Braided monoidal categories of coalgebras

Jean-Paul Mavoungou*

Department of Mathematics, Faculty of Science, University of Yaoundé 1, P. O. Box 812, Yaoundé, Cameroon

(Received: 6 October 2023. Received in revised form: 4 December 2023. Accepted: 9 December 2023. Published online: 15 December 2023.)

© 2023 the author. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

Let \(V \) be a braided monoidal category. Given a braided monoidal endofunctor \(F \) on \(V \), it is proved that \(F \)-coalgebras form a braided monoidal category, denoted as \(V_F \). Particularly, if the category \(V \) admits coproducts and if \(F \) is a fully faithful symmetric monoidal endofunctor, then it is proved that \(V_F \) is symmetric monoidal closed whenever \(V \) is symmetric monoidal closed.

Keywords: braided monoidal category; coalgebra; monoidal functor.

2020 Mathematics Subject Classification: 18D15, 19D23.

1. Introduction

A braided monoidal category is a monoidal category equipped with a natural isomorphism \(\lambda_{AB} : A \otimes B \rightarrow B \otimes A \), known as the braiding. If \(\lambda_{AB} \circ \lambda_{BA} = 1_{A \otimes B} \), then the braided monoidal category is called a symmetric monoidal category. So, every symmetric monoidal category is braided. On the other hand, not every braided monoidal category is symmetric. For instance, the category of graded modules over a commutative ring is braided for the usual monoidal structure on it; however, this monoidal category is not symmetric (see [4]). A symmetric monoidal category \(V \) is said to be closed if, for each \(B \in \mathcal{V}_0 \), the functor \(\ast \otimes - \) has a right adjoint \([B, \ast] \).

The notion of braiding occurs naturally in the theoretical context of further multiplication on a monoidal category, has an adequate coherence theorem, and, is as versatile as symmetry [7]. For any monoidal category \(V \), an extra multiplication on \(V \) leads to a braiding; also, each braiding leads to a multiplication. This gives a natural explanation for braidings as opposed to symmetries. Important examples of braidings can be found especially in homotopy and cohomology theories.

A monoidal functor \(F : V \rightarrow W \) between monoidal categories consists of an object \(F(A) \) and a morphism \(F(f) : F(A) \otimes F(B) \rightarrow F(A \otimes B) \) for every pair \(A, B \) of objects of \(V \), which is natural in \(A, B \), and a morphism \(\Phi_o : I \rightarrow FI \) of \(W \), where \(I \) is the unit of \(V \) and \(J \) is the unit of \(W \); all these objects must satisfy the associativity and unit conditions. A braided monoidal functor is a monoidal functor between braided categories together with the coherence condition expressed by the commutativity of the following diagram:

\[
\begin{array}{ccc}
FA \otimes FB & \xrightarrow{F(A \otimes B)} & FB \otimes FA \\
\Phi_{AB} & & \Phi_{BA} \\
F(A \otimes B) & \xrightarrow{F(\lambda_{AB})} & F(B \otimes A)
\end{array}
\]

Particularly, a symmetric monoidal functor is a braided monoidal functor whose domain and codomain are symmetric monoidal categories.

Given a monoidal endofunctor \(F : V \rightarrow V \), a pair \((A, \tau_A) \) consisting of an object \(A \) in \(V_0 \) and a morphism \(\tau_A : A \rightarrow FA \) is called an \(F \)-coalgebra. The \(V_0 \)-morphism \(\tau_A \) is called the coalgebra structure of \((A, \tau_A) \). An \(F \)-coalgebra homomorphism \(f : (A, \tau_A) \rightarrow (B, \tau_B) \) is a \(V_0 \)-morphism \(f : A \rightarrow B \) satisfying the condition \(F(f) \circ \tau_A = \tau_B \circ f \). Also, \(F \)-coalgebra homomorphisms are stable under composition. Therefore, \(F \)-coalgebras and their homomorphisms form a category denoted by \(V_{0_F} \).

This paper aims to explore the transferability of a braided monoidal structure on a given category to the category of coalgebras for a braided monoidal endofunctor on this category. First, it is proved that the category \(V_F \) of coalgebras for a monoidal endofunctor \(F : V \rightarrow V \) is monoidal. Then assuming that \(F \) is braided monoidal, it is proved that the category \(V_F \)...
is braided monoidal. As a consequence, the category of \mathcal{V}_F is symmetric monoidal provided that F is symmetric monoidal. Particularly, if the category \mathcal{V} admits coproducts and if F is a fully faithful symmetric monoidal endofunctor then it is proved that \mathcal{V}_F is symmetric monoidal closed whenever \mathcal{V} is symmetric monoidal closed.

2. Preliminaries

In this section, several categorical concepts including definitions and basic properties are recalled, which will be used in the rest of this paper.

Monoidal categories

A monoidal category $\mathcal{V} = (V_0, \otimes, I, a, l, r)$ consists of a category V_0, a bifunctor $\otimes : V_0 \times V_0 \to V_0$ called the tensor product of V, an object I of V_0 called the unit and natural isomorphisms $a_{ABC} : (A \otimes B) \otimes C \to A \otimes (B \otimes C)$, $l_A : I \otimes A \to A$, $r_A : A \otimes I \to A$, subject to two coherence axioms expressing the commutativity of the following diagrams:

$$
\begin{align*}
(A \otimes (B \otimes C)) \otimes D & \xrightarrow{a_{ABC} \otimes 1} A \otimes ((B \otimes C) \otimes D) \\
& \xrightarrow{a} A \otimes (B \otimes (C \otimes D))
\end{align*}
$$

and

$$
\begin{align*}
(A \otimes I) \otimes B & \xrightarrow{a_{AB} \otimes 1} A \otimes (I \otimes B) \\
& \xrightarrow{\lambda} A \otimes (I \otimes B)
\end{align*}
$$

Every category with finite products and a terminal object is a monoidal category (see [2, 10]). Particularly, the category \mathcal{V} of Abelian groups and their homomorphisms becomes a monoidal category when it is provided with the tensor product of representations: if for a representation A of vector spaces over a field K, an object \mathcal{V} is a monoidal category equipped with a natural isomorphism $\lambda_{AB} : A \otimes B \to B \otimes A$, known as the braiding, such that the following diagrams commute for all objects involved (called the hexagon identities):

$$
\begin{align*}
(A \otimes B) \otimes C & \xrightarrow{a_{ABC}} A \otimes (B \otimes C) \xrightarrow{\lambda_{ABA}} (B \otimes C) \otimes A \\
& \xrightarrow{\lambda_{BCA}} (B \otimes C) \otimes A
\end{align*}
$$

and

$$
\begin{align*}
A \otimes (B \otimes C) & \xrightarrow{a_{BAC}^{-1}} (A \otimes B) \otimes C \xrightarrow{\lambda_{ABC} \otimes 1} C \otimes (A \otimes B) \\
& \xrightarrow{\lambda_{AC} \otimes 1} C \otimes (A \otimes B)
\end{align*}
$$

If $\lambda_{AB} \circ \lambda_{BA} = 1_{\otimes B}$, then the braided monoidal category is called a symmetric monoidal category. A symmetry is exactly a braiding which also satisfies the property $\lambda_{AB} \circ \lambda_{BA} = 1_{\otimes B}$; but not every braiding is a symmetry (see [7]). For illustration, let $\mathcal{G}Mod_R$ be the category of graded modules over a commutative ring R and graded homomorphisms. Then, it is a monoidal category with the tensor product given by

$$(A \otimes B)_n = \sum_{p+q=n} A_p \otimes_R B_q$$
and the unit object by the trivial graded module R (where $R_n = R$ if $n = 0$ and $R_n = 0$ otherwise). Braiding

$$\lambda_{AB} : A \otimes B \to B \otimes A$$

for this monoidal structure on $GMod_R$ are in bijection with invertible elements r of R via the formula

$$\lambda_{AB}(x \otimes y) = r^{pq}(y \otimes x) \quad \text{where} \quad x \in A_p \text{ and } y \in B_q.$$

Symmetries are in bijection with elements r of R satisfying the condition $r^2 = 1$ (see [4]). That is, every symmetry is a braiding; obviously, the converse does not hold. The monoidal categories Set, Ab and $Vect_K$ are symmetric (see [1,9]).

A symmetric monoidal category \mathcal{V} is said to be closed if, for each $B \in \mathcal{V}_0$, the functor $- \otimes B : \mathcal{V}_0 \to \mathcal{V}_0$ has a right adjoint $[B, -]$, so that we have a natural bijection

$$\mathcal{V}_0(A \otimes B, C) \cong \mathcal{V}_0(A, [B, C])$$

with unit and counit (the latter called evaluation) say $d_A : A \to [B, A \otimes B]$ and $ev_{B,C} : [B, C] \otimes B \to C$.

Enriched categories

An enriched category over a monoidal category \mathcal{V} or a \mathcal{V}-category \mathcal{A} consists of a class $ob\mathcal{A}$, a hom-object $\mathcal{A}(A, B) \in \mathcal{V}_0$ for each pair of objects of \mathcal{A}, a composition law $C_{ABC} : \mathcal{A}(A, B) \otimes \mathcal{A}(B, C) \to \mathcal{A}(A, C)$ for each triple of objects, and an identity element $j_A : I \to \mathcal{A}(A, A)$ for each object; subject to the associativity axiom expressed by the commutativity of the following diagram:

$$\begin{array}{ccc}
C_{ABC} & \to & \mathcal{A}(A, C) \otimes \mathcal{A}(C, D) \\
\downarrow C_{ACD} & & \downarrow C_{ACD} \\
\mathcal{A}(A, B) \otimes (\mathcal{A}(B, C) \otimes \mathcal{A}(C, D)) & \xrightarrow{1 \otimes C_{BCD}} & \mathcal{A}(A, B) \otimes \mathcal{A}(B, D) \\
\downarrow 1 \otimes C_{BCD} & & \downarrow C_{ABD} \\
\mathcal{A}(A, B) \otimes \mathcal{A}(B, D) & \xrightarrow{C_{ABD}} & \mathcal{A}(A, D)
\end{array}$$

and unit axioms expressed by the identities:

$$C_{ABB} \circ (1_{\mathcal{A}(A,B)} \otimes j_B) = r_{\mathcal{A}(A,B)} \quad \text{and} \quad C_{AAB} \circ (j_A \otimes 1_{\mathcal{A}(A,B)}) = l_{\mathcal{A}(A,B)}.$$

Every symmetric monoidal closed \mathcal{V} can be provided with the structure of a \mathcal{V}-category (see [2,9]). More precisely, there is a \mathcal{V}-category, whose objects are those of \mathcal{V}_0, and whose hom-object $\mathcal{V}(A, B)$ is $[A, B]$. Its composition law

$$C_{ABC} : [A, B] \otimes [B, C] \to [A, C]$$

corresponds under adjunction to the composite morphism

$$\begin{array}{ccc}
([A, B] \otimes [B, C]) \otimes A & \xrightarrow{s_{[A,B],[B,C]} \otimes 1} & ([B, C] \otimes [A, B]) \otimes A \\
\downarrow q_{[B,C],[A,B],A} & & \downarrow q_{[B,C],[A,B],A} \\
[B, C] \otimes ([A, B] \otimes A) & \xrightarrow{1 \otimes ev_{AB}} & [B, C] \otimes B \\
\downarrow 1 \otimes ev_{AB} & & \downarrow ev_{BC} \\
C & \xrightarrow{ev_{BC}} & C
\end{array}$$

and its identity element $j_A : I \to [A, A]$ corresponds under adjunction to $l_A : I \otimes A \to A$.

Monoidal functors

A monoidal functor $F : \mathcal{V} \to \mathcal{W}$ between monoidal categories consists of a functor $F : \mathcal{V}_0 \to \mathcal{W}_0$ together with a morphism $\phi_{AB} : FA \otimes FB \to F(A \otimes B)$ for every pair A, B of objects of \mathcal{V}_0, which is natural in A, B, and a morphism $\phi_0 : J \to FI$ of
\(W \), where \(I \) stands for the unit of \(V \) and \(J \) is the unit of \(W \). These data must satisfy the associativity condition expressed by the commutativity of the following diagram:

\[
\begin{array}{cccc}
(F_A \otimes FB) \otimes FC & \xrightarrow{\alpha_{FABFC}} & FA \otimes (FB \otimes FC) \\
\phi_{AB} \otimes 1 & & 1 \otimes \phi_{BC} \\
F(A \otimes B) \otimes FC & \xrightarrow{\phi_{AB,C}} & FA \otimes (FB \otimes FC) \\
\phi_{A,B,C} & & \phi_{A,B \otimes C} \\
F((A \otimes B) \otimes C) & \xrightarrow{F(\alpha_{ABC})} & F(A \otimes (B \otimes C))
\end{array}
\]

and the unit conditions expressed by the commutativity of the following diagrams:

\[
\begin{array}{cccc}
J \otimes FA & \xrightarrow{\lambda_{FA}} & FI \otimes FA & \\
\phi_{o} \otimes 1 & & \phi_{IA} & \\
F(I \otimes A) & \xrightarrow{F(l_{A})} & FA & \\
\phi_{o} & & \phi_{IA} & \\
F(A \otimes I) & \xrightarrow{F(r_{A})} & FA & \\
\end{array}
\]

For instance, the forgetful functor \(U : (Ab, \otimes, \mathbb{Z}) \rightarrow (Set, \times, \{\star\}) \) from the category of Abelian groups to the category of sets is monoidal. In this case, the mapping \(\phi_{AB} : U(A) \times U(B) \rightarrow U(A \otimes B) \) sends \((a, b)\) to \(a \otimes b \) and the mapping \(\phi_{o} : \{\star\} \rightarrow \mathbb{Z} \) sends \(\star \) to \(1 \). Modules over a commutative ring \(R \) and their homomorphisms form a monoidal category (see [1,2]). The monoidal product is given by the tensor product of modules and the unit object of this category is \(R \). If \(f : R \rightarrow S \) is a commutative ring homomorphism, then the restriction functor \((\text{Mod}_S, \otimes, S) \rightarrow (\text{Mod}_R, \otimes, R)\) is monoidal (see [3]).

Definition 2.1. A braided monoidal functor is a monoidal functor between braided categories such that the following diagram commutes:

\[
\begin{array}{cccc}
FA \otimes FB & \xrightarrow{\lambda_{FAB}} & FB \otimes FA & \\
\phi_{AB} & & \phi_{BA} & \\
F(A \otimes B) & \xrightarrow{F(\lambda_{AB})} & F(B \otimes A) & \\
\end{array}
\]

Notice that every monoidal functor which preserves the tensor product is braided monoidal. In particular, every \(Set \)-endofunctor preserving finite products is braided monoidal.

Definition 2.2. A symmetric monoidal functor is a braided monoidal functor whose domain and codomain are symmetric monoidal categories.

For instance, the functor \((Set, \times, \{\star\}) \rightarrow (\text{Vect}_K, \otimes, K)\) which takes a set to a vector space by taking the elements of the set as a basis is symmetric monoidal. Also, the forgetful functor \(U : (Ab, \otimes, \mathbb{Z}) \rightarrow (Set, \times, \{\star\}) \) is symmetric monoidal.

Proposition 2.1 (see [2]). Let \(F : \mathbb{V} \rightarrow \mathbb{W} \) be a symmetric monoidal functor, where \(\mathbb{V} \) and \(\mathbb{W} \) are in fact symmetric monoidal closed categories. There exist morphisms in \(\mathbb{W} \)

\[
\sigma_{AB} : F[A, B] \rightarrow [FA, FB]
\]

for every pair \(A, B \), of objects of \(\mathbb{V} \) and these morphisms satisfy the following conditions:

(1) The morphisms \(\sigma_{AB} \) are natural in \(A \) and \(B \).
(2). The diagram

\[
\begin{array}{c}
F[[A, B] \otimes [B, C]] \xrightarrow{F_{ABC}} F[A, C] \\
\phi_{[A, B], [B, C]} \downarrow \downarrow \sigma_{AC}
\end{array}
\]

\[
F[A, B] \otimes F[B, C] \xrightarrow{\sigma_{AB} \otimes \sigma_{BC}} [FA, FB] \otimes [FB, FC] \\
\xrightarrow{\sigma_{AB} \otimes \sigma_{BC}} [FA, FC]
\]

commutes for all objects \(A, B, C\) of \(\mathcal{V}\).

(3). The diagram

\[
\begin{array}{c}
FI \xrightarrow{F_{JA}} F[A, A] \\
\phi_o \downarrow \downarrow \sigma_{AA}
\end{array}
\]

\[
J \xrightarrow{j_{FA}} [FA, FA]
\]

commutes for every object \(A\) of \(\mathcal{V}\).

3. Coalgebras for a braided monoidal functor

Let \(F\) denote a monoidal endofunctor on a monoidal category \(\mathcal{V}\). A pair \((A, \tau_A)\) consisting of an object \(A\) in \(\mathcal{V}_0\) and a morphism \(\tau_A : A \to FA\) is called an \(F\)-coalgebra. We call \(\tau_A\) the coalgebra structure of \((A, \tau_A)\). Given \(F\)-coalgebras \((A, \tau_A)\) and \((B, \tau_B)\), by a homomorphism we mean a \(\mathcal{V}_0\)-morphism \(f : A \to B\) for which the following diagram commutes:

\[
\begin{array}{c}
A \xrightarrow{f} B \\
\tau_A \downarrow \downarrow \tau_B \\
FA \xrightarrow{F(f)} FB
\end{array}
\]

This definition turns the class of \(F\)-coalgebras and their homomorphisms into a category, denoted as \(\mathcal{V}_{F}\).

Proposition 3.1. Let \(F\) be a monoidal endofunctor on a monoidal category \(\mathcal{V} = (\mathcal{V}_0, \otimes, I, a, l, r)\). The category \(\mathcal{V}_F = (\mathcal{V}_0, \otimes_F, I, a, l, r)\) of \(F\)-coalgebras is monoidal.

Proof. Consider the correspondence \(\otimes_F : \mathcal{V}_F \times \mathcal{V}_F \to \mathcal{V}_F\) defined on each pair of \(F\)-coalgebras \((A, \tau_A)\) and \((B, \tau_B)\) as

\[
(A, \tau_A) \otimes_F (B, \tau_B) = (A \otimes B, \phi_{AB} \circ (\tau_A \otimes \tau_B)).
\]

Also, \(\otimes_F\) extends to a bifunctor as \(\otimes\) is bifunctor and the morphism \(\phi_{AB} : FA \otimes FB \to F(A \otimes B)\) is natural in \(A\) and \(B\). Take the unit to be the pair \((I, \phi_o : I \to FI)\). First, we show that \(a, l, \) and \(r\) are natural \(F\)-coalgebra isomorphisms. Since \(a, l,\) and \(r\) are natural isomorphisms in \(\mathcal{V}_0\), it suffices to prove that they are homomorphisms: a \(\mathcal{V}_0\)-isomorphism is an \(F\)-coalgebra isomorphism if and only if it is a homomorphism (see [6]). Moreover a natural \(\mathcal{V}_0\)-morphism is a natural homomorphism provided that it is a homomorphism.

Given \(F\)-coalgebras \((A, \tau_A), (B, \tau_B),\) and \((C, \tau_C)\), the \(\mathcal{V}_0\)-objects \((A \otimes B) \otimes C\) and \(A \otimes (B \otimes C)\) are respectively equipped with the coalgebra structures:

\[
(A \otimes B) \otimes C \\
\xrightarrow{\tau_A \otimes \tau_B \otimes \tau_C}
\]

\[
(FA \otimes FB) \otimes FC \\
\xrightarrow{\phi_{AB} \otimes 1}
\]

\[
F((A \otimes B) \otimes C)
\]

\[
\xrightarrow{\phi_{AB} \otimes \sigma BC}
\]

\[
F((A \otimes B) \otimes C)
\]

\[
\xrightarrow{\phi_{AB} \otimes 1}
\]

\[
F((A \otimes B) \otimes C)
\]

\[
\xrightarrow{\phi_{AB} \otimes \sigma BC}
\]

\[
F((A \otimes B) \otimes C)
\]
and

\[
\begin{array}{c}
A \otimes (B \otimes C) \\
\downarrow \tau_A \otimes (\tau_B \otimes \tau_C) \\
FA \otimes (FB \otimes FC) \\
\downarrow 1 \otimes \phi_{BC} \\
FA \otimes F(B \otimes C) \\
\downarrow \phi_{A,B:BC} \\
F(A \otimes (B \otimes C))
\end{array}
\]

Besides the equality \(\tau_A \otimes (\tau_B \otimes \tau_C) \circ a_{ABC} = a_{FABFC} \circ (\tau_A \otimes \tau_B) \otimes \tau_C\) holds by naturality of \(a\). The associativity condition yields that the following diagram commutes:

\[
\begin{array}{c}
(A \otimes B) \otimes C \\
\downarrow (\tau_A \otimes \tau_B) \otimes \tau_C \\
FA \otimes (FB \otimes FC) \\
\downarrow \phi_{AB} \otimes 1 \\
F(A \otimes B) \otimes FC \\
\downarrow \phi_{A,B:BC} \\
F((A \otimes B) \otimes C)
\end{array} \xrightarrow{\phi_{A,B:BC}}
\begin{array}{c}
(A \otimes B) \otimes C \\
\downarrow \tau_A \otimes (\tau_B \otimes \tau_C) \\
FA \otimes (FB \otimes FC) \\
\downarrow 1 \otimes \phi_{BC} \\
FA \otimes F(B \otimes C) \\
\downarrow \phi_{A,B:BC} \\
F(A \otimes (B \otimes C))
\end{array}
\]

This proves that \(a_{ABC}\) is a homomorphism. Also, \(l_A\) is a homomorphism for every \(F\)-coalgebra \((A, \tau_A)\) because the following diagram commutes due to both the left unit condition and the naturality of \(l\):

\[
\begin{array}{c}
I \otimes A \\
\downarrow 1 \otimes \tau_A \\
I \otimes FA \\
\downarrow \phi_{A} \otimes 1 \\
FI \otimes FA \\
\downarrow \phi_{A} \\
F(I \otimes A) \\
\downarrow F(l_A) \\
FA
\end{array} \xrightarrow{l_A}
\begin{array}{c}
A \\
\downarrow \tau_A \\
FA
\end{array}
\]

Similarly, one proves that \(r_A\) is a homomorphism. Therefore \(a\), \(l\), and \(r\) are natural \(F\)-coalgebra isomorphisms. It is not difficult to check the coherence conditions. Thus, \(V_F = (V_0_F, \otimes_F, I, a, l, r)\) is a monoidal category.

\[\square\]

Corollary 3.1. Let \(F\) be a braided monoidal endofunctor on a braided monoidal category \(V = (V_0, \otimes, I, a, l, r)\). The category \(V_F = (V_0_F, \otimes_F, I, a, l, r)\) of \(F\)-coalgebras is braided monoidal.

Proof. First, the category \(V_F\) is monoidal due to Proposition 3.1. Next, we prove that the category \(V_F\) has braidings. Let \((A, \tau_A)\) and \((B, \tau_B)\) be \(F\)-coalgebras. From the naturality of the braiding \(\lambda_{AB} : A \otimes B \to B \otimes A\), it follows that

\[
\lambda_{FABF} \circ (\tau_A \otimes \tau_B) = (\tau_B \otimes \tau_A) \circ \lambda_{AB}.
\]

In addition, \(\phi_{BA} \circ \lambda_{FABF} = F(\lambda_{AB}) \circ \phi_{AB}\) because \(F\) is a braided monoidal endofunctor. As a result, the following diagram commutes:

\[
\begin{array}{c}
A \otimes B \\
\downarrow \tau_A \otimes \tau_B \\
FA \otimes FB \\
\downarrow \phi_{AB} \\
F(A \otimes B)
\end{array} \xrightarrow{\lambda_{AB}}
\begin{array}{c}
B \otimes A \\
\downarrow \tau_B \otimes \tau_A \\
FB \otimes FA \\
\downarrow \phi_{BA} \\
F(B \otimes A)
\end{array}
\]
Hence, \(\lambda_{AB} \) is a homomorphism, that is a natural \(F \)-coalgebra isomorphism because it is a natural \(\mathcal{V}_0 \)-isomorphism by definition. Therefore, \(\lambda_{AB} \) is a braiding for the category \(\mathcal{V}_F \). Consequently, the category \(\mathcal{V}_F = (\mathcal{V}_0, \otimes, I, a, l, r) \) of \(F \)-coalgebras is braided monoidal.

Example 3.1. Let \(K \) be a field and let \(M \) be a monoid. Denote by \(\text{Vec}_M \) the category of \(M \)-graded finite dimensional vector spaces over \(K \) consisting of vector spaces with a decomposition

\[
V = \bigoplus_{m \in M} V_m,
\]

where the morphisms are linear mappings which preserve the grading. It is a monoidal category with the tensor product defined by

\[
(V \otimes W)_m = \bigoplus_{x,x' \in M; xx' = m} V_x \otimes W_{x'}
\]

and the unit object given by

\[
1_m = \begin{cases} K, & \text{if } m = 1 \\ 0, & \text{otherwise}. \end{cases}
\]

Let \(M \) be a monoid and let \(f : M \to M \) be a monoid homomorphism. We then have a functor

\[
F : \text{Vec}_M \to \text{Vec}_M
\]

defined on objects as follows: for an \(M \)-graded finite dimensional vector space,

\[
F(V) = F \left(\bigoplus_{m \in M} V_m \right) = \bigoplus_{f(m) \in M} V_{f(m)}
\]

and for each linear mapping \(q : V \to W \),

\[
F(q) \left(\bigoplus_{f(m) \in M} V_{f(m)} \right) = \bigoplus_{f(m) \in M} q \left(V_{f(m)} \right)
\]

The endofunctor \(F \) is monoidal; see [10]. Hence, the category of \(F \)-coalgebras is monoidal by Proposition 3.1.

Example 3.2. Given a commutative ring \(R \), the homology functor is braided monoidal as

\[
H_* : (\text{GMod}_R, \otimes, R) \to (\text{GMod}_R, \otimes, R)
\]

via the mapping \(H_*(C_1) \otimes H_*(C_2) \to H_*(C_1 \otimes C_2); [x_1] \otimes [x_2] \mapsto [x_1 \otimes x_2] \); see [8]. Then, the category of \(H_* \)-coalgebras is braided monoidal due to Corollary 3.1.

Recall that every symmetric monoidal category is braided monoidal.

Corollary 3.2. Let \(F \) be a braided monoidal endofunctor on a symmetric monoidal category \(\mathcal{V} = (\mathcal{V}_0, \otimes, I, a, l, r) \). The category \(\mathcal{V}_F = (\mathcal{V}_0, \otimes_F, I, a, l, r) \) of \(F \)-coalgebras is symmetric monoidal.

Proof. By Corollary 3.1, the category \(\mathcal{V}_F \) is braided monoidal. Then, for any \(F \)-coalgebras \((A, \tau_A) \) and \((B, \tau_B) \), the braidings \(\lambda_{AB} \) and \(\lambda_{BA} \) are homomorphisms. Also, \(\lambda_{AB} \circ \lambda_{BA} = 1_{A \otimes B} \) as the category \(\mathcal{V} \) is symmetric monoidal. Hence, the category \(\mathcal{V}_F \) of \(F \)-coalgebras is symmetric monoidal.

Example 3.3. Let \(F : (\text{Set}, \times, \{\ast\}) \to (\text{Set}, \times, \{\ast\}) \) be a \(\text{Set} \)-endofunctor which preserves finite products. Then \(F \) is braided monoidal. But, \(\text{Set} \) is a symmetric monoidal category. As a consequence of Corollary 3.1, the category of \(F \)-coalgebras is symmetric monoidal, that is braided monoidal.

More generally, the category of coalgebras for a braided monoidal endofunctor \(F \) is braided monoidal provided that \(F \) preserves the tensor product.

Example 3.4. Consider the covariant power set functor

\[
P : (\text{Set}, \times, \{\ast\}) \to (\text{Set}, \times, \{\ast\}),
\]

which maps every set to its power set and every function \(f : A \to B \) to the mapping \(P(f) \), which sends \(U \in P(A) \) to its image \(f(U) \in P(B) \). It is a symmetric monoidal functor. The coherence maps are the mapping \(\phi_n : \{\ast\} \to P(\{\ast\}) \) which sends \(\ast \) to \(\{\ast\} \) and, the mapping \(\phi_{AB} : P(A) \times P(B) \to P(A \times B) \) which sends \((U, V) \) to \(U \times V \). Also, the symmetry condition holds. Therefore, the category of \(P \)-coalgebras is symmetric monoidal due to Corollary 3.2.
Every category \mathcal{V} admitting finite coproducts is a symmetric monoidal category. The tensor product is defined for every pair A, B, of objects of \mathcal{V} by

$$A \otimes B = A \coprod B$$

and the unit I as the initial object of \mathcal{V}. If an endofunctor $F : \mathcal{V} \to \mathcal{V}$ is given, then F is a symmetric monoidal functor. It suffices to define the coherence maps $\phi_o : I \to FI$ as the unique arrow from I to FI and for every pair A, B, of objects of \mathcal{V},

$$\phi_{AB} : FA \coprod FB \to F(A \coprod B)$$

as the unique arrow arising from the universality of the coproduct. Corollary 3.2 implies that \mathcal{V}_F is a symmetric monoidal category.

Lemma 3.1. Suppose that \mathcal{V} is a symmetric monoidal closed category admitting coproducts. Let $F : \mathcal{V} \to \mathcal{V}$ be a fully faithful symmetric monoidal endofunctor. For every pair A, B, of objects of \mathcal{V}, the morphisms

$$\sigma_{AB} : F[A, B] \to [FA, FB]$$

are invertible.

Proof. For every pair A, B, of objects of \mathcal{V}_0, consider the mapping

$$\varphi : \mathcal{V}_0(I, F[A, B]) \to \mathcal{V}_0(I, [FA, FB]) : u \mapsto \sigma_{AB} \circ u$$

Let $v : I \to [FA, FB]$ be a \mathcal{V}_0-morphism. Since F is full, there is a \mathcal{V}_0-morphism $w : I \to [A, B]$ such that

$$\sigma_{AB} \circ (F(w) \circ \phi_o) = v.$$

Also, the composite $F(w) \circ \phi_o$ is the only \mathcal{V}_0-morphism with this property as F is faithful. Thus, one deduces a mapping

$$\psi : \mathcal{V}_0(I, [FA, FB]) \to \mathcal{V}_0(I, [F[A, B]]) : v \mapsto F(w) \circ \phi_o.$$

We say that φ and ψ are inverse of each other. Indeed, for every \mathcal{V}_0-morphism $u : I \to F[A, B]$, we have that

$$(\psi \circ \varphi)(u) = \psi(\varphi(u)) = \psi(\sigma_{AB} \circ u) = u.$$

Conversely, for every \mathcal{V}_0-morphism $v : I \to [FA, FB]$, we have that

$$(\varphi \circ \psi)(v) = \varphi(\psi(v)) = \varphi(F(w) \circ \phi_o) = \sigma_{AB} \circ (F(w) \circ \phi_o) = v.$$

As a result, the mappings φ and ψ are inverse of each other. Subsequently, σ_{AB} is invertible as the functor $\mathcal{V}_0(I, -) : \mathcal{V} \to \Set$ has a left adjoint (see [2]).

Proposition 3.2. Let \mathcal{V} be a symmetric monoidal closed category admitting coproducts. Let $F : \mathcal{V} \to \mathcal{V}$ be a fully faithful symmetric monoidal endofunctor. The category \mathcal{V}_F is symmetric monoidal closed.

Proof. By Corollary 3.2, the category \mathcal{V}_F is symmetric monoidal. Next, we prove that \mathcal{V}_F is also closed. For given F-coalgebras (A, τ_A), (B, τ_B) and (C, τ_C), let $f : (A, \tau_A) \otimes_F (B, \tau_B) \to (C, \tau_C)$ be a homomorphism. Since \mathcal{V} is closed, the \mathcal{V}_0-morphism $f : A \otimes B \to C$ corresponds under adjunction with an arrow $\bar{f} : A \to [B, C]$. Also, ϕ_{AB} is natural in A, B. Then the following commutative diagram:

```
\begin{array}{ccc}
A \otimes B & \xrightarrow{f} & C \\
\downarrow^{\tau_A \otimes \tau_B} & & \\
FA \otimes FB & \xrightarrow{F(f) \otimes 1} & F[B, C] \otimes FB \\
\downarrow^{\phi_{AB}} & & \downarrow^{\phi_{[B, C], u}} \\
F(A \otimes B) & \xrightarrow{F(f) \otimes 1} & F([B, C] \otimes B) \\
\downarrow^{F(f)} & & \downarrow^{F(ev_{BC})} \\
& & FC \\
\end{array}
```
corresponds under adjunction with the following commutative diagram:

\[
\begin{array}{c}
A \xrightarrow{f} [B, C] \\
\downarrow \tau_A \\
F(A) \xrightarrow{F(f)} F([B, C]) \\
\end{array}
\]

which in turn corresponds under adjunction with the following commutative diagram:

\[
\begin{array}{c}
A \otimes B \xrightarrow{f \otimes 1} [B, C] \otimes B \\
\downarrow 1 \otimes \tau_B \\
A \otimes FB \xrightarrow{f \otimes 1} [B, C] \otimes FB \\
\downarrow \tau_A \otimes 1 \\
FA \otimes FB \xrightarrow{F(f) \otimes 1} F([B, C] \otimes B) \\
\downarrow \phi_{[B,C],B} \\
F([B, C] \otimes B) \xrightarrow{F(\sigma_{BC})} FC \\
\end{array}
\]

As \otimes is bifunctor, the following diagram commutes:

\[
\begin{array}{c}
A \otimes FB \xrightarrow{f \otimes 1} [B, C] \otimes FB \\
\downarrow \tau_A \otimes 1 \\
FA \otimes FB \xrightarrow{F(f) \otimes 1} F([B, C] \otimes B) \\
\downarrow \phi_{[B,C],B} \\
F([B, C] \otimes B) \xrightarrow{F(\sigma_{BC})} FC \\
\end{array}
\]

and it corresponds under adjunction with the following commutative diagram:

\[
\begin{array}{c}
A \xrightarrow{f} [B, C] \\
\downarrow \tau_A \\
F(A) \xrightarrow{F(f)} F([B, C]) \\
\downarrow \sigma_{BC} \\
F([B, C]) \xrightarrow{[FB, FC]} [FB, FC] \\
\end{array}
\]

Furthermore, σ_{BC} is invertible due to Lemma 3.1. One therefore deduces that the following diagram commutes:

\[
\begin{array}{c}
A \xrightarrow{f} [B, C] \\
\downarrow \tau_A \\
F(A) \xrightarrow{F(f)} F([B, C]) \\
\downarrow \sigma_{BC}^{-1} \\
F([B, C]) \xrightarrow{F(f)} F([B, C]) \\
\end{array}
\]
Hence, the \mathcal{V}_0-morphism \bar{f} is homomorphism. Denote by $\left[\left(\mathcal{B}, \tau_B\right), \left(\mathcal{C}, \tau_C\right)\right]_F$ the pair $\left[\mathcal{B}, \mathcal{C}\right], \sigma_{BC}^{-1} \circ F_{BC}$. We then have a natural bijection:

$$\mathcal{V}_0\left(\left(\mathcal{A}, \tau_A\right) \otimes_F \left(\mathcal{B}, \tau_B\right), \left(\mathcal{C}, \tau_C\right)\right) \cong \mathcal{V}_0\left(\left(\mathcal{A}, \tau_A\right), \left[\left(\mathcal{B}, \tau_B\right), \left(\mathcal{C}, \tau_C\right)\right]_F\right)$$

That is, the functor $- \otimes_F \left(\mathcal{B}, \tau_B\right): \mathcal{V}_0 \rightarrow \mathcal{V}_0$ has a right adjoint $\left[\left(\mathcal{B}, \tau_B\right), -\right]_F$. Consequently, \mathcal{V}_F is closed.

References

