Research Article Braided monoidal categories of coalgebras

Jean-Paul Mavoungou*

Department of Mathematics, Faculty of Science, University of Yaoundé 1, P. O. Box 812, Yaoundé, Cameroon

(Received: 6 October 2023. Received in revised form: 4 December 2023. Accepted: 9 December 2023. Published online: 15 December 2023.)

© 2023 the author. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

Let \mathcal{V} be a braided monoidal category. Given a braided monoidal endofunctor F on \mathcal{V} , it is proved that F-coalgebras form a braided monoidal category, denoted as \mathcal{V}_F . Particularly, if the category \mathcal{V} admits coproducts and if F is a fully faithful symmetric monoidal endofunctor, then it is proved that \mathcal{V}_F is symmetric monoidal closed whenever \mathcal{V} is symmetric monoidal closed.

Keywords: braided monoidal category; coalgebra; monoidal functor.

2020 Mathematics Subject Classification: 18D15, 19D23.

1. Introduction

A braided monoidal category is a monoidal category equipped with a natural isomorphism $\lambda_{AB} : A \otimes B \to B \otimes A$, known as the braiding. If $\lambda_{AB} \circ \lambda_{BA} = 1_{A \otimes B}$, then the braided monoidal category is called a symmetric monoidal category. So, every symmetric monoidal category is braided. On the other hand, not every braided monoidal category is symmetric. For instance, the category of graded modules over a commutative ring is braided for the usual monoidal structure on it; however, this monoidal category is not symmetric (see [4]). A symmetric monoidal category \mathcal{V} is said to be closed if, for each $B \in \mathcal{V}_0$, the functor $- \otimes B$ has a right adjoint [B, -].

The notion of braiding occurs naturally in the theoretical context of further multiplication on a monoidal category, has an adequate coherence theorem, and, is as versatile as symmety [7]. For any monoidal category \mathcal{V} , an extra multiplication on \mathcal{V} leads to a braiding; also, each braiding leads to a multiplication. This gives a natural explanation for braidings as opposed to symmetries. Important examples of braidings can be found especially in homotopy and cohomology theories.

A monoidal functor $F : \mathcal{V} \to \mathcal{W}$ between monoidal categories consists of a functor $F : \mathcal{V}_0 \to \mathcal{W}_0$ together with a morphism $\phi_{AB} : FA \otimes FB \to F(A \otimes B)$ defined for every pair A, B of objects of \mathcal{V}_0 , which is natural in A, B, and a morphism $\phi_o : J \to FI$ of \mathcal{W} , where I is the unit of \mathcal{V} and J is the unit of \mathcal{W} ; all these objects must satisfy the associativity and unit conditions. A braided monoidal functor is a monoidal functor between braided categories together with the coherence condition expressed by the commutativity of the following diagram:

Particularly, a symmetric monoidal functor is a braided monoidal functor whose domain and codomain are symmetric monoidal categories.

Given a monoidal endofunctor $F : \mathcal{V} \to \mathcal{V}$, a pair (A, τ_A) consisting of an object A in \mathcal{V}_0 and a morphism $\tau_A : A \to FA$ is called an F-coalgebra. The \mathcal{V}_0 -morphism τ_A is called the coalgebra structure of (A, τ_A) . An F-coalgebra homomorphism $f : (A, \tau_A) \to (B, \tau_B)$ is a \mathcal{V}_0 -morphism $f : A \to B$ satisfying the condition $F(f) \circ \tau_A = \tau_B \circ f$. Also, F-coalgebra homomorphisms are stable under composition. Therefore, F-coalgebras and their homomorphisms form a category denoted by \mathcal{V}_{0_F} .

This paper aims to explore the transferability of a braided monoidal structure on a given category to the category of coalgebras for a braided monoidal endofunctor on this category. First, it is proved that the category \mathcal{V}_F of coalgebras for a monoidal endofunctor $F : \mathcal{V} \to \mathcal{V}$ is monoidal. Then assuming that F is braided monoidal, it is proved that the category \mathcal{V}_F

is braided monoidal. As a consequence, the category of \mathcal{V}_F is symmetric monoidal provided that F is symmetric monoidal. Particularly, if the category \mathcal{V} admits coproducts and if F is a fully faithful symmetric monoidal endofunctor then it is proved that \mathcal{V}_F is symmetric monoidal closed whenever \mathcal{V} is symmetric monoidal closed.

2. Preliminaries

In this section, several categorical concepts including definitions and basic properties are recalled, which will be used in the rest of this paper.

Monoidal categories

A monoidal category $\mathcal{V} = (\mathcal{V}_0, \otimes, I, a, l, r)$ consists of a category \mathcal{V}_0 , a bifunctor $\otimes : \mathcal{V}_0 \times \mathcal{V}_0 \to \mathcal{V}_0$ called the tensor product of \mathcal{V} , an object I of \mathcal{V}_0 called the unit and natural isomorphisms $a_{ABC} : (A \otimes B) \otimes C \to A \otimes (B \otimes C)$, $l_A : I \otimes A \to A$, $r_A : A \otimes I \to A$, subject to two coherence axioms expressing the commutativity of the following diagrams:

$$((A \otimes B \otimes C) \otimes D) \xrightarrow{a} (A \otimes B) \otimes (C \otimes D) \xrightarrow{a} A \otimes (B \otimes (C \otimes D))$$

$$\stackrel{a \otimes 1}{\longrightarrow} (A \otimes (B \otimes C)) \otimes D \xrightarrow{a} A \otimes ((B \otimes C) \otimes D)$$

$$(A \otimes I) \otimes B \xrightarrow{a_{AIB}} A \otimes (I \otimes B)$$

$$\stackrel{(A \otimes I) \otimes B}{\longrightarrow} A \otimes (I \otimes B)$$

and

Every category with finite products and a terminal object is a monoidal category (see [2, 10]). Particularly, the category *Set* of sets and mappings is a monoidal category where the tensor product is the Cartesian product and the unit object is a one-element set. The category *Ab* of Abelian groups and their homomorphisms becomes a monoidal category when it is provided with the tensor product of Abelian groups, denoted as $\otimes_{\mathbb{Z}}$, where \mathbb{Z} is the Abelian group of integers. Let *K* be any field. The category $Vect_K$ of vector spaces over *K* and *K*-linear mappings is a monoidal category with the tensor product of vector spaces, denoted by \otimes_K , and the one-dimensional vector space *K* as the unit (see [1, 10]). The category $Rep_K(G)$ of all representations of group *G* on a vector space *V* over a field *K* is a monoidal category with \otimes being the tensor product of representations: if for a representation *V* one denotes by $\varphi_V : G \to GL(V)$ the corresponding mapping, then

$$\varphi_{V\otimes W}(g) = \varphi_V(g) \otimes \varphi_W(g)$$

The unit object in this category is the trivial representation 1 = K. A similar statement holds for the category of finite dimensional representations of *G* (see [5]).

A braided monoidal category is a monoidal category equipped with a natural isomorphism $\lambda_{AB} : A \otimes B \to B \otimes A$, known as the braiding, such that the following diagrams commute for all objects involved (called the *hexagon identities*):

$$\begin{array}{ccc} (A \otimes B) \otimes C & \xrightarrow{a_{ABC}} & A \otimes (B \otimes C) & \xrightarrow{\lambda_{A,B \otimes C}} & (B \otimes C) \otimes A \\ & & & & & & & \\ \lambda_{AB \otimes 1} & & & & & & \\ (B \otimes A) \otimes C & \xrightarrow{a_{BAC}} & B \otimes (A \otimes C) & \xrightarrow{1 \otimes \lambda_{AC}} & B \otimes (C \otimes A) \end{array}$$

and

$$\begin{array}{c|c} A \otimes (B \otimes C) & \xrightarrow{a_{ABC}^{-1}} (A \otimes B) \otimes C & \xrightarrow{\lambda_{A \otimes B,C}} C \otimes (A \otimes B) \\ 1 \otimes \lambda_{BC} & & & \downarrow a_{CAB}^{-1} \\ A \otimes (C \otimes B) & \xrightarrow{a_{ACB}^{-1}} (A \otimes C) \otimes B & \xrightarrow{\lambda_{AC} \otimes 1} (C \otimes A) \otimes B \end{array}$$

If $\lambda_{AB} \circ \lambda_{BA} = 1_{A \otimes B}$, then the braided monoidal category is called a *symmetric monoidal category*. A symmetry is exactly a braiding which also satisfies the property $\lambda_{AB} \circ \lambda_{BA} = 1_{A \otimes B}$; but not every braiding is a symmetry (see [7]). For illustration, let $GMod_R$ be the category of graded modules over a commutative ring R and graded homomorphisms. Then, it is a monoidal category with the tensor product given by

$$(A \otimes B)_n = \sum_{p+q=n} A_p \otimes_R B_q$$

and the unit object by the trivial graded module R (where $R_n = R$ if n = 0 and $R_n = 0$ otherwise). Braidings

$$\lambda_{AB}: A \otimes B \to B \otimes A$$

for this monoidal structure on $GMod_R$ are in bijection with invertible elements r of R via the formula

$$\lambda_{AB}(x \otimes y) = r^{pq}(y \otimes x)$$
 where $x \in A_P$ and $y \in B_q$

Symmetries are in bijection with elements r of R satisfying the condition $r^2 = 1$ (see [4]). That is, every symmetry is a braiding; obviously, the converse does not hold. The monoidal categories Set, Ab and $Vect_K$ are symmetric (see [1,9]).

A symmetric monoidal category \mathcal{V} is said to be *closed* if, for each $B \in \mathcal{V}_0$, the functor $-\otimes B : \mathcal{V}_0 \to \mathcal{V}_0$ has a right adjoint [B, -], so that we have a natural bijection

$$\mathcal{V}_0(A \otimes B, C) \cong \mathcal{V}_0(A, [B, C])$$

with *unit* and *counit* (the latter called evaluation) say $d_A : A \to [B, A \otimes B]$ and $ev_{B,C} : [B, C] \otimes B \to C$.

Enriched categories

An *enriched category* over a monoidal category \mathcal{V} or a \mathcal{V} -category \mathcal{A} consists of a class $ob\mathcal{A}$, a hom-object $\mathcal{A}(A, B) \in \mathcal{V}_0$ for each pair of objects of \mathcal{A} , a composition law $C_{ABC} : \mathcal{A}(A, B) \otimes \mathcal{A}(B, C) \to \mathcal{A}(A, C)$ for each triple of objects, and an identity element $j_A : I \to \mathcal{A}(A, A)$ for each object; subject to the associativity axiom expressed by the commutativity of the following diagram:

$$\begin{array}{c|c} (\mathcal{A}(A,B) \otimes \mathcal{A}(B,C)) \otimes \mathcal{A}(C,D) \xrightarrow{C_{ABC} \otimes 1} & \rightarrow \mathcal{A}(A,C) \otimes \mathcal{A}(C,D) \\ \end{array} \\ \xrightarrow{a_{\mathcal{A}(A,B),\mathcal{A}(B,C),\mathcal{A}(C,D)}} & & & \\ \mathcal{A}(A,B) \otimes (\mathcal{A}(B,C) \otimes \mathcal{A}(C,D)) & & & \\ & & & \\ 1 \otimes C_{BCD} & & & \\ \mathcal{A}(A,B) \otimes \mathcal{A}(B,D) \xrightarrow{C_{ABD}} & \mathcal{A}(A,D) \end{array}$$

and unit axioms expressed by the identities:

$$C_{ABB} \circ (1_{\mathcal{A}(A,B)} \otimes j_B) = r_{\mathcal{A}(A,B)} \text{ and } C_{AAB} \circ (j_A \otimes 1_{\mathcal{A}(A,B)}) = l_{\mathcal{A}(A,B)}.$$

Every symmetric monoidal closed \mathcal{V} can be provided with the structure of a \mathcal{V} -category (see [2,9]). More precisely, there is a \mathcal{V} -category, whose objects are those of \mathcal{V}_0 , and whose hom-object $\mathcal{V}(A, B)$ is [A, B]. Its composition law

$$C_{ABC}: [A, B] \otimes [B, C] \rightarrow [A, C]$$

corresponds under adjunction to the composite morphism

$$\begin{array}{c} ([A,B] \otimes [B,C]) \otimes A \\ s_{[A,B],[B,C]} \otimes 1 \\ \downarrow \\ ([B,C] \otimes [A,B]) \otimes A \\ a_{[B,C],[A,B],A} \\ \downarrow \\ [B,C] \otimes ([A,B] \otimes A) \\ 1 \otimes ev_{AB} \\ \downarrow \\ [B,C] \otimes B \\ ev_{BC} \\ \downarrow \\ \end{array}$$

and its identity element $j_A : I \to [A, A]$ corresponds under adjunction to $l_A : I \otimes A \to A$.

Monoidal functors

A monoidal functor $F : \mathcal{V} \to \mathcal{W}$ between monoidal categories consists of a functor $F : \mathcal{V}_0 \to \mathcal{W}_0$ together with a morphism $\phi_{AB} : FA \otimes FB \to F(A \otimes B)$ for every pair A, B of objects of \mathcal{V}_0 , which is natural in A, B, and a morphism $\phi_o : J \to FI$ of

 \mathcal{W} , where *I* stands for the unit of \mathcal{V} and *J* is the unit of \mathcal{W} . These data must satisfy the associativity condition expressed by the commutativity of the following diagram:

$$\begin{array}{c|c} (FA \otimes FB) \otimes FC & \xrightarrow{a_{FAFBFC}} FA \otimes (FB \otimes FC) \\ & \phi_{AB} \otimes 1 \\ \hline \\ F(A \otimes B) \otimes FC & FA \otimes (FB \otimes FC) \\ & \phi_{A \otimes B, C} \\ \hline \\ F((A \otimes B) \otimes C) & \xrightarrow{F(a_{ABC})} F(A \otimes (B \otimes C)) \end{array}$$

and the unit conditions expressed by the commutativity of the following diagrams:

 $FA\otimes J$

and

For instance, the forgetful functor $U : (Ab, \otimes_{\mathbb{Z}}, \mathbb{Z}) \to (Set, \times, \{\star\})$ from the category of Abelian groups to the category of sets is monoidal. In this case, the mapping $\phi_{AB} : U(A) \times U(B) \to U(A \otimes_{\mathbb{Z}} B)$ sends (a, b) to $a \otimes_{\mathbb{Z}} b$ and the mapping $\phi_o : \{\star\} \to \mathbb{Z}$ sends \star to 1. Modules over a commutative ring R and their homomorphisms form a monoidal category (see [1, 2]). The monoidal product is given by the tensor product of modules and the unit object of this category is R. If $f : R \to S$ is a commutative ring homomorphism, then the restriction functor $(Mod_S, \otimes_S, S) \to (Mod_R, \otimes_R, R)$ is monoidal (see [3]).

 $\begin{array}{c}
1 \otimes \phi_o \\
FA \otimes FI \\
\phi_{AI} \\
F(A \otimes I) \\
\hline
F(r_A) \\
\end{array} FA$

Definition 2.1. A braided monoidal functor is a monoidal functor between braided categories such that the following diagram commutes:

Notice that every monoidal functor which preserves the tensor product is braided monoidal. In particular, every *Set*-endofunctor preserving finite products is braided monoidal.

Definition 2.2. A symmetric monoidal functor is a braided monoidal functor whose domain and codomain are symmetric monoidal categories.

For instance, the functor $(Set, \times, \{\star\}) \rightarrow (Vect_K, \otimes_K, K)$ which takes a set to a vector space by taking the elements of the set as a basis is symmetric monoidal. Also, the forgetful functor $U : (Ab, \otimes_{\mathbb{Z}}, \mathbb{Z}) \rightarrow (Set, \times, \{\star\})$ is symmetric monoidal.

Proposition 2.1 (see [2]). Let $F : V \to W$ be a symmetric monoidal functor, where V and W are in fact symmetric monoidal closed categories. There exist morphisms in W

$$\sigma_{AB}: F[A, B] \longrightarrow [FA, FB]$$

for every pair A, B, of objects of V and these morphisms satisfy the following conditions:

(1). The morphisms σ_{AB} are natural in A and B.

(2). The diagram

commutes for all objects A, B, C of \mathcal{V} .

(3). The diagram

commutes for every object A of \mathcal{V} .

3. Coalgebras for a braided monoidal functor

Let *F* denote a monoidal endofunctor on a monoidal category \mathcal{V} . A pair (A, τ_A) consisting of an object *A* in \mathcal{V}_0 and a morphism $\tau_A : A \to FA$ is called an *F*-coalgebra. We call τ_A the coalgebra structure of (A, τ_A) . Given *F*-coalgebras (A, τ_A) and (B, τ_B) , by a homomorphism we mean a \mathcal{V}_0 -morphism $f : A \to B$ for which the following diagram commutes:

$$\begin{array}{ccc} A & \stackrel{f}{\longrightarrow} & B \\ & & & \downarrow \\ & & & \downarrow \\ FA & \stackrel{F(f)}{\longrightarrow} & FB \end{array}$$

This definition turns the class of *F*-coalgebras and their homomorphisms into a category, denoted as \mathcal{V}_{0_F} .

Proposition 3.1. Let *F* be a monoidal endofunctor on a monoidal category $\mathcal{V} = (\mathcal{V}_0, \otimes, I, a, l, r)$. The category $\mathcal{V}_F = (\mathcal{V}_{0_F}, \otimes_F, I, a, l, r)$ of *F*-coalgebras is monoidal.

Proof. Consider the correspondence $\otimes_F : \mathcal{V}_{0_F} \times \mathcal{V}_{0_F} \to \mathcal{V}_{0_F}$ defined on each pair of *F*-coalgebras (A, τ_A) and (B, τ_B) as

$$(A, \tau_A) \otimes_F (B, \tau_B) = (A \otimes B, \phi_{AB} \circ (\tau_A \otimes \tau_B)).$$

Also, \otimes_F extends to a bifunctor as \otimes is bifunctor and the morphism $\phi_{AB} : FA \otimes FB \to F(A \otimes B)$ is natural in A and B. Take the unit to be the pair $(I, \phi_o : I \to FI)$. First, we show that a, l, and r are natural F-coalgebra isomorphisms. Since a, l, and r are natural isomorphisms in \mathcal{V}_0 , it suffices to prove that they are homomorphisms: a \mathcal{V}_0 -isomorphism is an F-coalgebra isomorphism if and only if it is a homomorphism (see [6]). Moreover a natural \mathcal{V}_0 -morphism is a natural homomorphism provided that it is a homomorphism.

Given *F*-coalgebras (A, τ_A) , (B, τ_B) , and (C, τ_C) , the \mathcal{V}_0 -objects $(A \otimes B) \otimes C$ and $A \otimes (B \otimes C)$ are respectively equipped with the coalgebra structures:

$$(A \otimes B) \otimes C$$

$$(\tau_A \otimes \tau_B) \otimes \tau_C \downarrow$$

$$(FA \otimes FB) \otimes FC$$

$$\phi_{AB} \otimes 1 \downarrow$$

$$F(A \otimes B) \otimes FC$$

$$\phi_{A \otimes B, C} \downarrow$$

$$F((A \otimes B) \otimes C)$$

and

$$\begin{array}{c|c} A \otimes (B \otimes C) \\ \tau_A \otimes (\tau_B \otimes \tau_C) \\ \downarrow \\ FA \otimes (FB \otimes FC) \\ 1 \otimes \phi_{BC} \\ \downarrow \\ FA \otimes F(B \otimes C) \\ \phi_{A,B \otimes C} \\ \downarrow \\ F(A \otimes (B \otimes C)) \end{array}$$

Besides the equality $\tau_A \otimes (\tau_B \otimes \tau_C) \circ a_{ABC} = a_{FAFBFC} \circ (\tau_A \otimes \tau_B) \otimes \tau_C$ holds by naturality of *a*. The associativity condition yields that the following diagram commutes:

This proves that a_{ABC} is a homomorphism. Also, l_A is a homomorphism for every *F*-coalgebra (A, τ_A) because the following diagram commutes due to both the left unit condition and the naturality of *l*:

Similarly, one proves that r_A is a homomorphism. Therefore a, l, and r are natural F-coalgebra isomorphisms. It is not difficult to check the coherence conditions. Thus, $\mathcal{V}_F = (\mathcal{V}_{0_F}, \otimes_F, I, a, l, r)$ is a monoidal category.

Corollary 3.1. Let *F* be a braided monoidal endofunctor on a braided monoidal category $\mathcal{V} = (\mathcal{V}_0, \otimes, I, a, l, r)$. The category $\mathcal{V}_F = (\mathcal{V}_{0_F}, \otimes_F, I, a, l, r)$ of *F*-coalgebras is braided monoidal.

Proof. First, the category \mathcal{V}_F is monoidal due to Proposition 3.1. Next, we prove that the category \mathcal{V}_F has braidings. Let (A, τ_A) and (B, τ_B) be *F*-coalgebras. From the naturality of the braiding $\lambda_{AB} : A \otimes B \to B \otimes A$, it follows that

$$\lambda_{FAFB} \circ (\tau_A \otimes \tau_B) = (\tau_B \otimes \tau_A) \circ \lambda_{AB}$$

In addition, $\phi_{BA} \circ \lambda_{FAFB} = F(\lambda_{AB}) \circ \phi_{AB}$ because *F* is a braided monoidal endofunctor. As a result, the following diagram commutes:

$$\begin{array}{c|c} A \otimes B & \xrightarrow{\lambda_{AB}} & B \otimes A \\ \hline \tau_A \otimes \tau_B & & & & & & \\ FA \otimes FB & \xrightarrow{\lambda_{FAFB}} & FB \otimes FA \\ \phi_{AB} & & & & & & \\ F(A \otimes B) & \xrightarrow{F(\lambda_{AB})} & F(B \otimes A) \end{array}$$

Hence, λ_{AB} is a homomorphism, that is a natural *F*-coalgebra isomorphism because it is a natural \mathcal{V}_0 -isomorphism by definition. Therefore, λ_{AB} is a braiding for the category \mathcal{V}_F . Consequently, the category $\mathcal{V}_F = (\mathcal{V}_{0_F}, \otimes_F, I, a, l, r)$ of *F*-coalgebras is braided monoidal.

Example 3.1. Let K be a field and let M be a monoid. Denote by Vec_M the category of M-graded finite dimensional vector spaces over K consisting of vector spaces with a decomposition

$$V = \bigoplus_{m \in M} V_m,$$

where the morphisms are linear mappings which preserves the grading. It is a monoidal category with the tensor product defined by

$$(V \otimes W)_m = \bigoplus_{x, x' \in M: xx' = m} V_x \otimes W_{x'}$$

and the unit object given by

$$1_m = \begin{cases} K, & if \ m = 1 \\ 0, & otherwise \end{cases}$$

Let M be a monoid and let $f: M \to M$ be a monoid homomorphism. We then have a functor

$$F: Vec_M \to Vec_M$$

defined on objects as follows: for an M-graded finite dimensional vector space,

$$F(V) = F\left(\bigoplus_{m \in M} V_m\right) = \bigoplus_{f(m): m \in M} V_{f(m)}$$

and for each linear mapping $q: V \rightarrow W$,

$$F(q)\left(\bigoplus_{f(m):m\in M} v_{f(m)}\right) = \bigoplus_{f(m):m\in M} q\left(v_{f(m)}\right)$$

The endofunctor F is monoidal; see [10]. Hence, the category of F-coalgebras is monoidal by Proposition 3.1.

Example 3.2. Given a commutative ring R, the homology functor is braided monoidal as

 $H_{\star}: (GMod_R, \otimes, R) \to (GMod_R, \otimes, R)$

via the mapping $H_{\star}(C_1) \otimes H_{\star}(C_2) \to H_{\star}(C_1 \otimes C_2)$; $[x_1] \otimes [x_2] \mapsto [x_1 \otimes x_2]$; see [8]. Then, the category of H_{\star} -coalgebras is braided monoidal due to Corollary 3.1.

Recall that every symmetric monoidal category is braided monoidal.

Corollary 3.2. Let F be a braided monoidal endofunctor on a symmetric monoidal category $\mathcal{V} = (\mathcal{V}_0, \otimes, I, a, l, r)$. The category $\mathcal{V}_F = (\mathcal{V}_{0_F}, \otimes_F, I, a, l, r)$ of F-coalgebras is symmetric monoidal.

Proof. By Corollary 3.1, the category \mathcal{V}_F is braided monoidal. Then, for any *F*-coalgebras (A, τ_A) and (B, τ_B) , the braidings λ_{AB} and λ_{BA} are homomorphisms. Also, $\lambda_{AB} \circ \lambda_{BA} = 1_{A \otimes B}$ as the category \mathcal{V} is symmetric monoidal. Hence, the category \mathcal{V}_F of *F*-coalgebras is symmetric monoidal.

Example 3.3. Let $F : (Set, \times, \{\star\}) \to (Set, \times, \{\star\})$ be a Set-endofunctor which preserves finite products. Then F is braided monoidal. But, Set is a symmetric monoidal category. As a consequence of Corollary 3.1, the category of F-coalgebras is symmetric monoidal, that is braided monoidal.

More generally, the category of coalgebras for a braided monoidal endofunctor F is braided monoidal provided that F preserves the tensor product.

Example 3.4. Consider the covariant power set functor

$$\mathcal{P}: (Set, \times, \{\star\}) \to (Set, \times, \{\star\}),$$

which maps every set to its power set and every function $f : A \to B$ to the mapping $\mathcal{P}(f)$, which sends $U \in \mathcal{P}(A)$ to its image $f(U) \in \mathcal{P}(B)$. It is a symmetric monoidal functor. The coherence maps are the mapping $\phi_o : \{\star\} \to \mathcal{P}(\{\star\})$ which sends \star to $\{\star\}$ and, the mapping $\phi_{AB} : \mathcal{P}(A) \times \mathcal{P}(B) \to \mathcal{P}(A \times B)$ which sends (U, V) to $U \times V$. Also, the symmetry condition holds. Therefore, the category of \mathcal{P} -coalgebras is symmetric monoidal due to Corollary 3.2.

Every category \mathcal{V} admitting finite coproducts is a symmetric monoidal category. The tensor product is defined for every pair A, B, of objects of \mathcal{V} by

$$A\otimes B=A\coprod B$$

and the unit *I* as the initial object of \mathcal{V} . If an endofunctor $F : \mathcal{V} \to \mathcal{V}$ is given, then *F* is a symmetric monoidal functor. It suffices to define the coherence maps $\phi_o : I \to FI$ as the unique arrow from *I* to *FI* and for every pair *A*, *B*, of objects of \mathcal{V} ,

$$\phi_{AB}: FA\coprod FB \to F\left(A\coprod B\right)$$

as the unique arrow arising from the universality of the coproduct. Corollary 3.2 implies that V_F is a symmetric monoidal category.

Lemma 3.1. Suppose that \mathcal{V} is a symmetric monoidal closed category admitting coproducts. Let $F : \mathcal{V} \to \mathcal{V}$ be a fully faithful symmetric monoidal endofunctor. For every pair A, B, of objects of \mathcal{V} , the morphisms

$$\sigma_{AB}: F[A, B] \longrightarrow [FA, FB]$$

are invertible.

Proof. For every pair A, B, of objects of \mathcal{V}_0 , consider the mapping

$$\varphi: \mathcal{V}_0(I, F[A, B]) \longrightarrow \mathcal{V}_0(I, [FA, FB]): u \mapsto \sigma_{AB} \circ u$$

Let $v: I \to [FA, FB]$ be a \mathcal{V}_0 -morphism. Since F is full, there is a \mathcal{V}_0 -morphism $w: I \to [A, B]$ such that

$$\sigma_{AB} \circ (F(w) \circ \phi_o) = v$$

Also, the composite $F(w) \circ \phi_o$ is the only \mathcal{V}_0 -morphism with this property as F is faithful. Thus, one deduces a mapping

$$\psi: \mathcal{V}_0(I, [FA, FB]) \longrightarrow \mathcal{V}_0(I, F[A, B]): v \mapsto F(w) \circ \phi_o$$

We say that φ and ψ are inverse of each other. Indeed, for every \mathcal{V}_0 -morphism $u: I \to F[A, B]$, we have that

$$(\psi \circ \varphi)(u) = \psi(\varphi(u)) = \psi(\sigma_{AB} \circ u) = u.$$

Conversely, for every \mathcal{V}_0 -morphsm $v: I \to [FA, FB]$, we have that

$$(\varphi \circ \psi)(v) = \varphi(\psi(v)) = \varphi(F(w) \circ \phi_o) = \sigma_{AB} \circ (F(w) \circ \phi_o) = v.$$

As a result, the mappings φ and ψ are inverse of each other. Subsequently, σ_{AB} is invertible as the functor $\mathcal{V}_0(I, -) : \mathcal{V} \to Set$ has a left adjoint (see [2]).

Proposition 3.2. Let \mathcal{V} be a symmetric monoidal closed category admitting coproducts. Let $F : \mathcal{V} \to \mathcal{V}$ be a fully faithful symmetric monoidal endofunctor. The category \mathcal{V}_F is symmetric monoidal closed.

Proof. By Corollary 3.2, the category \mathcal{V}_F is symmetric monoidal. Next, we prove that \mathcal{V}_F is also closed. For given Fcoalgebras (A, τ_A) , (B, τ_B) and (C, τ_C) , let $f : (A, \tau_A) \otimes_F (B, \tau_B) \to (C, \tau_C)$ be a homomorphism. Since \mathcal{V} is closed, the \mathcal{V}_0 -morphism $f : A \otimes B \to C$ corresponds under adjunction with an arrow $\overline{f} : A \to [B, C]$. Also, ϕ_{AB} is natural in A, B.
Then the following commutative diagram:

corresponds under adjunction with the following commutative diagram:

which in turn corresponds under adjunction with the following commutative diagram:

As \otimes is bifunctor, the following diagram commutes:

and it corresponds under adjunction with the following commutative diagram:

Furthermore, σ_{BC} is invertible due to Lemma 3.1. One therefore deduces that the following diagram commutes:

Hence, the \mathcal{V}_0 -morphism \bar{f} is homomorphism. Denote by $[(B, \tau_B), (C, \tau_C)]_F$ the pair $([B, C], \sigma_{BC}^{-1} \circ F_{BC})$. We then have a natural bijection:

$$\mathcal{V}_{0_F}((A,\tau_A)\otimes_F (B,\tau_B), (C,\tau_C)) \cong \mathcal{V}_{0_F}((A,\tau_A), [(B,\tau_B), (C,\tau_C)]_F)$$

That is, the functor $-\otimes_F (B, \tau_B) : \mathcal{V}_{0_F} \to \mathcal{V}_{0_F}$ has a right adjoint $[(B, \tau_B), -]_F$. Consequently, \mathcal{V}_F is closed.

References

- [1] D. Balacu, S. Caenepeel, F. Panaite, F. V. Oystaeyen, Quasi-Hopf Algebras: A Categorical Approach, Cambridge University Press, Cambridge, 2019.
- [2] F. Borceux, Handbook of Categorical Algebra, Encyclopedia of Mathematics and its Applications 2, Cambridge University Press, Cambridge, 1994.
- [3] D. Dummit, R. Foote, Abstract Algebra, 3rd Edition, Wiley, Hoboken, 2004.
- [4] S. Eilenberg, G. M. Kelly, Closed categories, In: S. Eilenberg, D. K. Harrison, S. MacLane, H. Röhrl (Eds.), Proceedings of the Conference on Categorical Algebra, Springer, Berlin, 1966, 421–562.
- [5] P. Etingof, S. Gelaki, D. Nikshych, V. Ostrik, Tensor Categories, Mathematcal Surveys and Monographs 205, American Mathematical Society, Providence, 2015.
- [6] H. P. Gumm, Elements of the General Theory of Coalgebras, LUATCS 99, Rand Afrikaans University, Johanesbourg, 1999.
- [7] A. Joyal, R. Street, Braided Monoidal Categories, Macquarie Mathematics Reports, Macquarie University, North Ryde, 1986, #860081.
- [8] G. M. Kelly, Doctrinal adjunction, In: G. M. Kelly (Ed.), Category Seminar, Lecture Notes in Mathematics 420, Springer, Berlin, 1974, 257–280.
- [9] G. M. Kelly, Basic concepts of enriched category theory, Repr. Theory Appl. Categ. 10 (2005) 1–136.
- [10] I. Matsson, Algebra in Monoidal Categories, U.U.D.M. Project Report, Uppsala University, Uppsala, 2021, #17.