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Abstract
Based on a variant of Sury’s polynomial identity established in [Amer. Math. Monthly 121 (2014) 236], new expressions
for various finite Fibonacci (Lucas) sums are derived. The results are extended to Fibonacci and Chebyshev polynomials,
and also to Horadam sequences. In addition to deriving sum relations, the main identities are shown to be very useful in
establishing and discovering divisibility properties of Fibonacci and Lucas numbers.
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1. Introduction

As usual, we use the notation Fn for the nth Fibonacci number and Ln for the nth Lucas number, respectively. Both
number sequences are defined, for n ∈ Z, through the same recurrence relation xn = xn−1 +xn−2, n ≥ 2, with initial values
F0 = 0, F1 = 1, and L0 = 2, L1 = 1, respectively. For negative subscripts, we have F−n = (−1)n−1Fn and L−n = (−1)nLn.
They possess the explicit formulas (Binet forms) given by

Fn =
αn − βn

α− β
, Ln = αn + βn, n ∈ Z,

where α = (1 +
√

5)/2 is the golden section and β = −1/α. For more information about these famous sequences we refer,
among others, to the books by Koshy [10] and Vajda [18]. In addition, one can consult the On-Line Encyclopedia of Integer
Sequences [15], where these sequences are listed under the IDs A000045 and A000032, respectively.

In 2014, Sury [17] presented a polynomial identity in two variables u and v of the following form:

(2u)n+1 − (2v)n+1 = (u− v)

n∑
j=0

((2u)j + (2v)j)(u+ v)n−j . (1)

As it contains the relation
2n+1Fn+1 =

n∑
j=0

2jLj , (2)

as a special instance, Sury called (1) a polynomial parent to (2). It is obvious that identity (2) can be derived directly using
the geometric series. A slightly more general result is

2n+1Fn+r+1 − Fr =

n∑
j=0

2jLj+r,

and also
1

5

(
2n+1Ln+r+1 − Lr

)
=

n∑
j=0

2jFj+r,

or even
2n+1Gn+r+1 −Gr =

n∑
j=0

2j (Gj+r+1 +Gj+r−1) ,

where r is an integer and Gn is a Gibonacci sequence, i.e., a sequence given by G0 = a, G1 = b, and Gn = Gn−1 +Gn−2 for
n ≥ 2. In 2018, Philippou and Dafnis [13] generalized identity (2) to the Fibonacci and Lucas numbers of order k.
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In this paper, a variant of Sury’s polynomial identity is applied to derive new expressions for various finite Fibonacci
(Lucas) sums. Some divisibility properties for Fibonacci (Lucas) numbers from these sums are inferred. Some divisi-
bility properties were also studied by Hoggatt and Bergum [7] and in the recent articles by Sury [16], Pongsriiam [14]
and Onphaeng and Pongsriiam [12], among others. Extensions of the obtained results to Fibonacci (Lucas) polynomials,
Chebyshev polynomials, and finally to Horadam sequences, are also provided.

2. Primary results

The polynomial identity given in the next lemma is a variant of Sury’s identity and is of crucial importance in this paper.

Lemma 2.1. If x and y are any complex variables and n is any integer, then

f(x, y) =

n∑
j=0

(xy)j
(
xn−2j + yn−2j

)
=

n∑
j=0

(
x+ y

2

)j (
xn−j + yn−j

)
(3)

and
f(x, y) =

2(xn+1 − yn+1)

x− y
(x 6= y). (4)

In addition to deriving sum relations, identities (3) and (4) are going to be very useful in establishing and discovering
divisibility properties of Fibonacci and Lucas numbers.

Theorem 2.1. If r and n are any integers, then
n∑

j=0

(−1)rjLr(n−2j) =

n∑
j=0

(
Lr

2

)j

Lr(n−j) =
2Fr(n+1)

Fr
. (5)

Proof. Set x = αr and y = βr in (3), and use (4) and the Binet formulas.

Theorem 2.1 offers a new simple proof of a well-known fact concerning the divisibility of Fibonacci numbers.

Corollary 2.1. If m and r are integers, then Fr divides Fmr.

Theorem 2.2. If r and n are any integers, then

2n∑
j=0

(−1)j(r+1)L2r(n−j) =

n∑
j=0

(
Fr

2

)2j

5jL2r(n−j) +

n∑
j=1

(
Fr

2

)2j−1

5jFr(2n−2j+1) =
2Lr(2n+1)

Lr
, (6)

and
2n−1∑
j=0

(−1)j(r+1)Fr(2n−2j−1) =

n−1∑
j=0

(
Fr

2

)2j

5jFr(2n−2j−1) +

n∑
j=1

(
Fr

2

)2j−1

5j−1Lr(2n−2j) =
2F2rn

Lr
. (7)

Proof. Write (3) as
2n∑
j=0

(xy)j
(
x2n−2j + y2n−2j

)
=

n∑
j=0

(
x+ y

2

)2j (
x2n−2j + y2n−2j

)
+

n∑
j=1

(
x+ y

2

)2j−1 (
x2n−2j+1 + y2n−2j+1

)
;

(8)

set x = αr and y = −βr and combine according to the Binet formulas; thereby proving (6). To prove (7), write (3) as

2n−1∑
j=0

(xy)j
(
x2n−2j−1 + y2n−2j−1

)
=

n−1∑
j=0

(
x+ y

2

)2j (
x2n−2j−1 + y2n−2j−1

)
+

n∑
j=1

(
x+ y

2

)2j−1 (
x2n−2j + y2n−2j

)
;

(9)

set x = αr and y = −βr. Finish the proof in both cases using (4).
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Corollary 2.2. If m is an odd integer, then Lr divides Lmr. Also, if m is an even integer, then Lr divides Fmr.

Theorem 2.3. If r is a positive integer such that r 6= 1, then
n∑

j=0

F j
rF

n−j
r−1 Lj =

n∑
j=0

1

2j+1

(
Fn−j
r Ln+j(r−1) + Fn−j

r−1 Lrj

)

=
Fn+2
r Ln + Fr−1F

n+1
r Ln+1 + FrF

n+1
r−1 − 2Fn+2

r−1

F 2
r + FrFr−1 − F 2

r−1

(10)

and
n∑

j=0

F j
rF

n−j
r−1 Fj =

n∑
j=0

1

2j+1

(
Fn−j
r Fn+j(r−1) + Fn−j

r−1 Frj

)

=
Fn+2
r Fn + Fr−1F

n+1
r Fn+1 − FrF

n+1
r−1

F 2
r + FrFr−1 − F 2

r−1

.

(11)

Proof. Set (x, y) = (αFr, Fr−1) and (x, y) = (βFr, Fr−1), in turn, in (3) and (4), respectively. Use the relations

αFr + Fr−1 = αr and βFr + Fr−1 = βr

and combine using the Binet formulas.

Corollary 2.3. If r is a non-zero integer and n is any positive integer, then

F 2
r + FrFr−1 − F 2

r−1 | Fn+2
r Ln + Fr−1F

n+1
r Ln+1 + FrF

n+1
r−1 − 2Fn+2

r−1 ,

F 2
r + FrFr−1 − F 2

r−1 | Fn+2
r Fn + Fr−1F

n+1
r Fn+1 − FrF

n+1
r−1 .

In particular,

5 | (2nLn+1 − 1),

11 | (3n(Fn+2 + Ln+1)− 2n+1),

11 | (3n+1(Ln+2 + 5Fn+1)− 2n+1).

Theorem 2.4. If r is a non-zero integer and n is a non-negative integer, then

2

n∑
j=0

(−1)r(n−j)L2rj =

n∑
j=0

(Lr

2

)j (
Lr(2n−j) + (−1)r(n−j)Lrj

)

= 2
(−1)r+1L2r(n+1) − (−1)r(n+1)L2r + L2rn + 2(−1)rn

(−1)r+15F 2
r

(12)

and

2

n∑
j=0

(−1)r(n−j)F2rj =

n∑
j=0

(Lr

2

)j (
Fr(2n−j) + (−1)r(n−j)Frj

)

= 2
(−1)r+1F2r(n+1) + (−1)r(n+1)F2r + F2rn

(−1)r+15F 2
r

.

(13)

Proof. Set (x, y) = (α2r, (−1)r) and (x, y) = (β2r, (−1)r), in turn, in (3) and (4), respectively. Use the relations

α2r + (−1)r = αrLr and β2r + (−1)r = βrLr

and combine using the Binet formulas.
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Corollary 2.4. If r is a non-zero integer and n is any positive integer, then

5F 2
r | (−1)r+1F2r(n+1) + (−1)r(n+1)F2r + F2rn.

Remark 2.1. We also have that

5F 2
r | (−1)r+1L2r(n+1) − (−1)r(n+1)L2r + L2rn + 2(−1)rn.

But this is obvious as

(−1)r+1L2r(n+1) − (−1)r(n+1)L2r + L2rn + 2(−1)rn = (−1)r+15FrF2rn+r − (−1)r(n+1)5F 2
r

and because Fr|Fr(2n+1).

Theorem 2.5. If n and r are any integers, then

n∑
j=0

Lj
2r2n−j+1 =



n∑
j=0

(
L2
r

2

)j (
Ln−j
2r + 2n−j

)
, if r is even;

n∑
j=0

(
5F 2

r

2

)j (
Ln−j
2r + 2n−j

)
, if r is odd;

=


2(Ln+1

2r − 2n+1)

5F 2
r

, if r is even;

2(Ln+1
2r − 2n+1)

L2
r

, if r is odd.

(14)

Proof. Set x = L2r and y = 2 in (3) and (4), respectively, and use

L2r + 2 =

5F 2
r , r odd;

L2
r, r even.

Corollary 2.5. If r is a non-zero integer and n is any positive integer, then

5F 2
r | (Ln+1

2r − 2n+1), if r is even,

L2
r | (Ln+1

2r − 2n+1), if r is odd.

Theorem 2.6. If r and n are any integers, then

2

n∑
j=0

(−1)rj4jF 2n−2j
r 5n−j =

n∑
j=0

(
L2
r

2

)j (
5n−jF 2(n−j)

r + (−1)r(n−j)4n−j
)

= 2
(5F 2

r )n+1 − (−1)r(n+1)4n+1

5F 2
r − (−1)r4

.

(15)

Proof. Set x = 5F 2
r and y = (−1)r4 in (3) and (4), respectively, and use the identity 5F 2

r + (−1)r4 = L2
r.

Theorem 2.7. If r, n and t are any integers, then

2n∑
j=0

Lj
rL

2n−j
r−1 Lj+t =

n∑
j=0

5j

22j+1

(
L2n−2j
r L2n−2j+2jr+t + L2n−2j

r−1 L2jr+t

)

+

n∑
j=1

5j

22j

(
L2n−2j+1
r F2n−2j+(2j−1)r+t + L2n−2j+1

r−1 F(2j−1)r+t

)

=
L2n+1
r (LrL2n+t + Lr−1L2n+t+1)− L2n+1

r−1 (LrLt−1 + Lr−1Lt)

Lr−2Lr+1 + LrLr−1

(16)
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and
2n∑
j=0

Lj
rL

2n−j
r−1 Fj+t =

n∑
j=0

5j

22j+1

(
L2n−2j
r F2n−2j+2jr+t + F 2n−2j

r−1 F2jr+t

)

+

n∑
j=1

5j

22j

(
L2n−2j+1
r L2n−2j+(2j−1)r+t + L2n−2j+1

r−1 L(2j−1)r+t

)

=
L2n+1
r (LrF2n+t + Lr−1F2n+t+1)− L2n+1

r−1 (LrFt−1 + Lr−1Ft)

Lr−2Lr+1 + LrLr−1
.

(17)

Proof. Set x = αLr and y = Lr−1 in (8), noting that

αLr + Lr−1 = αr
√

5. (18)

Multiply through the resulting equation by αt. Use 2αs = Ls + Fs

√
5 to reduce the resulting equation. Finally, compare

the coefficients of
√

5.

Corollary 2.6. If r, n and t are any integers, then

Lr−2Lr+1 + LrLr−1 | L2n+1
r (LrL2n+t + Lr−1L2n+t+1)− L2n+1

r−1 (LrLt−1 + Lr−1Lt) , (19)

Lr−2Lr+1 + LrLr−1 | L2n+1
r (LrF2n+t + Lr−1F2n+t+1)− L2n+1

r−1 (LrFt−1 + Lr−1Ft) . (20)

In particular,

11 | 32n+1 (L2n + 5F2n+1) + 1,

11 | 9n (F2n + L2n+1)− 1.

Theorem 2.8. If r, k, s and n are any integers with k 6= −r and k 6= −s, then

2

n∑
j=0

(−1)(k+s)jLj
r−sL

n−j
2k+r+s =

n∑
j=0

(
Lk+rLk+s

2

)j (
Ln−j
2k+r+s + (−1)(k+s)(n−j)Ln−j

r−s

)

= 2
Ln+1
2k+r+s − (−1)(k+s)(n+1)Ln+1

r−s

5Fk+rFk+s
.

(21)

Proof. Set x = L2k+r+s and y = (−1)k+sLr−s in (3) and (4), respectively, and use the identities [18]

L2k+r+s + (−1)k+sLr−s = Lk+rLk+s,

L2k+r+s − (−1)k+sLr−s = 5Fk+rFk+s.

Corollary 2.7. If r, k, s are integers and n is any non-negative integer, then

5Fk+rFk+s | (Ln+1
2k+r+s − (−1)(k+s)(n+1)Ln+1

r−s ). (22)

In particular,
5F 2

k+r | (Ln+1
2(k+r) − (−1)(k+r)(n+1)2n+1). (23)

3. Extension to Fibonacci polynomials

Fibonacci (Lucas) polynomials are polynomials that can be defined by the Fibonacci-like recursion and generalizing Fi-
bonacci (Lucas) numbers. For any integer n ≥ 0, the Fibonacci polynomials {Fn(x)}n≥0 are defined by the second-order
recurrence relation

F0(x) = 0, F1(x) = 1, Fn+1(x) = xFn(x) + Fn−1(x),

while the Lucas polynomials {Ln(x)}n≥0 follow the rule

L0(x) = 2, L1(x) = x, Ln+1(x) = xLn(x) + Ln−1(x).
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Their Binet forms are given by
Fn(x) =

αn(x)− βn(x)

α(x)− β(x)
, Ln(x) = αn(x) + βn(x),

where
α(x) =

x+
√
x2 + 4

2
and β(x) =

x−
√
x2 + 4

2
.

One checks easily that F−n(x) = (−1)n−1Fn(x) and L−n(x) = (−1)nLn(x).

Theorem 3.1. For any non-negative integer n we have
n∑

j=0

(−1)jLn−2j(x) =

n∑
j=0

(x
2

)j
Ln−j(x) = 2Fn+1(x). (24)

Proof. Apply Lemma 2.1 inserting x = α(x) and y = β(x).

Corollary 3.1. For any non-negative integer n,
n∑

j=0

(−1)jQn−2j =

n∑
j=0

Qn−j = 2Pn+1, (25)

where Pn = Fn(2) and Qn = Ln(2) are the Pell and Pell-Lucas numbers, respectively.

Proof. Insert x = 2 and use Fn(2) = Pn and Ln(2) = Qn, respectively.

Remark 3.1. We mention that a different proof of Theorem 2.1 can be provided by inserting x = Lr, r odd, and x = iLr, r
even, i =

√
−1, in Theorem 3.1 and making use of

Ln(Lr) = Lrn, Fn(Lr) =
Frn

Fr
, r odd,

and
Ln(iLr) = inLrn, Fn(iLr) = in−1Frn

Fr
, r even.

Theorem 3.2. For any non-negative integer n and any x 6= 0,
n∑

j=0

L2(n−2j)(x) =

n∑
j=0

(x2 + 2

2

)j
L2(n−j)(x) =

2

x
F2(n+1)(x). (26)

Proof. Apply Theorem 3.1 with x = i(x2 + 1), i =
√
−1, and use

Fn(i(x2 + 1)) = in−1F2n(x)

x
and Ln(i(x2 + 1)) = inL2n(x).

Theorem 3.3. For any non-negative integer n, any positive integer r, and any x 6= 0,

2

n∑
j=0

F j
r−1(x)Fn−j

r+1 (x) =

n∑
j=0

(Lr(x)

2

)j (
Fn−j
r+1 (x) + Fn−j

r−1 (x)
)

= 2
Fn+1
r+1 (x)− Fn+1

r−1 (x)

xFr(x)
. (27)

Corollary 3.2. For any n ≥ 0 and m ≥ 1,

Fn
mLmFrm | Fn+1

m(r+1) − F
n+1
m(r−1), m odd, (28)

and
Fn
mLmFrm | Fn+1

m(r+1) + (−1)nFn+1
m(r−1), m even. (29)
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4. Extension to Chebyshev polynomials

Recall that, for any integer n ≥ 0, the Chebyshev polynomials {Tn(x)}n≥0 of the first kind are defined by the second-order
recurrence relation [11] given as

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x), (30)

while the Chebyshev polynomials {Un(x)}n≥0 of the second kind are defined by

U0(x) = 1, U1(x) = 2x, Un+1(x) = 2xUn(x)− Un−1(x). (31)

The sequences Tn(x) and Un(x) have the exact (Binet) formulas

Tn(x) =
1

2

(
(x+

√
x2 − 1)n + (x−

√
x2 − 1)n

)
, (32)

Un(x) =
1

2
√
x2 − 1

(
(x+

√
x2 − 1)n+1 − (x−

√
x2 − 1)n+1

)
. (33)

Also, we have T−n(x) = Tn(x) and U−n(x) = −Un−2(x). More information about these polynomials can be found in the book
by Mason and Handscomb [11] and also in the recent articles by Frontczak and Goy [6], Fan and Chu [5], and Adegoke et
al. [3].

Theorem 4.1. For any integer n we have
n∑

j=0

Tn−2j(x) =

n∑
j=0

xjTn−j(x) = Un(x). (34)

Proof. Apply Lemma 2.1 inserting x 7→ x+
√
x2 + 1 and y 7→ x−

√
x2 + 1.

Although (34) offers a very appealing relation we have learnt that it is not new. It was proved by completely other
methods in 1985 by Boscarol [4].

5. Extension to the Horadam sequence

Lemma 2.1 in the form
f(x, y) =

n∑
j=0

xjyn−j =

n∑
j=0

(x+ y)j

2j+1

(
xn−j + yn−j

)
=
xn+1 − yn+1

x− y
(35)

readily allows sum relations to be derived for the Horadam sequence and divisibility properties to be established.
Let {wn(a, b; p, q)}n≥0 be the Horadam sequence [9] defined for all non-negative integers n by the recurrence

w0 = a, w1 = b; wn = pwn−1 − qwn−2, n ≥ 2, (36)

where a, b, p and q are arbitrary complex numbers, with p 6= 0 and q 6= 0. Extension of the definition of wn(a, b; p, q) to
negative subscripts is provided by writing the recurrence relation as

w−n =
1

q
(pw−n+1 − w−n+2)

where, for brevity, we wrote (and will write) wn for wn(a, b; p, q).

Two important cases of wn are the Lucas sequences of the first kind, un(p, q) = wn(0, 1; p, q), and of the second kind,
vn(p, q) = wn(2, p; p, q). The most well-known Lucas sequences are the Fibonacci sequence Fn = un(1,−1) and the sequence
of Lucas numbers Ln = vn(1,−1).

The Binet formulas for sequences un, vn and wn in the non-degenerate case, p2 − 4q > 0, are

un =
τn − σn√
p2 − 4q

=
τn − σn

∆
, vn = τn + σn, wn = Aτn +Bσn, (37)

with
∆ =

√
p2 − 4q, A =

b− aσ
∆

, and B =
aτ − b

∆
,

where
τ = τ(p, q) =

p+ ∆

2
and σ = σ(p, q) =

p−∆

2

are the distinct zeros of the characteristic polynomial x2 − px+ q of the Horadam sequence.
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In this section, we will make use of the following known results.

Lemma 5.1. If a, b, c and d are rational numbers and λ is an irrational number, then

a+ b λ = c+ d λ ⇐⇒ a = c, b = d.

Lemma 5.2. For any integer s,

qs + τ2s = τsvs, qs − τ2s = −∆τsus, (38)

qs + σ2s = σsvs, qs − σ2s = ∆σsus. (39)

In particular,

(−1)s + α2s = αsLs, (−1)s − α2s = −
√

5αsFs, (40)

(−1)s + β2s = βsLs, (−1)s − β2s =
√

5βsFs. (41)

Lemma 5.3. Let r and s be any integers. Then

vr+s − τ rvs = −∆σsur, (42)

vr+s − σrvs = ∆τsur, (43)

ur+s − τ rus = σsur, (44)

ur+s − σrus = τsur. (45)

In particular, [8],

Lr+s − Lrα
s = −

√
5βrFs, Lr+s − Lrβ

s =
√

5αrFs, (46)

Fr+s − Frα
s = βrFs, Fr+s − Frβ

s = αrFs. (47)

Lemma 5.4. For any integer n,

Aτn −Bσn =
wn+1 − qwn−1

∆
, (48)

Aσn +Bτn = qnw−n. (49)

Proof. See [2, Lemma 1] for a proof of (48). Identity (49) is a consequence of the Binet formula.

Lemma 5.5. The following identities hold for integers n, m and r:

τ rum−s = τmur−s − qm−sτsur−m , (50)

σrum−s = σmur−s − qm−sσsur−m , (51)

τ rum−s∆ = τmvr−s − qm−sτsvr−m (52)

amd
σrum−s∆ = −σmvr−s + qm−sσsvr−m . (53)

Proof. These are immediate consequences of the Binet formulas.

Lemma 5.6. If m and n are integers, then [1]

un+m − qmun−m = umvn, (54)
vn+m − qmvn−m = ∆2umun, (55)
un+m + qmun−m = vmun, (56)

and
vn+m + qmvn−m = vmvn. (57)
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In the next result, we give a generalization of Theorem 2.1.

Theorem 5.1. If r, n and t are any integers with r 6= 0, then
n∑

j=0

qrjwr(n−2j)+t = wt

n∑
j=0

vjrvr(n−j)

2j+1

=
wt+1+r(n+1) − qr(n+1)wt+1−r(n+1)

ur∆2
−
q
(
wt−1+r(n+1) − qr(n+1)wt−1−r(n+1)

)
ur∆2

(58)

Proof. Set (x, y) = (τ r, σr) and (x, y) = (σr, τ r), in turn in (35) and use the Binet formulas and Lemma 5.4. Note also the
use of [9, Equation (3.16)]:

wr+s + qswr−s = vswr.

Corollary 5.1. If r and n are any integers, then
n∑

j=0

qrjur(n−2j) = 0.

Corollary 5.2. If n is any integer, then
n∑

j=0

qjvn−2j =

n∑
j=0

(p
2

)j
vn−j = 2un+1.

Corollary 5.3. If r, n and t are any integers with r 6= 0, then

ur∆2 | wt+1+r(n+1) − qr(n+1)wt+1−r(n+1) − q
(
wt−1+r(n+1) − qr(n+1)wt−1−r(n+1)

)
,

provided both quantities are integers.

In particular, on account of (54) and (55), we have

ur∆2 | ur(n+1),

ur | ur(n+1).

Remark 5.1. Doing the transformation j → n− j followed by t→ t+ rn, we get an equivalent form of (58) given by

2

n∑
j=0

qr(n−j)w2rj+t =

n∑
j=0

(vr
2

)j (
wr(2n−j)+t + qr(n−j)wrj+t

)

= 2
wr(2n+1)+t+1 − qwr(2n+1)+t−1 − qr(n+1) (wt−r+1 − qwt−r−1)

ur∆2
.

In the next theorem, we present a generalization of Theorem 2.3.

Theorem 5.2. Let m, n, r, s and t be any integers. Then
n∑

j=0

(−1)jq(m−s)jun−j
r−su

j
r−mw(s−m)j+mn+t

=

n∑
j=0

ujm−s

2j+1

(
un−j
r−sw(r−m)j+mn+t + (−1)n−jq(m−s)(n−j)un−j

r−mws(n−j)+t+rj

)

=
un+2
r−swmn+t + un+1

r−sur−mwmn+m+t−s

u2r−s + qm−su2r−m + ur−sur−mvm−s

+
(−1)nun+1

r−m

(
q(m−s)(n+1)+mur−swsn+s+t−m + q(m−s)(n+2)+sur−mwsn+t

)
qmu2r−s + q2m−su2r−m + qmur−sur−mvm−s

.
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Proof. Set (x, y) = (τmur−s,−qm−sτsur−m) and (x, y) = (σmur−s,−qm−sσsur−m), in turn, in (35). Multiply through the τ
equation by τ t and the σ equation by σt. Use the Binet formula and Lemma 5.5.

Corollary 5.4. Let m, n, r, s and t be integers such that t is non-negative and r ≥ m ≥ s ≥ 0. Let

X = X(m,n, r, s, t) := qmu2r−s + q2m−su2r−m + qmur−sur−mvm−s

and
Y = Y (m,n, r, s, t) := qmun+2

r−swmn+t + qmun+1
r−sur−mwmn+m+t−s

+ (−1)nun+1
r−m

(
q(m−s)(n+1)+mur−swsn+s+t−m + q(m−s)(n+2)+sur−mwsn+t

)
.

Then X | Y , provided that the Horadam sequence parameters p, q, a and b are integers.

The next set of results generalizes Theorem 2.2.

Theorem 5.3. If n, r and t are any integers, then
2n∑
j=0

(−1)jqrjw2r(n−j)+t =
wt

2

n∑
j=0

(
u2r∆2

4

)j

v2r(n−j) +
wt

ur

n∑
j=1

(
u2r∆2

4

)j

ur(2n−2j+1) =
wtvr(2n+1)

vr

and
2n−1∑
j=0

(−1)jqrjwr(2n−1−2j)+t =
wt+1 − qwt−1

2

n−1∑
j=0

(
u2r∆2

4

)j

ur(2n−2j−1) +
wt+1 − qwt−1

ur∆2

n∑
j=1

(
u2r∆2

4

)j

vr(2n−2j)

=
wt+2rn − q2rnwt−2rn

vr
.

(59)

Proof. As the steps in the proofs are clear, we omit the details. Choose (x, y) = (αr,−βr) and (x, y) = (βr,−αr), in turn,
and multiply through by αt and βt, respectively. Combine, using the Binet formula and Lemma 5.4. The proof of (59) is
similar.

Corollary 5.5. Let m be any positive odd integer and n any positive even integer. Let r and t be any non-negative integers.
Then

vr | vrm,

vr | wt+rn − qrnwt−rn;

provided that the Horadam sequence parameters p, q, a and b are integers. In particular, vr | urn.

Corollary 5.6. If r, n and t are any integer, then
2n∑
j=0

(−1)jqrju2r(n−j) = 0,

2n−1∑
j=0

(−1)jqrjvr(2n−1−2j) = 0,

2n−1∑
j=0

(−1)jqrjur(2n−1−2j)+t =

n−1∑
j=0

(
u2r∆2

4

)j

ur(2n−2j−1) +
2

ur∆2

n∑
j=1

(
u2r∆2

4

)j

vr(2n−2j) = 2
u2rn
vr

,

and
2n∑
j=0

(−1)jqrjv2r(n−j) =

n∑
j=0

(
u2r∆2

4

)j

v2r(n−j) +
2

ur

n∑
j=1

(
u2r∆2

4

)j

ur(2n−2j+1) =
2vr(2n+1)

vr
.

6. Conclusion

Using a variant of Sury’s polynomial identity, we derived several new expressions for finite Fibonacci and Lucas sums.
These sum relations have been shown to be very useful in establishing and discovering divisibility properties of Fibonacci
and Lucas numbers. We extended our results to Fibonacci and Chebyshev polynomials, and also to Horadam sequences.
The findings may offer valuable insights that extend the understanding of these prominent (polynomial) sequences.
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