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Abstract

Let V be a braided monoidal category. Given a braided monoidal endofunctor F on V, it is proved that F -coalgebras form
a braided monoidal category, denoted as VF . Particularly, if the category V admits coproducts and if F is a fully faithful
symmetric monoidal endofunctor, then it is proved that VF is symmetric monoidal closed whenever V is symmetric monoidal
closed.
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1. Introduction

A braided monoidal category is a monoidal category equipped with a natural isomorphism λAB : A ⊗ B → B ⊗ A, known
as the braiding. If λAB ◦ λBA = 1A⊗B , then the braided monoidal category is called a symmetric monoidal category. So,
every symmetric monoidal category is braided. On the other hand, not every braided monoidal category is symmetric.
For instance, the category of graded modules over a commutative ring is braided for the usual monoidal structure on it;
however, this monoidal category is not symmetric (see [4]). A symmetric monoidal category V is said to be closed if, for
each B ∈ V0, the functor −⊗B has a right adjoint [B,−].

The notion of braiding occurs naturally in the theoretical context of further multiplication on a monoidal category, has
an adequate coherence theorem, and, is as versatile as symmety [7]. For any monoidal category V, an extra multiplication
on V leads to a braiding; also, each braiding leads to a multiplication. This gives a natural explanation for braidings as
opposed to symmetries. Important examples of braidings can be found especially in homotopy and cohomology theories.

A monoidal functor F : V → W between monoidal categories consists of a functor F : V0 → W0 together with a
morphism φAB : FA⊗FB → F (A⊗B) defined for every pair A,B of objects of V0, which is natural in A,B, and a morphism
φo : J → FI of W, where I is the unit of V and J is the unit of W; all these objects must satisfy the associativity and
unit conditions. A braided monoidal functor is a monoidal functor between braided categories together with the coherence
condition expressed by the commutativity of the following diagram:

FA⊗ FB λFAFB //

φAB

��

FB ⊗ FA

φBA

��
F (A⊗B)

F (λAB)
// F (B ⊗A)

Particularly, a symmetric monoidal functor is a braided monoidal functor whose domain and codomain are symmetric
monoidal categories.

Given a monoidal endofunctor F : V → V, a pair (A, τA) consisting of an object A in V0 and a morphism τA : A → FA

is called an F -coalgebra. The V0-morphism τA is called the coalgebra structure of (A, τA). An F -coalgebra homomorphism
f : (A, τA) → (B, τB) is a V0-morphism f : A → B satisfying the condition F (f) ◦ τA = τB ◦ f . Also, F -coalgebra
homomorphisms are stable under composition. Therefore, F -coalgebras and their homomorphisms form a category
denoted by V0F

.
This paper aims to explore the transferability of a braided monoidal structure on a given category to the category of

coalgebras for a braided monoidal endofunctor on this category. First, it is proved that the category VF of coalgebras for a
monoidal endofunctor F : V → V is monoidal. Then assuming that F is braided monoidal, it is proved that the category VF
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is braided monoidal. As a consequence, the category of VF is symmetric monoidal provided that F is symmetric monoidal.
Particularly, if the category V admits coproducts and if F is a fully faithful symmetric monoidal endofunctor then it is
proved that VF is symmetric monoidal closed whenever V is symmetric monoidal closed.

2. Preliminaries

In this section, several categorical concepts including definitions and basic properties are recalled, which will be used in
the rest of this paper.

Monoidal categories
A monoidal category V = (V0,⊗, I, a, l, r) consists of a category V0, a bifunctor ⊗ : V0 × V0 → V0 called the tensor product
of V, an object I of V0 called the unit and natural isomorphisms aABC : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C), lA : I ⊗ A → A,
rA : A⊗ I → A, subject to two coherence axioms expressing the commutativity of the following diagrams:

((A⊗B ⊗ C)⊗D)
a //

a⊗1
��

(A⊗B)⊗ (C ⊗D)
a // A⊗ (B ⊗ (C ⊗D))

OO
1⊗a

(A⊗ (B ⊗ C))⊗D
a

// A⊗ ((B ⊗ C)⊗D)

and
(A⊗ I)⊗B aAIB //

rA⊗1 %%

A⊗ (I ⊗B)

1⊗lByy
A⊗B

Every category with finite products and a terminal object is a monoidal category (see [2, 10]). Particularly, the category
Set of sets and mappings is a monoidal category where the tensor product is the Cartesian product and the unit object
is a one-element set. The category Ab of Abelian groups and their homomorphisms becomes a monoidal category when
it is provided with the tensor product of Abelian groups, denoted as ⊗Z, where Z is the Abelian group of integers. Let K
be any field. The category V ectK of vector spaces over K and K-linear mappings is a monoidal category with the tensor
product being the usual tensor product of vector spaces, denoted by ⊗K , and the one-dimensional vector space K as the
unit (see [1,10]). The category RepK(G) of all representations of group G on a vector space V over a field K is a monoidal
category with ⊗ being the tensor product of representations: if for a representation V one denotes by ϕV : G→ GL(V ) the
corresponding mapping, then

ϕV⊗W (g) = ϕV (g)⊗ ϕW (g).

The unit object in this category is the trivial representation 1 = K. A similar statement holds for the category of finite
dimensional representations of G (see [5]).

A braided monoidal category is a monoidal category equipped with a natural isomorphism λAB : A⊗B → B⊗A, known
as the braiding, such that the following diagrams commute for all objects involved (called the hexagon identities):

(A⊗B)⊗ C aABC //

λAB⊗1
��

A⊗ (B ⊗ C)
λA,B⊗C // (B ⊗ C)⊗A

aBCA

��
(B ⊗A)⊗ C

aBAC

// B ⊗ (A⊗ C)
1⊗λAC

// B ⊗ (C ⊗A)

and

A⊗ (B ⊗ C)
a−1
ABC //

1⊗λBC

��

(A⊗B)⊗ C
λA⊗B,C // C ⊗ (A⊗B)

a−1
CAB
��

A⊗ (C ⊗B)
a−1
ACB

// (A⊗ C)⊗B
λAC⊗1

// (C ⊗A)⊗B

If λAB ◦ λBA = 1A⊗B , then the braided monoidal category is called a symmetric monoidal category. A symmetry is exactly
a braiding which also satisfies the property λAB ◦ λBA = 1A⊗B ; but not every braiding is a symmetry (see [7]). For
illustration, let GModR be the category of graded modules over a commutative ring R and graded homomorphisms. Then,
it is a monoidal category with the tensor product given by

(A⊗B)n =
∑

p+q=n

Ap ⊗R Bq
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and the unit object by the trivial graded module R (where Rn = R if n = 0 and Rn = 0 otherwise). Braidings

λAB : A⊗B → B ⊗A

for this monoidal structure on GModR are in bijection with invertible elements r of R via the formula

λAB(x⊗ y) = rpq(y ⊗ x) where x ∈ AP and y ∈ Bq.

Symmetries are in bijection with elements r of R satisfying the condition r2 = 1 (see [4]). That is, every symmetry is a
braiding; obviously, the converse does not hold. The monoidal categries Set, Ab and V ectK are symmetric (see [1,9]).

A symmetric monoidal category V is said to be closed if, for each B ∈ V0, the functor −⊗B : V0 → V0 has a right adjoint
[B,−], so that we have a natural bijection

V0(A⊗B,C) ∼= V0(A, [B,C])

with unit and counit (the latter called evaluation) say dA : A→ [B,A⊗B] and evB,C : [B,C]⊗B → C.

Enriched categories
An enriched category over a monoidal category V or a V-category A consists of a class obA, a hom-object A(A,B) ∈ V0 for
each pair of objects of A, a composition law CABC : A(A,B)⊗A(B,C)→ A(A,C) for each triple of objects, and an identity
element jA : I → A(A,A) for each object; subject to the associativity axiom expressed by the commutativity of the following
diagram:

(A(A,B)⊗A(B,C))⊗A(C,D)
CABC⊗1 //

aA(A,B),A(B,C),A(C,D)

��

A(A,C)⊗A(C,D)

CACD

��

A(A,B)⊗ (A(B,C)⊗A(C,D))

1⊗CBCD

��
A(A,B)⊗A(B,D)

CABD

// A(A,D)

and unit axioms expressed by the identities:

CABB ◦ (1A(A,B) ⊗ jB) = rA(A,B) and CAAB ◦ (jA ⊗ 1A(A,B)) = lA(A,B).

Every symmetric monoidal closed V can be provided with the structure of a V-category (see [2,9]). More precisely, there is
a V-category, whose objects are those of V0, and whose hom-object V(A,B) is [A,B]. Its composition law

CABC : [A,B]⊗ [B,C]→ [A,C]

corresponds under adjunction to the composite morphism

([A,B]⊗ [B,C])⊗A
s[A,B],[B,C]⊗1

��
([B,C]⊗ [A,B])⊗A

a[B,C],[A,B],A

��
[B,C]⊗ ([A,B]⊗A)

1⊗evAB
��

[B,C]⊗B
evBC

��
C

and its identity element jA : I → [A,A] corresponds under adjunction to lA : I ⊗A→ A.

Monoidal functors
A monoidal functor F : V → W between monoidal categories consists of a functor F : V0 → W0 together with a morphism
φAB : FA ⊗ FB → F (A ⊗ B) for every pair A,B of objects of V0, which is natural in A,B, and a morphism φo : J → FI of
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W, where I stands for the unit of V and J is the unit ofW. These data must satisfy the associativity condition expressed
by the commutativity of the following diagram:

(FA⊗ FB)⊗ FC aFAFBFC //

φAB⊗1
��

FA⊗ (FB ⊗ FC)

1⊗φBC
��

F (A⊗B)⊗ FC
φA⊗B,C

��

FA⊗ (FB ⊗ FC)

φA,B⊗C
��

F ((A⊗B)⊗ C)
F (aABC)

// F (A⊗ (B ⊗ C))

and the unit conditions expressed by the commutativity of the following diagrams:

J ⊗ FA

lFA

%%

φo⊗1
��

FI ⊗ FA
φIA ��
F (I ⊗A)

F (lA)
// FA

and
FA⊗ J

rFA

%%

1⊗φo ��
FA⊗ FI
φAI ��
F (A⊗ I)

F (rA)
// FA

For instance, the forgetful functor U : (Ab,⊗Z,Z)→ (Set,×, {?}) from the category of Abelian groups to the category of sets
is monoidal. In this case, the mapping φAB : U(A)×U(B)→ U(A⊗ZB) sends (a, b) to a⊗Z b and the mapping φo : {?} → Z
sends ? to 1. Modules over a commutative ring R and their homomorphisms form a monoidal category (see [1, 2]). The
monoidal product is given by the tensor product of modules and the unit object of this category is R. If f : R → S is a
commutative ring homomorphism, then the restriction functor (ModS ,⊗S , S)→ (ModR,⊗R, R) is monoidal (see [3]).

Definition 2.1. A braided monoidal functor is a monoidal functor between braided categories such that the following
diagram commutes:

FA⊗ FB λFAFB //

φAB ��

FB ⊗ FA
φBA��

F (A⊗B)
F (λAB)

// F (B ⊗A)

Notice that every monoidal functor which preserves the tensor product is braided monoidal. In particular, every Set-
endofunctor preserving finite products is braided monoidal.

Definition 2.2. A symmetric monoidal functor is a braided monoidal functor whose domain and codomain are symmetric
monoidal categories.

For instance, the functor (Set,×, {?}) → (V ectK ,⊗K ,K) which takes a set to a vector space by taking the elements of
the set as a basis is symmetric monoidal. Also, the forgetful functor U : (Ab,⊗Z,Z)→ (Set,×, {?}) is symmetric monoidal.

Proposition 2.1 (see [2]). Let F : V → W be a symmetric monoidal functor, where V andW are in fact symmetric monoidal
closed categories. There exist morphisms inW

σAB : F [A,B] −→ [FA,FB]

for every pair A,B, of objects of V and these morphisms satisfy the following conditions:

(1). The morphisms σAB are natural in A and B.

59



J. P. Mavoungou / Electron. J. Math. 6 (2023) 56–65 60

(2). The diagram

F [[A,B]⊗ [B,C]]
F (CABC) // F [A,C]

σAC

��

F [A,B]⊗ F [B,C]

φ[A,B],[B,C]

OO

σAB⊗σBC

��
[FA,FB]⊗ [FB,FC]

CFAFBFC

// [FA,FC]

commutes for all objects A,B,C of V.

(3). The diagram
FI

FjA // F [A,A]

σAA

��
J

jFA

//

φo

OO

[FA,FA]

commutes for every object A of V.

3. Coalgebras for a braided monoidal functor

Let F denote a monoidal endofunctor on a monoidal category V. A pair (A, τA) consisting of an object A in V0 and a
morphism τA : A→ FA is called an F -coalgebra. We call τA the coalgebra structure of (A, τA). Given F -coalgebras (A, τA)

and (B, τB), by a homomorphism we mean a V0-morphism f : A→ B for which the following diagram commutes:

A
f //

τA
��

B

τB
��

FA
F (f)

// FB

This definition turns the class of F -coalgebras and their homomorphisms into a category, denoted as V0F
.

Proposition 3.1. Let F be a monoidal endofunctor on a monoidal category V = (V0,⊗, I, a, l, r). The category
VF = (V0F

,⊗F , I, a, l, r) of F -coalgebras is monoidal.

Proof. Consider the correspondence ⊗F : V0F
× V0F

→ V0F
defined on each pair of F -coalgebras (A, τA) and (B, τB) as

(A, τA)⊗F (B, τB) = (A⊗B,φAB ◦ (τA ⊗ τB)).

Also, ⊗F extends to a bifunctor as ⊗ is bifunctor and the morphism φAB : FA ⊗ FB → F (A ⊗ B) is natural in A and
B. Take the unit to be the pair (I, φo : I → FI). First, we show that a, l, and r are natural F -coalgebra isomorphisms.
Since a, l, and r are natural isomorphisms in V0, it suffices to prove that they are homomorphisms: a V0-isomorphism is
an F -coalgebra isomorphism if and only if it is a homomorphism (see [6]). Moreover a natural V0-morphism is a natural
homomorphism provided that it is a homomorphism.

Given F -coalgebras (A, τA), (B, τB), and (C, τC), the V0-objects (A⊗B)⊗ C and A⊗ (B ⊗ C) are respectively equipped
with the coalgebra structures:

(A⊗B)⊗ C

(τA⊗τB)⊗τC
��

(FA⊗ FB)⊗ FC

φAB⊗1

��
F (A⊗B)⊗ FC

φA⊗B,C

��
F ((A⊗B)⊗ C)
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and
A⊗ (B ⊗ C)

τA⊗(τB⊗τC)

��
FA⊗ (FB ⊗ FC)

1⊗φBC

��
FA⊗ F (B ⊗ C)

φA,B⊗C

��
F (A⊗ (B ⊗ C))

Besides the equality τA⊗ (τB ⊗ τC) ◦ aABC = aFAFBFC ◦ (τA⊗ τB)⊗ τC holds by naturality of a. The associativity condition
yields that the following diagram commutes:

(A⊗B)⊗ C aABC //

(τA⊗τB)⊗τC
��

A⊗ (B ⊗ C)

τA⊗(τB⊗τC)
��

(FA⊗ FB)⊗ FC aFAFBFC //

φAB⊗1
��

FA⊗ (FB ⊗ FC)

1⊗φBC

��
F (A⊗B)⊗ FC

φA⊗B,C

��

FA⊗ F (B ⊗ C)

φA,B⊗C

��
F ((A⊗B)⊗ C)

F (aABC)
// F (A⊗ (B ⊗ C))

This proves that aABC is a homomorphism. Also, lA is a homomorphism for every F -coalgebra (A, τA) because the following
diagram commutes due to both the left unit condition and the naturality of l:

I ⊗A lA //

1⊗τA ��

A

τA

��

I ⊗ FA
φo⊗1

��
lFA

""

FI ⊗ FA
φIA ��
F (I ⊗A)

F (lA)
// FA

Similarly, one proves that rA is a homomorphism. Therefore a, l, and r are natural F -coalgebra isomorphisms. It is not
difficult to check the coherence conditions. Thus, VF = (V0F

,⊗F , I, a, l, r) is a monoidal category.

Corollary 3.1. Let F be a braided monoidal endofunctor on a braided monoidal category V = (V0,⊗, I, a, l, r). The category
VF = (V0F

,⊗F , I, a, l, r) of F -coalgebras is braided monoidal.

Proof. First, the category VF is monoidal due to Proposition 3.1. Next, we prove that the category VF has braidings. Let
(A, τA) and (B, τB) be F -coalgebras. From the naturality of the braiding λAB : A⊗B → B ⊗A, it follows that

λFAFB ◦ (τA ⊗ τB) = (τB ⊗ τA) ◦ λAB .

In addition, φBA ◦λFAFB = F (λAB) ◦φAB because F is a braided monoidal endofunctor. As a result, the following diagram
commutes:

A⊗B λAB //

τA⊗τB ��

B ⊗A
τB⊗τA��

FA⊗ FB
φAB ��

λFAFB // FB ⊗ FA
φBA��

F (A⊗B)
F (λAB)

// F (B ⊗A)
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Hence, λAB is a homomorphism, that is a natural F -coalgebra isomorphism because it is a natural V0-isomorphism by
definition. Therefore, λAB is a braiding for the category VF . Consequently, the category VF = (V0F

,⊗F , I, a, l, r) of
F -coalgebras is braided monoidal.

Example 3.1. Let K be a field and letM be a monoid. Denote by V ecM the category ofM -graded finite dimensional vector
spaces over K consisting of vector spaces with a decomposition

V = ⊕
m∈M

Vm,

where the morphisms are linear mappings which preserves the grading. It is a monoidal category with the tensor product
defined by

(V ⊗W )m = ⊕
x,x′∈M :xx′=m

Vx ⊗Wx′

and the unit object given by

1m =

{
K, if m = 1

0, otherwise.
LetM be a monoid and let f : M →M be a monoid homomorphism. We then have a functor

F : V ecM → V ecM

defined on objects as follows: for anM -graded finite dimensional vector space,

F (V ) = F

(
⊕

m∈M
Vm

)
= ⊕
f(m):m∈M

Vf(m)

and for each linear mapping q : V →W ,

F (q)

(
⊕

f(m):m∈M
vf(m)

)
= ⊕
f(m):m∈M

q
(
vf(m)

)
The endofunctor F is monoidal; see [10]. Hence, the category of F -coalgebras is monoidal by Proposition 3.1.

Example 3.2. Given a commutative ring R, the homology functor is braided monoidal as

H? : (GModR,⊗, R)→ (GModR,⊗, R)

via the mapping H?(C1) ⊗ H?(C2) → H?(C1 ⊗ C2); [x1] ⊗ [x2] 7→ [x1 ⊗ x2]; see [8]. Then, the category of H?-coalgebras is
braided monoidal due to Corollary 3.1.

Recall that every symmetric monoidal category is braided monoidal.

Corollary 3.2. Let F be a braided monoidal endofunctor on a symmetric monoidal category V = (V0,⊗, I, a, l, r). The
category VF = (V0F

,⊗F , I, a, l, r) of F -coalgebras is symmetric monoidal.

Proof. By Corollary 3.1, the category VF is braided monoidal. Then, for any F -coalgebras (A, τA) and (B, τB), the braidings
λAB and λBA are homomorphisms. Also, λAB ◦λBA = 1A⊗B as the category V is symmetric monoidal. Hence, the category
VF of F -coalgebras is symmetric monoidal.

Example 3.3. Let F : (Set,×, {?})→ (Set,×, {?}) be a Set-endofunctor which preserves finite products. Then F is braided
monoidal. But, Set is a symmetric monoidal category. As a consequence of Corollary 3.1, the category of F -coalgebras is
symmetric monoidal, that is braided monoidal.

More generally, the category of coalgebras for a braided monoidal endofunctor F is braided monoidal provided that F
preserves the tensor product.

Example 3.4. Consider the covariant power set functor

P : (Set,×, {?})→ (Set,×, {?}),

which maps every set to its power set and every function f : A→ B to the mapping P(f), which sends U ∈ P(A) to its image
f(U) ∈ P(B). It is a symmetric monoidal functor. The coherence maps are the mapping φo : {?} → P({?}) which sends ? to
{?} and, the mapping φAB : P(A) × P(B) → P(A × B) which sends (U, V ) to U × V . Also, the symmetry condition holds.
Therefore, the category of P-coalgebras is symmetric monoidal due to Corollary 3.2.
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Every category V admitting finite coproducts is a symmetric monoidal category. The tensor product is defined for every
pair A,B, of objects of V by

A⊗B = A
∐

B

and the unit I as the initial object of V. If an endofunctor F : V → V is given, then F is a symmetric monoidal functor. It
suffices to define the coherence maps φo : I → FI as the unique arrow from I to FI and for every pair A,B, of objects of V,

φAB : FA
∐

FB → F
(
A
∐

B
)

as the unique arrow arising from the universality of the coproduct. Corollary 3.2 implies that VF is a symmetric monoidal
category.

Lemma 3.1. Suppose that V is a symmetric monoidal closed category admitting coproducts. Let F : V → V be a fully
faithful symmetric monoidal endofunctor. For every pair A,B, of objects of V, the morphisms

σAB : F [A,B] −→ [FA,FB]

are invertible.

Proof. For every pair A,B, of objects of V0, consider the mapping

ϕ : V0(I, F [A,B]) −→ V0(I, [FA,FB]) : u 7→ σAB ◦ u

Let v : I → [FA,FB] be a V0-morphism. Since F is full, there is a V0-morphism w : I → [A,B] such that

σAB ◦ (F (w) ◦ φo) = v.

Also, the composite F (w) ◦ φo is the only V0-morphism with this property as F is faithful. Thus, one deduces a mapping

ψ : V0(I, [FA,FB]) −→ V0(I, F [A,B]) : v 7→ F (w) ◦ φo.

We say that ϕ and ψ are inverse of each other. Indeed, for every V0-morphism u : I → F [A,B], we have that

(ψ ◦ ϕ)(u) = ψ(ϕ(u)) = ψ(σAB ◦ u) = u.

Conversely, for every V0-morphsm v : I → [FA,FB], we have that

(ϕ ◦ ψ)(v) = ϕ(ψ(v)) = ϕ(F (w) ◦ φo) = σAB ◦ (F (w) ◦ φo) = v.

As a result, themappingsϕ andψ are inverse of each other. Subsequently, σAB is invertible as the functor V0(I,−) : V → Set

has a left adjoint (see [2]).

Proposition 3.2. Let V be a symmetric monoidal closed category admitting coproducts. Let F : V → V be a fully faithful
symmetric monoidal endofunctor. The category VF is symmetric monoidal closed.

Proof. By Corollary 3.2, the category VF is symmetric monoidal. Next, we prove that VF is also closed. For given F -
coalgebras (A, τA), (B, τB) and (C, τC), let f : (A, τA) ⊗F (B, τB) → (C, τC) be a homomorphism. Since V is closed, the
V0-morphism f : A ⊗ B → C corresponds under adjunction with an arrow f̄ : A → [B,C]. Also, φAB is natural in A,B.
Then the following commutative diagram:

A⊗B
f //

τA⊗τB
��

C

τC

��

FA⊗ FB

φAB

��

F (f̄)⊗1 // F [B,C]⊗ FB

φ[B,C],B

��
F (A⊗B)

F (f̄⊗1)

//

F (f)

55F ([B,C]⊗B)
F (evBC)

// FC
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corresponds under adjunction with the following commutative diagram:

A
f̄ //

τA
��

[B,C]

[B,τC ]

��

FBC

{{

FA

F (f̄)
��

F [B,C]
σBC

// [FB,FC]
[τB ,FC]

// [B,FC]

which in turn corresponds under adjunction with the following commutative diagram:

A⊗B
f̄⊗1 //

1⊗τB
��

[B,C]⊗B

1⊗τB
��

A⊗ FB

τA⊗1
��

f̄⊗1 // [B,C]⊗ FB

FBC⊗1

��

FA⊗ FB

F (f̄⊗1)
��

F [B,C]⊗ FB

φ[B,C],B

��

[FB,FC]⊗ FB

evFBFC

��
F ([B,C]⊗B)

F (evBC)
// FC

As ⊗ is bifunctor, the following diagram commutes:

A⊗ FB

τA⊗1
��

f̄⊗1 // [B,C]⊗ FB

FBC⊗1

��

FA⊗ FB

F (f̄)⊗1
��

F [B,C]⊗ FB

φ[B,C],B

��

[FB,FC]⊗ FB

evFBFC

��
F ([B,C]⊗B)

F (evBC)
// FC

and it corresponds under adjunction with the following commutative diagram:

A
f̄ //

τA
��

[B,C]

FBC

��

FA

F (f̄)
��

F [B,C]
σBC

// [FB,FC]

Furthermore, σBC is invertible due to Lemma 3.1. One therefore deduces that the following diagram commutes:

A
f̄ //

τA

��

[B,C]

FBC

��
[FB,FC]

σ−1
BC
��

FA
F (f̄)

// F [B,C]
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Hence, the V0-morphism f̄ is homomorphism. Denote by [(B, τB), (C, τC)]F the pair
(
[B,C], σ−1

BC ◦ FBC
)
. We then have a

natural bijection:
V0F

((A, τA)⊗F (B, τB), (C, τC)) ∼= V0F
((A, τA), [(B, τB), (C, τC)]F )

That is, the functor −⊗F (B, τB) : V0F
→ V0F

has a right adjoint [(B, τB),−]F . Consequently, VF is closed.
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