t_i + 2 + y)\sqrt{(t_{i+1} + t_i + 2)^2 + y^2} \right.
\]
\[
+ (t_{i+1} + t_i)(t_{i+1} + t_i + 3)(t_{i+1} + t_i + 2)^2 + 1) - \left((t_i + 4)\sqrt{(t_i + 2)^2 + 4} \right.
\]
\[
+ (t_{i+1} + t_i + 4)(t_{i+1} + t_i + 2)^2 + (t_{i+1} + 2 + y)\sqrt{(t_{i+1} + 2)^2 + y^2} \\
+ t_i(t_i + 3)(t_{i+1} + t_i + 2)^2 + 1 + t_{i+1}(t_{i+1} + 3)(t_{i+1} + 2)^2 + 1) \\
\geq 8\sqrt{2} + t_i\sqrt{(t_i + 1 + t_i + 2)^2 + y^2} + 2t_i + t_i\sqrt{(t_i + 1 + t_i + 2)^2 + 1} - (t_i + 4)\sqrt{(t_i + 2)^2 + 4} \\
\geq 8\sqrt{2} + 2t_i + t_i\sqrt{(t_i + 1 + t_i + 2)^2 + 1} - 4\sqrt{(t_i + 2)^2 + 4}.
\]
It is easy to check that the function $2t_i + t_i\sqrt{(t_i + 1 + t_i + 2)^2 + 1} - 4\sqrt{(t_i + 2)^2 + 4}$ is strictly increasing for $t_{i+1}, t_i \geq 1$ and hence we have $ESO(G') - ESO(G) \geq 8\sqrt{2} + 2\sqrt{17} - 4\sqrt{13} > 0$, a contradiction of the choice of G.

Case 2. $d(v_{i-1}, v_i) \geq 2$.

In this case, we have $d(v_k) = 2$ with $i + 1 \leq k \leq j - 1$. For convenience, let $d(v_{j-1}) = y$. Define
\[
G' = G - \{v_i v_k : v_k \in N(v_i) \setminus \{v_{i-1}, v_{i+1}\}\} + \{v_j v_k : v_k \in N(v_i) \setminus \{v_{i-1}, v_{i+1}\}\},
\]
see Figure 3.9.

Figure 3.9: The transformation $G = C(0, \ldots, 0, t_i, \ldots, 0, t_j, \ldots, t_{d-1}) \rightarrow G' = C(0, \ldots, 0, t_j + t_i, \ldots, t_{d-1})$.

Note that $G' = C(0, \ldots, 0, t_j + t_i, \ldots, t_{d-1}) \in C_n^d$, $d_{G'}(v_i) = 2$, $d_{G'}(v_{j-1}) = t_j + t_i + 2$, and degrees of other vertices remain the same. Thus, we have
\[
ESO(G') - ESO(G) = \left((d_{G'}(v_i) + d_{G'}(v_{i-1}))\sqrt{d^2_{G'}(v_i) + d^2_{G'}(v_{i-1})} + (d_{G'}(v_i) + d_{G'}(v_{i+1}))\sqrt{d^2_{G'}(v_i) + d^2_{G'}(v_{i+1})} \right. \\
+ (d_{G'}(v_{j-1}) + d_{G'}(v_{j-2}))\sqrt{d^2_{G'}(v_{j-1}) + d^2_{G'}(v_{j-2})} \\
+ (t_i + t_j)(d_{G'}(v_{j-1}) + 1)\sqrt{d^2_{G'}(v_{j-1}) + 1^2} - \left((d(v_i) + d(v_{i-1}))\sqrt{d^2(v_i) + d^2(v_{i-1})} \right.
\]
\[
+ (d(v_i) + d(v_{i+1}))\sqrt{d^2(v_i) + d^2(v_{i+1})} + (d(v_{j-1}) + d(v_{j-2}))\sqrt{d^2(v_{j-1}) + d^2(v_{j-2})} \\
+ t_i(d(v_i) + 1)\sqrt{d^2(v_i) + 1^2} + t_j(d(v_{j-1}) + 1)\sqrt{d^2(v_{j-1}) + 1^2} \\
+ t_j(d(v_{j-1}) + 1)\sqrt{d^2(v_{j-1}) + 1^2} \right).
Consequently, we have
\[
E(SO(G')) - ESO(G) = \left(8\sqrt{2} + 8\sqrt{2} + (t_i + t_j + 4)\sqrt{(t_i + t_j + 2)^2 + 4} + (t_i + t_j + 2 + y)\sqrt{(t_i + t_j + 2)^2 + y^2} + (t_i + t_j)(t_i + t_j + 3)\sqrt{(t_i + t_j + 2)^2 + 1} - (t_i + 4)\sqrt{(t_i + 2)^2 + 4} + t_i(t_i + 3)\sqrt{(t_i + 2)^2 + 1} + t_j(t_j + 3)\sqrt{(t_j + 2)^2 + 1}\right)
\]
\[
\geq 16\sqrt{2} t_i t_j \sqrt{(t_i + t_j + 2)^2 + y^2} + 2t_i t_j (t_i + t_j + 2)^2 + 1 - (t_i + 8)\sqrt{(t_i + 2)^2 + 4}
\]
\[
\geq 16\sqrt{2} + 2t_i t_j \sqrt{(t_i + t_j + 2)^2 + 1} - 8\sqrt{(t_i + 2)^2 + 4}.
\]
Note that the function \(2t_i t_j \sqrt{(t_i + t_j + 2)^2 + 1} - 8\sqrt{(t_i + 2)^2 + 4}\) is strictly increasing for \(t_i, t_j \geq 1\) and hence
\[
E(SO(G')) - ESO(G) \geq 16\sqrt{2} + 2\sqrt{17} - 8\sqrt{13} > 0,
\]
which is a contradiction of the choice of \(G\).

Consider the set \(C^{d}\n\). If \(d = 2\) then the tree with the maximum elliptic Sombor index is \(S_n\) and if \(d = 3\) then by Theorem 3.1, the tree with the maximum elliptic Sombor index is \(Spider(2, 1, \ldots, 1)\). In the following, we consider \(d \geq 4\).

Theorem 3.2. Let \(d \geq 4\). If \(G \in C^{d}\n\) has the maximum elliptic Sombor index then \(G \cong C(0, 0, t_1, 0, \ldots, 0)\), \(t_i = n - d - 1, 2 \leq i \leq d - 2,\) and
\[
ESO(G) = (n - d - 1)(n - d + 2)\sqrt{(n - d - 1)^2 + 1} + 2(n - d + 3)\sqrt{(n - d - 1)^2 + 4} + 8(d - 4)\sqrt{2} + 6\sqrt{5}.
\]

Proof. Let \(G \in C^{d}\n\) be the graph with the maximum elliptic Sombor index. By Lemma 2.3 (the edge-lifting transformation), we have \(G \in C(t_1, t_2, \ldots, t_d)\). By Lemma 3.7 and Lemma 3.8, we have \(G \cong C(0, 0, t_1, 0, \ldots, 0)\), where \(t_i = n - d - 1\) and \(2 \leq i \leq d - 2\).

Let \(T_{n, \beta}\) be the set of trees with order \(n\) and matching number \(\beta\). Let \(T^{\beta}_{n}\) be the tree obtained from the star \(S_{n-\beta+1}\) by subdividing its \(\beta - 1\) pendent edges. It is obvious that \(T^{\beta}_{n}\) \(\in T^{\beta}_{n}\) and it has a perfect matching for \(n = 2\beta\). The trees \(T^{\beta}_{n}\) and \(T^{\beta}_{2\beta}\) are illustrated in Figure 3.10. Firstly we give some useful lemmas which will be used in next.

Figure 3.10: The trees \(T^{\beta}_{n}\) and \(T^{\beta}_{2\beta}\) with order \(n\) and matching number \(\beta\); in the second tree, \(n = 2\beta\).

In the following, we discuss extremal values of the elliptic Sombor index of trees with a given matching number.

Lemma 3.9 (see \([1, 4]\)). \(i.\) If \(T \in T_{n, \beta}\) and \(\beta \geq 2\), then \(T\) contains a pendent vertex whose unique neighbor has degree 2. \(ii.\) If \(T \in T_{n, \beta}\) and \(n > 2\beta\), then there is a \(\beta\)-matching \(M\) and a pendent vertex \(v\) such that \(M\) does not saturate \(v\).

Lemma 3.10. Let \(T \in T_{n, \beta}\) be a tree with the maximum elliptic Sombor index and \(M\) be a \(\beta\)-matching of \(T\).

\(i.\) If \(e = uv \in M\), then \(e\) is a pendent edge of \(T\).

\(ii.\) If \(v\) is not a pendent vertex of \(T\), then \(v\) is \(M\)-saturated.

\(iii.\) The tree \(T\) contains at most one vertex of degree greater than 2.

Proof. \(i\). Suppose to the contrary that \(e = uv \in M\) but it is not a pendent edge of \(T\). Let
\[
T' = T - \{uv : w \in N_T(u)\setminus\{v\}\} + \{vw : w \in N_T(u)\setminus\{v\}\}.
\]
It is clear that \(T' \in T_{n, \beta}\). By Lemma 2.3, we have \(ESO(T') > ESO(T)\), a contradiction to the choice of \(T\).
(ii). If $T \cong S_n$, then the result follows immediately. If $T \not\cong S_n$ and if the vertex v is not a pendent vertex in T, then there is a vertex $u \in N_T(v)$ such that u is not a pendent vertex. Since v is not M-saturated, we have $uv \not\in M$. Let $T'' = T - \{uv : w \in N_T(u) \setminus \{v\}\} \cup \{vw : w \in N_T(u) \setminus \{v\}\}$. Note that $T'' \in \mathcal{T}_{n,\beta}$. By Lemma 2.3, we have $ESO(T'') > ESO(T)$, a contradiction to the choice of T.

(iii). Suppose to the contrary that there are at least two vertices of degree greater than 2 in T. By (i) and (ii), there must be an edge uv such that each of the two vertices u, v, has a degree greater than 2 and is adjacent to a pendent vertex in T (see Figure 3.11).

Let $N_T(u) = \{u_1, u_2, \ldots, u_{x-1}, v\}$, $N_T(v) = \{v_1, v_2, \ldots, v_{y-1}, u\}$, and $d_T(u_1) = d_T(v_1) = 1$. Let

$T''' = T - \{v_i\mid i = 2, \ldots, y - 1\} \cup \{uw_i\mid i = 2, \ldots, y - 1\}$,

see Figure 3.11. Note that $T''' \in \mathcal{T}_{n,\beta}$. Also, we have $d_T(u) = x$, $d_T(v) = y$, $d_{T''}(u) = x + y - 2$, $d_{T''}(v) = 2$, and degrees of other vertices are not changed.

Let $\psi(x, y) = (1 + x)\sqrt{1 + x^2} + (1 + y)\sqrt{1 + y^2} - (x + y - 1)\sqrt{(x + y - 2)^2 + 1} - 3\sqrt{5}$ for $x, y \geq 3$. Since $x + y - 2 > x$, by Lemma 2.2 we have

$$\frac{\partial \psi(x, y)}{\partial x} = \sqrt{1 + x^2} + \frac{x(1 + x)}{\sqrt{1 + x^2}} - \sqrt{1 + (x + y - 2)^2} - \frac{(x + y - 1)(x + y - 2)}{\sqrt{1 + (x + y - 2)^2}}$$

$$= \rho(x, 1) - \rho(x + y - 2, 1) < 0$$

and

$$\frac{\partial \psi(x, y)}{\partial y} = \sqrt{1 + y^2} + \frac{y(1 + y)}{\sqrt{1 + x^2}} - \sqrt{1 + (x + y - 1)^2} - \frac{(x + y - 1)(x + y - 2)}{\sqrt{1 + (x + y - 2)^2}} < 0.$$

Hence, the function $\psi(x, y)$ is strictly decreasing in x and in y. Since $(x + y - 2)^2 + 4 - (x^2 - y^2) = 2xy - 4(x + y) + 8 > 0$, we have

$$ESO(T) - ESO(T''') < (x + y)\sqrt{x^2 + y^2} + (1 + x)\sqrt{1 + x^2} + (1 + y)\sqrt{1 + y^2} - 3\sqrt{5}$$

$$- (x + y - 1)\sqrt{(x + y - 2)^2 + 1} - (x + y)\sqrt{(x + y - 2)^2 + 4}$$

$$< \psi(x, y) \leq \psi(3, 3) < 0,$$

a contradiction to the choice of T. \hfill \Box

Theorem 3.3. If $T \in \mathcal{T}_{2\beta,\beta}$, then

$$6\sqrt{5} + 8(2\beta - 3)\sqrt{2} \leq ESO(T) \leq (\beta + 1)\sqrt{1 + \beta^2} + (\beta - 1)\left(\frac{\beta + 2}{\sqrt{4 + \beta^2}} + 3\sqrt{5}\right),$$

where the left equality holds if and only if $T \cong P_{2\beta}$, while the right equality holds if and only if $T \cong T_{2\beta}^\beta$ (see Figure 3.10).

Proof. Since $P_{2\beta} \in \mathcal{T}_{2\beta,\beta}$, by Theorem 2.1 we have $ESO(T) \geq 6\sqrt{5} + 8(2\beta - 3)\sqrt{2}$ with equality if and only if $T \cong P_{2\beta}$. If $T \in \mathcal{T}_{2\beta,\beta}$ has the maximum elliptic Sombor index, then by Lemma 3.10 we have

$$ESO(T) \leq (\beta + 1)\sqrt{1 + \beta^2} + (\beta - 1)\left(\frac{\beta + 2}{\sqrt{4 + \beta^2}} + 3\sqrt{5}\right),$$

with equality if and only if $T \cong T_{2\beta}^\beta$. \hfill \Box
By using Lemma 3.10, we also obtain the following result directly.

Theorem 3.4. Let \(T \in \mathcal{T}_{n,\beta}(n > 2\beta) \), then

\[
ESO(T) \leq (n - 2\beta + 1)(n - \beta + 1)\sqrt{1 + (n - \beta)^2} + (\beta - 1)(n - \beta + 2)\sqrt{4 + (n - \beta)^2} + 3\sqrt{5}
\]

with equality if and only if \(T \cong T_k^0 \) (see Figure 3.10).

4. **Elliptic Sombor index of unicyclic graphs**

In this section, we determine the extremal values of the elliptic Sombor index of unicyclic graphs with order \(n \). Let \(U_n \) be the set of unicyclic graphs with \(n \) vertices. Let \(U_n(t_1, t_2, \ldots, t_k) \in U_n \) be a unicyclic graph with circuit \(C_k = v_1v_2 \cdots v_kv_1 \) such that every component of \(G - E(C_k) \) is a star and the component containing \(v_i \) has \(t_i + 1 \) vertices, where \(i = 1, 2, \cdots, k \) and \(t_1 + t_2 + \cdots + t_k = n - k \).

Lemma 4.1. Let \(G = U_n(p, q, r) \) with \(p \geq q \geq r \geq 1 \) and \(p + q + r = n - 3 \). Let \(u, v, w \in V(G) \) with \(N(u) = \{ v, w, u_1, \ldots, u_p \} \), \(N(v) = \{ u, w, v_1, \ldots, v_q \} \), and \(N(w) = \{ v, u, w_1, \ldots, w_r \} \). If \(G' = G - \{ w_i : w_i \in N(w) \setminus \{u,v\} \} + \{w_i : w_i \in N(w) \setminus \{u,v\} \} \), see Figure 4.1, then \(ESO(G') > ESO(G) \).

Proof. Note that \(d_{G'}(w) = p + r + 2, d_{G'}(w) = 2 \), and degrees of other vertices remain the same. Hence, we have

\[
ESO(G') - ESO(G) = \left((d_{G'}(u) + d_{G'}(w))\sqrt{d_{G'}^2(u) + d_{G'}^2(w)} + (d_{G'}(w) + d_{G'}(v))\sqrt{d_{G'}^2(w) + d_{G'}^2(v)} \right)
\]

\[
+ (d_{G'}(u) + d_{G'}(v))\sqrt{d_{G'}^2(u) + d_{G'}^2(v)} + (p + r)(d_{G'}(u) + 1)\sqrt{d_{G'}^2(u) + 1^2}
\]

\[
+ q(d_{G'}(v) + 1)\sqrt{d_{G'}^2(v) + 1^2} - (d_{G'}(u) + d_{G'}(w))\sqrt{d^2(u) + d^2(w)}
\]

\[
+ (d_{G'}(u) + d_{G'}(v))\sqrt{d^2(w) + d^2(v)} + (d_{G'}(u) + d_{G'}(v))\sqrt{d^2(u) + d^2(v)}
\]

\[
+ p(d_{G'}(u) + 1)\sqrt{d^2(u) + 1^2} + r(d_{G'}(w) + 1)\sqrt{d^2(w) + 1^2} + q(d_{G'}(v) + 1)\sqrt{d^2(v) + 1^2}
\]

\[
= \left((p + r + 4)\sqrt{(p + r + 2)^2 + 4} + (q + 4)\sqrt{(q + 2)^2 + 4} \right)
\]

\[
+ (p + q + r + 4)\sqrt{(p + r + 2)^2 + (q + 2)^2 + (p + r)(p + r + 3)\sqrt{(p + r + 2)^2 + 1}}
\]

\[
+ (q + 3)\sqrt{(q + 2)^2 + 1} - (p + r + 4)\sqrt{(p + 2)^2 + (r + 2)^2}
\]

\[
+ (q + r + 4)\sqrt{(q + 2)^2 + (r + 2)^2} + (p + q + 4)\sqrt{(p + 2)^2 + (q + 2)^2}
\]

\[
+ p(p + 3)\sqrt{(p + 2)^2 + 1 + r(r + 3)\sqrt{(r + 2)^2 + 1} + q(q + 3)\sqrt{(q + 2)^2 + 1}}
\]

\[
> r\sqrt{(p + r + 2)^2 + (q + 2)^2 + 2pr\sqrt{(p + r + 2)^2 + 1}}
\]

\[
+ (q + 4)\sqrt{(q + 2)^2 + 4} - (q + r + 4)\sqrt{(q + 2)^2 + (r + 2)^2}
\]

\[
\geq 2pr\sqrt{(p + r + 2)^2 + 1 + (q + 4)\sqrt{(q + 2)^2 + 4} - (q + 4)\sqrt{(q + 2)^2 + (r + 2)^2}}.
\]
Note that the function $2pr\sqrt{(p+r+2)^2 + 1 + (q+4)\sqrt{(q+2)^2 + 4} - (q+4)\sqrt{(q+2)^2 + (r+2)^2}}$ is strictly increasing in $r \geq 0$ and hence it attains the minimum at $r = 0$. Therefore,

$$ESO(G') - ESO(G) > (q+4)\sqrt{(q+2)^2 + 4} - (q+4)\sqrt{(q+2)^2 + 4} = 0,$$

as desired. \hfill \Box

Lemma 4.2. Let $G = U_n(p, q, 0)$ with $p \geq q \geq 1$ and $p + q = n - 3$. Let $u, v, w \in V(G)$ with $N(u) = \{v, w, u_1, \ldots, u_p\}$, $N(v) = \{u, w, v_1, \ldots, v_q\}$, and $N(w) = \{v, u\}$. If $G' = G - \{uv_i : v_i \in N(v) \setminus \{u, w\}\} + \{wu_i : v_i \in N(v) \setminus \{u, w\}\}$, see Figure 4.2, then $ESO(G') > ESO(G)$.

![Figure 4.2: The transformation used in Lemma 4.2.](image)

Proof. We note that $d_{G'}(u) = p + q + 2$, $d_{G'}(v) = 2$, and degrees of other vertices remain the same. Hence, we have

$$ESO(G') - ESO(G) = \left((d_{G'}(u) + d_{G'}(v))\sqrt{d_{G'}(u) + d_{G'}(v)} + (d_{G'}(u) + d_{G'}(w))\sqrt{d_{G'}(u) + d_{G'}(w)}\right.$$

$$+ (d_{G'}(v) + d_{G'}(w))\sqrt{d_{G'}(v) + d_{G'}(w)} + (p + q)(d_{G'}(u) + 1)\sqrt{d_{G'}(u) + 1^2}\right)$$

$$- \left((d(u) + d(v))\sqrt{d(u) + d(v)} + (d(u) + d(w))\sqrt{d(u) + d(w)}\right.$$

$$+ (d(v) + d(w))\sqrt{d(v) + d(w)} + p(d(u) + 1)\sqrt{d(u) + 1^2} + q(d(v) + 1)\sqrt{d(v) + 1^2}\right)$$

$$= \left(2(p + q + 4)\sqrt{(p + q + 2)^2 + 4 + 8\sqrt{2} + (p + q)(q + 3)\sqrt{(p + q + 2)^2 + 1}\right)$$

$$- \left((p + q + 4)\sqrt{(p + 2)^2 + (q + 2)^2 + (p + 4)(q + 4)\sqrt{(q + 2)^2 + 4}\right.\right.$$

$$+ p(p + 3)\sqrt{(p + 2)^2 + 1 + q(q + 3)\sqrt{(q + 2)^2 + 1}\right)$$

$$\geq 2pq\sqrt{(p + q + 2)^2 + 1 + 8\sqrt{2} - 2\sqrt{(p + 2)^2 + 4} - 2\sqrt{(q + 2)^2 + 4}.}

Note that the function $2pq\sqrt{(p + q + 2)^2 + 1 - 2\sqrt{(p + 2)^2 + 4} - 2\sqrt{(q + 2)^2 + 4}$ is strictly increasing for $q \geq 1$ and attains its minimum at $q = 1$. Hence,

$$ESO(G') - ESO(G) \geq 2p\sqrt{(p + 3)^2 + 1 + 8\sqrt{2} - 2\sqrt{(p + 2)^2 + 4} - 2\sqrt{(q + 2)^2 + 4}.}

The function $2p\sqrt{(p + 3)^2 + 1 - 2\sqrt{(p + 2)^2 + 4} + 4}$ is strictly increasing for $p \geq 1$ and attains its minimum at $p = 1$. Therefore,

$$ESO(G') - ESO(G) \geq 2\sqrt{17} + 8\sqrt{2} - 2\sqrt{13} - 2\sqrt{13} > 0,$$

as desired. \hfill \Box

Theorem 4.1. If $G \in U_n$ is a unicyclic graph with the maximum elliptic Sombor index, then $G \cong U_n(n - 3, 0, 0)$ and

$$ESO(G) = 2(n - 1)\sqrt{(n - 1)^2 + 4 + n(n - 3)\sqrt{(n - 1)^2 + 1 + 8\sqrt{2}}.}

Proof. By Lemma 2.3 (edge-lifting transformation), G is of the form $U_n(p, q, r)$, with $p \geq q \geq r \geq 0$ and $p + q + r = n - 3$. By Lemma 4.1 and Lemma 4.2, $ESO(U_n(p, q, r)) < ESO(U_n(p + r, q, 0))$ and $ESO(U_n(p, q, 0)) < ESO(U_n(p + q, 0, 0))$, respectively. Therefore, $G \cong U_n(n - 3, 0, 0).$ \hfill \Box
Lemma 4.3. Let $G \in U_n$ be a graph and C_n be its unique cycle. Let $v \in V(C_n)$ be a vertex of degree 3 in G such that $N(v) = \{a, b, v_1\}$, where $a, b \in V(C_n)$. If $P_t = vv_1 v_2 \ldots v_t, t \geq 1$, is an induced sub-path in G and if $G' = G - vb + v_1 b$ (see Figure 4.3), then $ESO(G') \leq ESO(G)$.

Proof. For convenience, let $d(a) = a$ and $d(b) = b$. Certainly, $a, b \geq 2$.

Case 1. $t = 1$.
Note that $d(v_1) = 1, d_{G'}(v) = 2$, and $d_{G'}(v_1) = 2$. Hence, we have
\[
ESO(G) - ESO(G') = \left((d(v) + d(a))\sqrt{d^2(v) + d^2(a)} + (d(v) + d(v_1))\sqrt{d^2(v) + d^2(v_1)} + (d(v) + d(b))\sqrt{d^2(v) + d^2(b)} \right) \\
- \left((d_{G'}(v) + d_{G'}(a))\sqrt{d_{G'}^2(v) + d_{G'}^2(a)} + (d_{G'}(v) + d_{G'}(v_1))\sqrt{d_{G'}^2(v) + d_{G'}^2(v_1)} \right) \\
+ (d_{G'}(v_1) + d_{G'}(b))\sqrt{d_{G'}^2(v_1) + d_{G'}^2(b)}
\]
\[
= (a + 3)\sqrt{a^2 + 9 + 4\sqrt{10}} + (b + 3)\sqrt{b^2 + 9} - (a + 2)\sqrt{a^2 + 4 + 8\sqrt{2}} + (b + 2)\sqrt{b^2 + 4} \\
\geq (a + 3)\sqrt{a^2 + 9} - (a + 2)\sqrt{a^2 + 4 + 8\sqrt{2}} > 0.
\]

Case 2. $t \geq 3$.
In this case, we have $d(v_1) = d(v_2) = 2, d_{G'}(v) = 2$, and $d_{G'}(v_1) = 3$. Hence,
\[
ESO(G) - ESO(G') = \left((d(v) + d(a))\sqrt{d^2(v) + d^2(a)} + (d(v) + d(v_1))\sqrt{d^2(v) + d^2(v_1)} \right) \\
+ (d(v_1) + d(v_2))\sqrt{d^2(v_1) + d^2(v_2)} \\
- \left((d_{G'}(v) + d_{G'}(a))\sqrt{d_{G'}^2(v) + d_{G'}^2(a)} + (d_{G'}(v) + d_{G'}(v_1))\sqrt{d_{G'}^2(v) + d_{G'}^2(v_1)} \right) \\
+ (d_{G'}(v_1) + d_{G'}(v_2))\sqrt{d_{G'}^2(v_1) + d_{G'}^2(v_2)}
\]
\[
= (a + 3)\sqrt{a^2 + 9} - (a + 2)\sqrt{a^2 + 4 + 8\sqrt{2}} + 5\sqrt{13} - 8\sqrt{2} > 0.
\]

Case 3. $t = 2$.
Note that $d(v_1) = 2, d(v_2) = 1, d_{G'}(v) = 2$, and $d_{G'}(v_1) = 3$. Hence, we have
\[
ESO(G) - ESO(G') = \left((d(v) + d(a))\sqrt{d^2(v) + d^2(a)} + (d(v) + d(v_1))\sqrt{d^2(v) + d^2(v_1)} \right) \\
+ (d(v_1) + d(v_2))\sqrt{d^2(v_1) + d^2(v_2)} \\
- \left((d_{G'}(v) + d_{G'}(a))\sqrt{d_{G'}^2(v) + d_{G'}^2(a)} + (d_{G'}(v) + d_{G'}(v_1))\sqrt{d_{G'}^2(v) + d_{G'}^2(v_1)} \right) \\
+ (d_{G'}(v_1) + d_{G'}(v_2))\sqrt{d_{G'}^2(v_1) + d_{G'}^2(v_2)}
\].
Consequently, we have
\[
ESO(G) - ESO(G') = \left((a + 3) \sqrt{a^2 + 9 + 5\sqrt{13} + 3\sqrt{5}} \right) - \left((a + 2) \sqrt{a^2 + 4 + 5\sqrt{13} + 4\sqrt{10}} \right) \\
\geq (a + 3) \sqrt{a^2 + 9} - (a + 2) \sqrt{a^2 + 4 + 3\sqrt{5} - 4\sqrt{10}} > 0.
\]

In all three cases, we obtained the desired inequality.

Theorem 4.2. If \(G \in U_n \) is a unicyclic graph with the minimum elliptic Sombor index, then \(G \cong C_n \) and \(ESO(G) = 8n\sqrt{2} \).

Proof. By Lemma 2.3 (path-lifting inverse transformation) and Lemma 4.3 (cycle-expanding transformation), \(C_n \) is the graph with the minimum elliptic Sombor index in \(U_n \).

Acknowledgments

The authors are very grateful to the referees for their valuable comments and suggestions. This work is supported by the National Natural Science Foundation of China (grant number 12201634) and the Hunan Provincial Natural Science Foundation of China (grant numbers 2020JJ4423 and 2023JJ30070).

References

