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Abstract

The first and second general Zagreb indices,Mα
1 andMα

2 , are the sum of the terms δ(u)α+δ(v)α and δ(u)α·δ(v)α, respectively,
over all pairs of adjacent vertices u, v of a graph, where δ(x) is the degree of the vertex x, and α is a real number. For α = 1,
Mα

1 and Mα
2 are equal to the ordinary first and second Zagreb indices. For some other values of α, Mα

1 and Mα
2 reduce to a

variety of other, earlier considered, topological indices. In this paper, we establish expressions for Mα
1 and Mα

2 for several
types of composite graphs, and give examples pointing at possible applications of these expressions.
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1. Introduction

Throughout this paper, we consider simple finite connected graphs. The vertex and edge sets of a graph G are denoted
by V (G) and E(G), respectively. The degree of the vertex u ∈ V (G) is the number of edges incident with this vertex and
is denoted by δG(u). In the mathematical and chemical literature, numerous graph invariants defined in terms of vertex
degrees are being studied [8, 22]. Of these, the oldest and most thoroughly investigated are the first and second Zagreb
indices [5,6,9,19], defined as

M1(G) =
∑

v∈V (G)

δG(v)2 =
∑

uv∈E(G)

[
δG(u) + δG(v)

]
and

M2(G) =
∑

uv∈E(G)

δG(u) δG(v) ,

and the Randić connectivity index [16,21], defined as

R(G) =
∑

uv∈E(G)

1√
δG(u) δG(v)

.

All these three indices were invented in the 1970s [11,12,20].
In the present work, we are concerned with the generalized version of the first Zagreb index, defined by Li and Zheng [17]

as
Mα

1 (G) =
∑

v∈V (G)

δG(v)α+1 =
∑

uv∈E(G)

[
δG(u)α + δG(v)α

]
(1)

and with the generalized second Zagreb index,

Mα
2 (G) =

∑
uv∈E(G)

[
δG(u) δG(v)

]α
, (2)

first considered by Bollobás and Erdős [4]. In formulas (1) and (2), α is a pertinently chosen real number.
Evidently, for α = 1, the first and second general Zagreb indices reduce, respectively, to the ordinary first and second

Zagreb indices. In addition, for α = 2, α = 3, and α = 4, Mα
1 (G) coincides with the forgotten topological index [7], the

Y -index [2, 3], and the S-index [18], respectively, that all have been separately investigated in the earlier literature. The
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so-called zeroth-order Randić index is equal to Mα
1 (G) for α = −3/2 [15]. Therefore, Mα

1 (G) is sometimes referred to as the
“general zeroth-order Randić index” [10,15].

The Randić connectivity index is the special case of Mα
2 (G) for α = −1/2, whereas Mα

2 (G) for α = 2 is the second hyper
Zagreb index [14].

In the subsequent sections, we obtain relations for Mα
1 (G) and Mα

2 (G) of several types of composite graphs. For partic-
ular values of the parameter α, these relations are then applicable, as special cases, to all above-mentioned degree-based
topological indices.

In the next section, we start by considering a simple composite graph. Before that, we introduce an auxiliary vertex-
dependent quantity.

Definition 1.1. Let G be a graph and let “a” be a vertex of G. If v1, v2, . . . , vk, are the vertices of G that are adjacent to “a”
(see Figure 1), we set

AG(a)α =

k∑
i=1

δG(vi)
α .

Figure 1: The vertices of the graph G, adjacent to the vertex “a”.

2. Gluing of two graphs at a vertex

Let H1 and H2 be two graphs. If a1 and a2 are vertices of H1 and H2, respectively, define a new graph G by gluing H1 and
H2 at a vertex “a” that corresponds to a1 in H1 and a2 in H2. To simplify our discussion, we keep the same notation “a” for
both a1 and a2 (see Figure 2), and we set σ = δH1

(a) and τ = δH2
(a).

Figure 2: Gluing of two graphs at a vertex.

Proposition 2.1. Let H1 and H2 be two graphs, and let G be the graph obtained by gluing H1 and H2 at a vertex “a” that
corresponds to a1 in H1 and a2 in H2. Then

Mα
1 (G) = Mα

1 (H1) +Mα
1 (H2) + (σ + τ)α+1 − σα+1 − τα+1 .
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Proof. We have

Mα
1 (G) =

∑
v∈V (H1)\{a}

δα+1
H1

(v) +
∑

v∈V (H2)\{a}

δα+1
H2

(v) + (δH1
(a) + δH2

(a))α+1

= Mα
1 (H1)− δα+1

H1
(a) +Mα

1 (H2)− δα+1
H2

(a) + (δH1
(a) + δH2

(a))α+1

= Mα
1 (H1) +Mα

1 (H2) + (σ + τ)α+1 − σα+1 − τα+1.

Proposition 2.2. Let the notation be same as in Proposition 2.1. Then

Mα
2 (G) = Mα

2 (H1) +Mα
2 (H2) + (AαH1

(a) +AαH2
(a))(σ + τ)α −AαH1

(a)σα −AαH2
(a)τα .

Proof. Let {u1, u2, . . . , ur} be the set of vertices of H1 that are adjacent to a in H1 and let {v1, v2, . . . , vs} be the set of
vertices of H2 that are adjacent to a in H2. We have

Mα
2 (G) =

∑
uv∈E(H1\{a})

δαH1
(u) δαH1

(v) +
∑

uv∈E(H2\{a})

δαH2
(u) δαH2

(v)

+

(
r∑
i=1

δαH1
(ui) +

s∑
i=1

δαH2
(vi)

)
(δH1(a) + δH2(a))

α

= Mα
2 (H1)−

(
r∑
i=1

δαH1
(ui)

)
δαH1

(a) +Mα
2 (H2)−

(
s∑
i=1

δαH2
(vi)

)
δαH2

(a)

+

(
r∑
i=1

δαH1
(ui) +

s∑
i=1

δαH2
(vi)

)
(δH1

(a) + δH2
(a))

α

= Mα
2 (H1) +Mα

2 (H2) + (AαH1
(a) +AαH2

(a))(σ + τ)α −AαH1
(a)σα −AαH2

(a)τα.

Corollary 2.1. Let H be a graph and Cm be a cycle, and let G be the graph obtained by gluing H and Cm at a vertex “a”
that corresponds to a1 in H and a2 in Cm (see Figure 3). Then

(1) Mα
1 (G) = Mα

1 (H) + (m− 1)2α+1 + (σ + 2)α+1 − σα+1.

(2) Mα
2 (G) = Mα

2 (H) + (m− 2)4α + (AαH(a) + 2α+1)(σ + 2)α −AαH(a)σα.

Figure 3: A graph by gluing a graph H and a cycle Cm.

Corollary 2.2. (a) Let Cn and Cm be two cycles, and let G be the graph obtained by gluing Cn and Cm at a vertex “a” (see
Figure 4). Then

Mα
1 (G) = (n+m− 2)2α+1 + 4α+1 and Mα

2 (G) = (n+m− 4)4α + 4 · 8α.
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Figure 4: A graph obtained by gluing two cycles.

(b) Let Cni
, i = 1, 2, 3, . . . , p, be cycles, and let G be the graph resulting by gluing them at a common vertex v. Set

n =
∑p
i=1 ni. Then

Mα
1 (G) = (n− p+ pα+1)2α+1 and Mα

2 (G) = (n− 2p+ 2pα+1)4α .

If we take n1, n2, . . . , np = m in Corollary 2.2(b), then the general Zagreb indices of the Dutch windmill graphDp
m [1,13]

are given by:
Mα

1 (Dp
m) = p(m− 1 + pα)2α+1 and Mα

2 (Dp
m) = p(m− 2 + 2pα)4α .

Corollary 2.3. If Gn is the chain graph obtained by gluing n ≥ 2 copies of a regular graph H (see Figure 5), then

(1) Mα
1 (Gn) = nMα

1 (H) + 2(n− 1)(2α − 1)σα+1 and (2) Mα
2 (Gn) = nMα

2 (H) + 2(n− 1)(2α − 1)AαH(a)σα .

Figure 5: The chain graph Gn obtained by gluing n ≥ 2 copies of a regular graph H.

Proof. (1) If n = 2, then

Mα
1 (G2) = 2Mα

1 (H) + (2σ)α+1 − σα+1 − σα+1

= 2Mα
1 (H)− (2α+1 − 2)σα+1

= 2Mα
1 (H)− 2(2α − 1)σα+1.

Suppose that Mα
1 (Gn−1) = (n− 1)Mα

1 (H) + 2(n− 2)(2α − 1)σα+1 and let us prove it for n.

Mα
1 (Gn) = Mα

1 (Gn−1) +Mα
1 (H) + (2σ)α+1 − 2σα+1

= (n− 1)Mα
1 (H) + 2(n− 2)(2α − 1)σα+1 +Mα

1 (H) + (2α+1 − 2)σα+1

= nMα
1 (H) + 2(n− 1)(2α − 1)σα+1.

(2) If n = 2, then

Mα
2 (G2) = 2Mα

2 (H) + 2AαH(a)(2σ)α − 2AαH(a)σα

= 2Mα
2 (H) + 2(2α − 1)AαH(a)σα.

Suppose that

Mα
2 (Gn−1) = (n− 1)Mα

2 (H) + 2(n− 2)(2α − 1)AαH(a)σα
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and let us prove it for n.

Mα
2 (Gn) = Mα

2 (Gn−1) +Mα
2 (H) + 2AαH(a)(2σ)α − 2AαH(a)σα

= (n− 1)Mα
2 (H) + 2(n− 2)(2α − 1)AαH(a)σα +Mα

2 (H) + 2(2α − 1)AαH(a)σα

= nMα
2 (H) + 2(n− 1)(2α − 1)AαH(a)σα.

If H is a cycle in Corollary 2.3, then

Mα
1 (Gn) = (nm− 2n+ 2)2α+1 + (n− 1)4α+1 and Mα

2 (Gn) = (nm− 4n+ 4)4α + 4(n− 1)8α.

3. Joining of two graphs by a path

Definition 3.1. Let G be a graph and let “a” be a vertex of G. Then for convenience, we set

∆α
G(a) = (δG(a) + 1)α − δαG(a) .

Let H1 and H2 be two graphs. Let a and b be vertices of H1 and H2, respectively. Define a new graph G by joining H1 and
H2 by via a path with the starting vertex “a” of H1 and the ending vertex “b” of H2, (see Figure 6).

Figure 6: Joining two graphs by a path.

Proposition 3.1. Let H1 and H2 be two graphs, and let G be the graph obtained by joining H1 and H2 by a path with a
starting vertex a and an ending vertex b (see Figure 6). Then

Mα
1 (G) = Mα

1 (H1) +Mα
1 (H2) + ∆α+1

H1
(a) + ∆α+1

H2
(b) + (dG(a, b)− 1)2α+1 .

Proof. Let m = d(a, b) ≥ 1. Then there is a path (a, v1, v2, . . . , vm = b) from a to b in G. Set σ = δH1
(a) and τ = δH2

(b),
(see Figure 7). Let H ′1 be the graph that results by gluing H1 to the path (a, v1, v2, . . . , vm) into a, (see Figure 8). In view of
Proposition 2.1, we have

Mα
1 (H ′1) = Mα

1 (H1) + (m− 1)2α+1 + 1α+1 + 1α+1 + (σ + 1)α+1 − σα+1 − 1α+1 .

Notice that G is the graph that results by gluing H ′1 and H2 into b = vm. Once again, by Proposition 2.1, we get

Mα
1 (G) = Mα

1 (H ′1) +Mα
1 (H2) + (τ + 1)α+1 − τα+1 − 1α+1 .

Thus,

Mα
1 (G) = Mα

1 (H1) + (m− 1)2α+1 + 1α+1 + (σ + 1)α+1 − σα+1 +Mα
1 (H2) + (τ + 1)α+1 − τα+1 − 1α+1

= Mα
1 (H1) +Mα

1 (H2) + ∆α+1
H1

(a) + ∆α+1
H2

(b) + (m− 1)2α+1 .
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Figure 7: A graph used in Proposition 3.1.

Figure 8: Gluing of a graph and a path by one vertex.

Proposition 3.2. Let H1 and H2 be two graphs, and let G be a graph obtained by joining H1 and H2 by a path with a
starting vertex a and an ending vertex b (see Figure 6). Set σ = δH1

(a) and τ = δH2
(b).

(1) If dG(a, b) = 1, then

Mα
2 (G) = Mα

2 (H1) +Mα
2 (H2) +AαH1

(a)∆α
H1

(a) +AαH2
(b)∆α

H2
(b) + (σ + 1)α(τ + 1)α .

(2) If dG(a, b) > 1, then

Mα
2 (G) = Mα

2 (H1) +Mα
2 (H2) +AαH1

(a)∆α
H1

(a) +AαH2
(b)∆α

H2
(b) + 2α[(σ + 1)α + (τ + 1)α] + (dG(a, b)− 2)4α .

Figure 9: Gluing of a graph H and an edge at the vertex “a”.

Proof. (1) Suppose that dG(a, b) = 1 (see Figure 9). Let H ′1 be the graph obtained by gluing the graph H1 and the edge av1
at the vertex “a”. By Proposition 2.2, we have

Mα
2 (H ′1) = Mα

2 (H1) + 1α 1α + (AαH1
(a) + 1α)(σ + 1)α −AαH1

(a)σα − 1α 1α,

that is,
Mα

2 (H ′1) = Mα
2 (H1) +AαH1

(a)∆α
H1

(a) + (σ + 1)α .
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Let G be the graph obtained by gluing the graphs H ′1 and H2 via v1 = b (see Figure 10). According to Proposition 2.2, and
because of AαH′1(v1) = (σ + 1)α, we have

Mα
2 (G) = Mα

2 (H ′1) +Mα
2 (H2) + ((σ + 1)α +AαH2

(b))(1 + τ)α − (σ + 1)α −AαH2
(b)τα

= Mα
2 (H1) +Mα

2 (H2) +AαH1
(a)∆α

H1
(a) +AαH2

(b)∆α
H2

(b) + (σ + 1)α(τ + 1)α .

Figure 10: Joining two graphs by an edge.

(2) Let H ′1 be the graph obtained by gluing H to the path a, v1, v2, . . . , vm at the vertex “a”, where m = dG(a, b) ≥ 2, (see
Figures 11 and 12). Let G be the graph obtained by gluing the graphs H ′1 and H2 at the vertex b. Then

Mα
2 (H ′1) = Mα

2 (H1) + 1 · 2α + 1 · 2α + (m− 2)2α · 2α + (AαH1
(a) + 2α)(σ + 1)α −AαH1

(a)σα − 2α · 1,

that is,
Mα

2 (H ′1) = Mα
2 (H1) +AαH1

(a)∆α
H1

(a) + 2α(σ + 1)α + 2α + (m− 2)4α .

It follows that

Mα
2 (G) = Mα

2 (H ′1) +Mα
2 (H2) + ((2α +AαH2

(b))(1 + τ)α − 2α · 1−AαH2
(b)τα

= Mα
2 (H1) +AαH1

(a)∆α
H1

(a) + 2α(σ + 1)α + 2α + (m− 2)4α + 2α(τ + 1)α +AαH2
(b)∆α

H2
(b)− 2α +Mα

2 (H2)

= Mα
2 (H1) +Mα

2 (H2) +AαH1
(a)∆α

H1
(a) +AαH2

(b)∆α
H2

(b) + 2α[(σ + 1)α + (τ + 1)α] + (m− 2)4α .

Figure 11: Gluing of a graph and a path at the vertex “a”.

Figure 12: Joining two graphs by a path.
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Corollary 3.1. Let H and Cm be a graph and a cycle, respectively. Let G be the graph obtained by joining H and Cm via a
path (see Figure 13). Then

(1) Mα
1 (G) = Mα

1 (H) + ∆α+1
H (a) + (dG(a, b) +m− 2)2α+1 + 3α+1.

(2) If dG(a, b) = 1, then

Mα
2 (G) = Mα

2 (H) + (m− 2)4α +AαH(a)∆α
H(a) + 3α[(σ + 1)α + 2α+1] .

If dG(a, b) > 1, then
Mα

2 (G) = Mα
2 (H) + (d(a, b) +m− 4)4α +AαH(a)∆α

H(a) + 3 · 6α + 2α(σ + 1)α.

Figure 13: Joining of a graph and a cycle by a path.

Corollary 3.2. Let Cn and Cm be two cycles. Let G be the graph obtained by joining Cn and Cm via a path (see Figure 14).

(1) Mα
1 (G) = (n+m+ dG(a, b)− 3)2α+1 + 2 · 3α+1.

(2) If dG(a, b) = 1, then Mα
2 (G) = (n+m− 4)4α + 4 · 6α + 9α. If dG(a, b) > 1, then Mα

2 (G) = (n+m+ dG(a, b)− 6)4α + 6 · 6α .

Figure 14: Joining two cycles by a path.

Corollary 3.3. Let Gn be the graph obtained by joining n ≥ 2 copies of a regular graph H (see Figure 15). Concerning
the graph Gn (shown in Figure 15), define the following notation: ai = a, bi = b, σ = δH(ai), τ = δH(bi) for each i, AαH(a) =

λ,AαH(b) = µ and dGn
(ai, bi) = d for each i.

Figure 15: The graph Gn obtained by joining n ≥ 2 copies of a regular graph H.

73



A. Ayache, I. Gutman, A. Alameri, and A. Ghallab / Electron. J. Math. 6 (2023) 66–81 74

(1) Mα
1 (Gn) = nMα

1 (H) + (n− 1)[(σ + 1)α+1 − σα+1] + (n− 1)[(τ + 1)α+1 − τα+1] + (n− 1)(d− 1)2α+1.

(2) If d = 1, then

Mα
2 (Gn) = nMα

2 (H) + (n− 1)λ[(σ + 1)α − σα] + (n− 1)µ[(τ + 1)α − τα] + (n− 1)(σ + 1)α(τ + 1)α.

If d > 1, then

Mα
2 (Gn) = (n− 1)λ[(σ + 1)α − σα] + (n− 1)µ[(τ + 1)α − τα] + 2α(n− 1)[(σ + 1)α + (τ + 1)α] + nMα

2 (H) + (n− 1)(d− 2)4α .

Proof. (1) For n = 2, Proposition 3.1 ensures that

Mα
1 (G2) = 2Mα

1 (H) + ∆α+1
H (a) + ∆α+1

H (b) + (d− 1)2α+1

= 2Mα
1 (H) + [(σ + 1)α+1 − σα+1] + [(τ + 1)α+1 − τα+1] + (d− 1)2α+1 .

Suppose that

Mα
1 (Gn−1) = (n− 1)Mα

1 (H) + (n− 2)[(σ + 1)α+1 − σα+1] + (n− 2)[(τ + 1)α+1 − τα+1] + (n− 2)(d− 1)2α+1 .

Now, we evaluate Mα
1 (Gn) as follows:

Mα
1 (Gn) = Mα

1 (Gn−1) +Mα
1 (H) + [(σ + 1)α+1 − σα+1] + [(τ + 1)α+1 − τα+1] + (d− 1)2α+1

= nMα
1 (H) + (n− 1)[(σ + 1)α+1 − σα+1] + (n− 1)[(τ + 1)α+1 − τα+1] + (n− 1)(d− 1)2α+1 .

By using Proposition 3.2 and induction on n, we prove part (2).

4. Inserting a path between two vertices of a graph

Let H be a graph and let a, b be two of its non-adjacent vertices. We define a new graph G by inserting a new path
(a = v1, v2, . . . , vm = b) between a and b (see Figure 16).

Figure 16: Inserting a path between non-adjacent vertices a, b of the graph H.

Proposition 4.1. Let G be the graph obtained by inserting the path (a = v1, v2, . . . , vm = b) between the vertices a, b of a
graph H. Then

Mα
1 (G) = Mα

1 (H) + ∆α+1
H (a) + ∆α+1

H (b) + (m− 2)2α+1.

Proof. Since δα+1
G (a) = (δH(a) + 1)α+1 and δα+1

G (b) = (δH(b) + 1)α+1, we have

Mα
1 (G) =

∑
v∈V (H)\{a,b}

δα+1
H (v) + δα+1

G (a) + δα+1
G (b) + (m− 2)2α+1

= Mα
1 (H) + δα+1

G (a)− δα+1
H (a) + δα+1

G (b)− δα+1
H (b) + (m− 2)2α+1

= Mα
1 (H) + ∆α+1

H (a) + ∆α+1
H (b) + (m− 2)2α+1.
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Proposition 4.2. Let G be the same graph as in Proposition 4.1.

(1) If dH(a, b) > 1 and m ≥ 3, then

Mα
2 (G) = Mα

2 (H) +AαH(a)∆α
H(a) +AαH(b)∆α

H(b) + 2α[(σ + 1)α + (τ + 1)α] + (m− 3)4α .

(2) If dH(a, b) = 1 and m ≥ 3, then

Mα
2 (G) = Mα

2 (H) + (AαH(a)− τα)∆α
H(a)+(AαH(b)− σα)∆α

H(b)+2α[(σ + 1)α+(τ + 1)α]+(m− 3)4α+(σ + 1)α(τ + 1)α−σατα .

(3) If dH(a, b) > 1 and m = 2, then

Mα
2 (G) = Mα

2 (H) +AαH(a)∆α
H(a) +AαH(b)∆α

H(b) + (σ + 1)α(τ + 1)α .

Proof. (1) Suppose that dH(a, b) > 1 and m ≥ 3. Then

Mα
2 (G) =

∑
uv∈E(H);u,v 6∈{a,b}

δαH(u) δαH(v) +AαH(a)(σ + 1)α +AαH(b)(τ + 1)α + (m− 3)2α2α + 2α(σ + 1)α + 2α(τ + 1)α

= Mα
2 (H) +AαH(a)(σ + 1)α +AαH(b)(τ + 1)α + 2α(σ + 1)α + 2α(τ + 1)α −AαH(a)σα −AαH(b)τα + (m− 3)4α

= Mα
2 (H) +AαH(a)∆α

H(a) +AαH(b)∆α
H(b) + 2α[(σ + 1)α + (τ + 1)α] + (m− 3)4α.

(2) Suppose that dH(a, b) = 1 and m ≥ 3. Then

Mα
2 (G) =

∑
uv∈E(H);u,v 6∈{a,b}

δαH(u) δαH(v) + (AαH(a)− τα)(σ + 1)α + (AαH(b)− σα)(τ + 1)α

+ (σ + 1)α(τ + 1)α + (m− 3)2α2α + 2α(σ + 1)α + 2α(τ + 1)α

= Mα
2 (H) + (AαH(a)− τα)(σ + 1)α + (AαH(b)− σα)(τ + 1)α + (m− 3)4α + 2α[(σ + 1)α + (τ + 1)α]

+ (σ + 1)α(τ + 1)α − (AαH(a)− τα)(σ)α − (AαH(b)− σα)(τ)α − σατα .

Thus,

Mα
2 (G) = Mα

2 (H) + (AαH(a)− τα)∆α
H(a)+(AαH(b)− σα)∆α

H(b)+2α[(σ + 1)α+(τ + 1)α]+(m− 3)4α+(σ + 1)α(τ + 1)α−σατα .

(3) If dH(a, b) > 1 and m = 2 (see Figure 17), then

Mα
2 (G) =

∑
u,v/∈{a,b}

δαH(u) δαH(v) +AαH(a)(σ + 1)α +AαH(b)(τ + 1)α + (σ + 1)α(τ + 1)α

= Mα
2 (H) +AαH(a)(σ + 1)α +AαH(b)(τ + 1)α + (σ + 1)α(τ + 1)α −AαH(a)σα −AαH(b)τα,

which implies that
Mα

2 (G) = Mα
2 (H) +AαH(a)∆α

H(a) +AαH(b)∆α
H(b) + (σ + 1)α(τ + 1)α .

Figure 17: The case dH(a, b) > 1 and m = 2.
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Corollary 4.1. Let G be the graph obtained by inserting the path (a = v1, v2, . . . , vm = b) between two vertices a, b of a cycle
Cn, where m ≥ 3, n ≥ 4, or m = 2 if d(a, b) > 1 (see Figure 18).

(1) Mα
1 (G) = (m+ n− 4)2α+1 + 2 · 3α+1.

(2) If d(a, b) > 1 andm ≥ 3, thenMα
2 (G) = (n+m−7)4α+6α+1. Also, if d(a, b) = 1, thenMα

2 (G) = (m+n−6)4α+4 ·6α+9α.
Moreover, if d(a, b) > 1 and m = 2, then Mα

2 (G) = (n− 4)4α + 4 · 6α + 9α.

Figure 18: The graph used in Corollary 4.1.

5. Joining two graphs by several paths

Let H1 and H2 be two graphs. Let {a1, a2, . . . , an} be the set of vertices of H1 such that δH1
(ai) = σ for each i ∈ {1, 2, . . . , n},

and let {b1, b2, . . . , bn} be the set of vertices of H2 such that δH2
(bi) = τ for each i ∈ {1, 2, . . . , n}. Let Gn be the graph

obtained from H1 and H2 by joining each pair of vertices (ai, bi) via a path of length d = dG(ai, bi) (see Figure 19).

Figure 19: Joining two graphs by several paths.

Proposition 5.1. If Gn is the graph defined at the start of this section (see Figure 19), then

Mα
1 (Gn) = Mα

1 (H1) +Mα
1 (H2) + n[(σ + 1)α+1 − σα+1] + n[(τ + 1)α+1 − τα+1] + n(d− 1)2α+1 .

Figure 20: Joining two graphs by a single path.
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Proof. We use the induction on the number n of paths and utilize Proposition 3.1. If n = 1 (see Figure 20), then we have

Mα
1 (G1) = Mα

1 (H1) +Mα
1 (H2) + [(σ + 1)α+1 − σα+1] + [(τ + 1)α+1 − τα+1] + (d− 1)2α+1 .

Suppose that

Mα
1 (Gn−1) = Mα

1 (H1) +Mα
1 (H2) + (n− 1)[(σ + 1)α+1 − σα+1] + (n− 1)[(τ + 1)α+1 − τα+1] + (n− 1)(d− 1)2α+1 .

Now, we prove the formula for n. By Proposition 4.1, we have

Mα
1 (Gn) = Mα

1 (Gn−1) + [(σ + 1)α+1 − σα+1] + [(τ + 1)α+1 − τα+1] + (d− 1)2α+1

because Gn is the result of joining an and bn in Gn−1 by a path of length d. Hence,

Mα
1 (Gn) = Mα

1 (H1) +Mα
1 (H2) + (n− 1)[(σ + 1)α+1 − σα+1] + (n− 1)[(τ + 1)α+1 − τα+1]

+ (n− 1)(d− 1)2α+1 + [(σ + 1)α+1 − σα+1] + [(τ + 1)α+1 − τα+1] + (d− 1)2α+1

= Mα
1 (H1) +Mα

1 (H2) + n[(σ + 1)α+1 − σα+1] + n[(τ + 1)α+1 − τα+1] + n(d− 1)2α+1 .

Suppose that H1 and H2 satisfy the hypotheses of Proposition 5.1. In addition, suppose that d(ai, ai+1) = d(bi, bi+1) = 1

and d(ai, aj) > 1, d(bi, bj) > 1 if i and j are not successive (see Figure 21). Since δH1
(ai) = σ and δH2

(bi) = τ for each i, we
have ∆α

H1
(ai) = (σ + 1)α − σα and ∆α

H2
(bi) = (τ + 1)α − τα.

Figure 21: Joining two graphs by n paths according to the proof of Proposition 5.1.

Proposition 5.2. Let Gn be the same graph as in Proposition 5.1. Set λ = (σ + 1)α+1 − σα+1 and µ = (τ + 1)α+1 − τα+1.

(i) If d > 1, then

Mα
2 (Gn) = Mα

2 (H1) +Mα
2 (H2) +λ

(
n∑
i=1

AαH1
(ai)

)
+µ

(
n∑
i=1

AαH2
(bi)

)
+n2α[(σ + 1)α+ (τ + 1)α] +n(d−2)4α+ (n−1)(λ2 +µ2) .

(ii) If d = 1, then

Mα
2 (Gn) = Mα

2 (H1) +Mα
2 (H2) + λ

(
n∑
i=1

AαH1
(ai)

)
+ µ

(
n∑
i=1

AαH2
(bi)

)
+ (n− 1)(λ2 + µ2) + n(σ + 1)α(τ + 1)α .

Figure 22: Joining two graphs by a path.

77



A. Ayache, I. Gutman, A. Alameri, and A. Ghallab / Electron. J. Math. 6 (2023) 66–81 78

Proof. (i) Suppose that d > 1 (see Figure 22). By Proposition 3.2(2), we have

Mα
2 (G1) = Mα

2 (H1) +Mα
2 (H2) + λAαH1

(a1) + µAαH2
(b1) + 2α[(σ + 1)α + (τ + 1)α] + (d− 2)4α .

Figure 23: Joining two graphs by n− 1 paths.

Suppose that for Gn−1 (see Figure 23), it holds that

Mα
2 (Gn−1) = Mα

2 (H1) +Mα
2 (H2) + λ

(
n−1∑
i=1

AαH1
(ai)

)
+ µ

(
n−1∑
i=1

AαH2
(bi)

)

+ (n− 1)2α[(σ + 1)α + (τ + 1)α] + (n− 1)(d− 2)4α + (n− 2)(λ2 + µ2) .

Figure 24: Joining two graphs by n paths.

Let Gn be the graph obtained from Gn−1 by joining an to bn by a path (see Figure 24). By Proposition 4.2(1), we have

Mα
2 (Gn) = Mα

2 (G) = Mα
2 (Gn−1) +AαGn−1

(an)∆α
Gn−1

(an) +AαGn−1
(bn)∆α

Gn−1
(bn) + 2α[(σ + 1)α + (τ + 1)α] + (d− 2)4α,

where ∆α
Gn−1

(an) = (σ+ 1)α − σα = λ, ∆α
Gn−1

(bn) = (τ + 1)α − τα = µ, AαGn−1
(an) = AαH1

(an) + (σ+ 1)α − σα = AαH1
(an) + λ,

and AαGn−1
(bn) = AαH2

(bn) + (τ + 1)α − τα = AαH2
(bn) + µ. Therefore,

Mα
2 (Gn) = Mα

2 (H1) +Mα
2 (H2) + λ

(
n−1∑
i=1

AαH1
(ai)

)
+ µ

(
n−1∑
i=1

AαH2
(bi)

)

+ (n− 1)2α[(σ + 1)α + (τ + 1)α] + (n− 1)(d− 2)4α + (n− 2)(λ2 + µ2)

+ (AαH1
(an) + λ)λ+ (AαH2

(bn) + µ)µ+ 2α[(σ + 1)α + (τ + 1)α] + (d− 2)4α

= Mα
2 (H1) +Mα

2 (H2) + λ

(
n∑
i=1

AαH1
(ai)

)
+ µ

(
n∑
i=1

AαH2
(bi)

)
+ n2α[(σ + 1)α + (τ + 1)α] + n(d− 2)4α + (n− 1)(λ2 + µ2) .
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Figure 25: Joining two graphs by an edge.

Figure 26: Joining two graphs by n− 1 edges.

(ii) Suppose that d = 1 (see Figure 25). By Proposition 3.2(1),

Mα
2 (G1) = Mα

2 (H1) +Mα
2 (H2) + λAαH1

(a1) + µAαH2
(b1) + (σ + 1)α (τ + 1)α .

Suppose that for Gn−1 (see Figure 26), we have

Mα
2 (Gn−1) = Mα

2 (H1) +Mα
2 (H2) + λ

(
n−1∑
i=1

AαH1
(ai)

)
+ µ

(
n−1∑
i=1

AαH2
(bi)

)

+ (n− 1)(σ + 1)α (τ + 1)α + (n− 2)(λ2 + µ2) .

Figure 27: Joining two graphs by n edges.
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Let Gn be the graph obtained from Gn−1 by joining an to bn via an edge (see Figure 27). By Proposition 4.2(3), we have

Mα
2 (Gn) = Mα

2 (Gn−1) +AαGn−1
(an)∆α

Gn−1
(an) +AαGn−1

(bn)∆α
Gn−1

(bn) + (σ + 1)α(τ + 1)α

= Mα
2 (H1) +Mα

2 (H2) + λ

(
n−1∑
i=1

AαH1
(ai)

)
+ µ

(
n−1∑
i=1

AαH2
(bi)

)

+ (n− 2)(λ2 + µ2) + (n− 1)(σ + 1)α(τ + 1)α + (σ + 1)α(τ + 1)α + λ(AαH1
(an) + λ) + µ(AαH2

(bn) + µ)

= Mα
2 (H1) +Mα

2 (H2) + λ

(
n∑
i=1

AαH1
(ai)

)
+ µ

(
n∑
i=1

AαH2
(bi)

)
+ (n− 1)(λ2 + µ2) + n(σ + 1)α(τ + 1)α .

Figure 28: Joining two cycles by several paths.

Corollary 5.1. Let G be the graph obtained by joining two cycles Cr and Cs through n paths, where n < r and n < s (see
Figure 28).

(1) Mα
1 (G) = (r + s− n− n+ nd− n)2α+1 + 2n 3α+1 = (r + s+ nd− 3n)2α+1 + 2n 3α+1 .

(2) If d > 1, then Mα
2 (G) = (r + s+ nd− 4n− 2)4α + 2(n+ 2)6α + 2(n− 1)9α. If d = 1, then

Mα
2 (G) = (r + s− 2n− 2)4α + 4 · 6α + (3n− 2)9α.

6. Concluding remarks

In the previous four sections, formulas for calculating general first and second Zagreb indices,Mα
1 andMα

2 , are established
for a variety of composite graphs. For α = 1, these formulas reduce to the ordinary first and second Zagreb indices; whereas,
for some other values of α, the obtained formulas yield several other, earlier proposed, topological indices including the
Randić index, the zeroth-order Randić index, the hyper Zagreb index, the forgotten index, the Y -index, and the S-index.
Corollaries illustrating the applicability of derived formulas show that sometimes chemically interesting results can be
obtained; that is, the considered topological indices of chemically relevant (molecular) graphs can be calculated.
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