Research Article

Minimum Wiener index of unicyclic chemical graphs with girth 3

Junxiu Wu, Yubin Gao*
School of Mathematics, North University of China, Taiyuan, Shanxi 030051, P. R. China

(Received: 11 September 2023. Received in revised form: 23 October 2023. Accepted: 30 October 2023. Published online: 2 November 2023.)
© 2023 the authors. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

The Wiener index of a connected graph G is defined as the sum of distances between all unordered pairs of vertices of G. It is one of the most-studied topological indices in mathematical chemistry. Determining the minimum Wiener index among all connected graphs of order n with a given girth and maximum degree is an open problem proposed by Chen and Li in the paper [MATCH Commun. Math. Comput. Chem. 88 (2022) 683-703]. The main goal of the present paper is to provide a partial solution to this open problem by characterizing the graphs attaining the minimum Wiener index among all unicyclic graphs of order n with girth 3 and maximum degree 4.

Keywords: chemical graph; Wiener index; extremal graph.
2020 Mathematics Subject Classification: 05C50, 05C09, 05C92.

1. Introduction

Let G be a graph with the vertex set $V(G)$ and edge set $E(G)$. The degree $d_{G}(v)$ of a vertex $v \in V(G)$ is the number of vertices adjacent to v. The maximum degree of G, denoted by $\Delta(G)$ or Δ for short, is the maximum degree of its vertices. The distance $d_{G}(u, v)$ between the vertices u and v in a connected graph G is the length of any shortest path in G connecting u and v. The girth $g(G)$ of a graph G with at least one cycle is equal to the length of any shortest cycle in G. As usual, we denote the complete graph, path, and star of order n by K_{n}, P_{n}, and S_{n}, respectively.

The Wiener index $W(G)$ of a connected graph G is defined by

$$
\begin{equation*}
W(G)=\sum_{\{u, v\} \subseteq V(G)} d_{G}(u, v) \tag{1}
\end{equation*}
$$

The Wiener index is one of the most-studied topological indices in mathematical chemistry. It was introduced by Wiener in 1947 to analyze some aspects of branching by fitting experimental data for several properties of alkane compounds. It is known that the star S_{n} and path P_{n} have the minimum and maximum Wiener indices, respectively, among all trees of order n. Also, the complete graph K_{n} and path P_{n} have the minimum and maximum Wiener indices, respectively, among all connected graphs of order n. There are many known results of this type for more specific classes of graphs; for example, see [1-11]. Particularly, the readers interested in known mathematical properties of this index are referred to the surveys $[2,5,10]$.

In [1], Chen and Li determined the graphs that have the maximum Wiener index among all connected graphs of order n with girth g and maximum degree Δ, and proposed the following open problem:

Problem 1.1 (see [1]). Determine the minimum Wiener index among all connected graphs of order n with given girth and maximum degree.

In this paper, we attempt to solve Problem 1.1 for unicyclic chemical graphs with girth 3. A connected graph G is a unicyclic graph if G has a unique cycle. The graph G is said to be a chemical graph if $\Delta(G) \leq 4$. Let $\mathcal{C G}(n, 3)$ be the set of all unicyclic chemical graphs of order n and girth 3 . A graph $G \in \mathcal{C} \mathcal{G}(n, 3)$ is said to be a Wiener-minimal graph of $\mathcal{C G}(n, 3)$ if G has the minimum Wiener index in $\mathcal{C} \mathcal{G}(n, 3)$. A characterization of Wiener-minimal graphs of $\mathcal{C} \mathcal{G}(n, 3)$ is given in this paper.

[^0]
2. Preliminaries

Lemma 2.1 (see [7]). Let G_{0} be a connected graph and $u_{1}, u_{2} \in V\left(G_{0}\right)$. Let G be the graph obtained from G_{0} by attaching k_{1}, k_{2} pendant edges to u_{1}, u_{2}, respectively. Let G_{i} be the graph obtained from G_{0} by attaching $k_{1}+k_{2}$ pendant edges to u_{i} $(i=1,2)$. Then, either $W\left(G_{1}\right)<W(G)$ or $W\left(G_{2}\right)<W(G)$.

Let $T=T_{n}(d, \Delta)$ be a tree of order n and maximum degree Δ as shown in Figure 1, which is defined in [3], where $\Delta \geq 3$, $d \leq \Delta$,
(1) all vertices of T lie on some line R_{i} for $0 \leq i \leq k+1$;
(2) the vertex w is the root of T and $d_{T}(w)=d$;
(3) if $V\left(R_{i}\right)$ is used to denote the set of the vertices on line R_{i}, then $\left|V\left(R_{0}\right)\right|=|\{w\}|=1,\left|V\left(R_{i}\right)\right|=d(\Delta-1)^{i-1}$ for $i=1,2, \ldots, k$, and $\left|V\left(R_{k+1}\right)\right|=n-1-d \sum_{i=1}^{k}(\Delta-1)^{i-1}$; and
(4) if $\left|V\left(R_{k+1}\right)\right|=m(\Delta-1)+r$ for some $0 \leq r<\Delta-1$, and $V\left(R_{k}\right)=\left\{v_{1}, v_{2}, \ldots, v_{d(\Delta-1)^{k-1}}\right\}$ such that v_{i} lies left of v_{j} on line R_{k} for $i<j$, then $d_{T}\left(v_{i}\right)=\Delta$ for $1 \leq i \leq m, d_{T}\left(v_{m+1}\right)=r+1$, and $d_{T}\left(v_{i}\right)=1$ for $m+2 \leq i \leq d(\Delta-1)^{k-1}$.
For convenience, we say that $k+1$ is the height of $T_{n}(d, \Delta)$ and the vertices of $V\left(R_{k+1}\right)$ are the last-layer vertices of $T_{n}(d, \Delta)$. We also say that $T_{n}(d, \Delta)$ is a (d, Δ)-tree of height $k+1$.

Figure 1: The tree $T=T_{n}(d, \Delta)$.

Lemma 2.2 (see [3]). Let T be a tree of order n and maximum degree at most $\Delta(\Delta \geq 3)$. Then

$$
W(T) \geq W\left(T_{n}(\Delta, \Delta)\right),
$$

where the equality holds if and only if $T \cong T_{n}(\Delta, \Delta)$.
Now, let us consider the $(2,4)$-tree $T_{n}(2,4)$ of height $k+1$ as depicted in Figure 1 with $d=2$ and $\Delta=4$. Note that

$$
\sum_{i=0}^{k}\left|V\left(R_{i}\right)\right|=1+\sum_{i=1}^{k} 2 \cdot 3^{i-1}=3^{k},\left|V\left(R_{k+1}\right)\right|=n-3^{k}, \text { and } 3^{k}<n \leq 3^{k+1} .
$$

If $n=3^{k+1}$, then we say that $T_{n}(2,4)$ is saturated; otherwise, we say that it is unsaturated. Let us use $T^{k+1}(2,4)$ to denote a saturated (2,4)-tree of height $k+1$.

Lemma 2.3. Let $T=T^{k+1}(2,4)$ be a saturated (2,4)-tree of height $k+1$ with root w as depicted in Figure 1, and let $x \in V\left(R_{k+1}\right)$. Then

$$
\begin{align*}
& \sum_{y \in V(T)} d_{T}(w, y)=\frac{1}{2}\left(3^{k+1}(2 k+1)+1\right), \tag{2}\\
& \sum_{y \in V(T)} d_{T}(x, y)=2 k \cdot 3^{k+1}+k+3 . \tag{3}
\end{align*}
$$

Proof. Note that $\left|V\left(R_{i}\right)\right|=2 \cdot 3^{i-1}$ for $i=1,2, \ldots, k+1$. Then

$$
\sum_{y \in V(T)} d_{T}(w, y)=\sum_{i=1}^{k+1} i \cdot\left|V\left(R_{i}\right)\right|=\frac{1}{2}\left(3^{k+1}(2 k+1)+1\right) .
$$

Thus, (2) holds.
Take $x \in V\left(R_{k+1}\right)$. Let $P=w x_{1} x_{2} \ldots x_{k} x$ be the path of T from the root w to x, where $x_{i} \in V\left(R_{i}\right)$ for $i=1,2, \ldots, k$. Then $T-E(P)$ has $k+2$ components $T_{0}, T_{1}, \ldots, T_{k+1}$, where $w \in V\left(T_{0}\right), x_{i} \in V\left(T_{i}\right)$ for $i=1,2, \ldots, k$, and $x \in V\left(T_{k+1}\right)$. It is easy to see that $T_{0}=T^{k+1}(1,4)$ with the root $w, T_{i}=T^{k-i+1}(2,4)$ with the root x_{i} for $i=1,2, \ldots, k$, and $T_{k+1}=\{x\}$. Let us take $x_{0}=w$. Then

$$
\begin{aligned}
\sum_{y \in V(T)} d_{T}(x, y) & =\sum_{i=0}^{k} \sum_{y \in V\left(T_{i}\right)} d_{T}(x, y)=\sum_{i=0}^{k} \sum_{y \in V\left(T_{i}\right)}\left(d_{T}\left(x, x_{i}\right)+d_{T}\left(x_{i}, y\right)\right) \\
& =\sum_{i=0}^{k}\left((k+1-i)\left|V\left(T_{i}\right)\right|+\sum_{y \in V\left(T_{i}\right)} d_{T}\left(x_{i}, y\right)\right) .
\end{aligned}
$$

Note that

$$
\left|V\left(T_{0}\right)\right|=\frac{1}{2}\left(3^{k+1}+1\right),\left|V\left(T_{i}\right)\right|=3^{k-i+1}, i=1,2, \ldots, k,
$$

and by (2),

$$
\begin{gathered}
\sum_{y \in V\left(T_{0}\right)} d_{T}\left(x_{0}, y\right)=\frac{1}{4}\left(3^{k+1}(2 k+1)+1\right), \\
\sum_{y \in V\left(T_{i}\right)} d_{T}\left(x_{i}, y\right)=\frac{1}{2}\left(3^{k-i+1}(2 k-2 i+1)+1\right), i=1,2, \ldots, k .
\end{gathered}
$$

Thus,

$$
\begin{aligned}
\sum_{y \in V(T)} d_{T}(x, y)= & \frac{1}{2}(k+1)\left(3^{k+1}+1\right)+\frac{1}{4}\left(3^{k+1}(2 k+1)+1\right) \\
& +\sum_{i=1}^{k}\left((k+1-i) \cdot 3^{k-i+1}+\frac{1}{2}\left(3^{k-i+1}(2 k-2 i+1)+1\right)\right) \\
= & 2 k \cdot 3^{k+1}+k+3 .
\end{aligned}
$$

Hence, (3) holds.
Lemma 2.4. Let $T=T_{n}(2,4)$ be a (2,4)-tree of height $k+1$ with root w as depicted in Figure 1. Let x be the right-most vertex on line R_{k+1}. Then
(1).

$$
\begin{equation*}
\sum_{y \in V(T)} d_{T}(w, y)=\frac{1}{2}\left(3^{k}(2 k-1)+1\right)+(k+1)\left(n-3^{k}\right) . \tag{4}
\end{equation*}
$$

(2). The equation $\left|V\left(R_{k+1}\right) \backslash\{x\}\right|=n-3^{k}-1$ can be rewritten as

$$
\begin{equation*}
n-3^{k}-1=\sum_{i=1}^{s} p_{i} \cdot 3^{k+1-i} \tag{5}
\end{equation*}
$$

where $0 \leq s \leq k+1,0 \leq p_{1} \leq 1,0 \leq p_{i} \leq 2$ for $i=2, \ldots, s-1$, and $1 \leq p_{s} \leq 2$. Also

$$
\begin{align*}
& \sum_{y \in V(T) \backslash V\left(R_{k+1}\right)} d_{T}(x, y)=3^{k}(2 k-1)+k+2, \tag{6}\\
& \sum_{y \in V(T)} d_{T}(x, y)=\sum_{i=1}^{s} 2(k-i+2) p_{i} \cdot 3^{k+1-i}+3^{k}(2 k-1)+k+2 . \tag{7}
\end{align*}
$$

Proof. (1). Note that $\left|V\left(R_{i}\right)\right|=2 \cdot 3^{i-1}$ for $i=1,2, \ldots, k$, and $\left|V\left(R_{k+1}\right)\right|=n-3^{k}$. Then

$$
\sum_{y \in V(T)} d_{T}(w, y)=\sum_{i=1}^{k+1} i \cdot\left|V\left(R_{i}\right)\right|=\frac{1}{2}\left(3^{k}(2 k-1)+1\right)+(k+1)\left(n-3^{k}\right) .
$$

(2). Let x be the right-most vertex on line R_{k+1} and x^{*} be the neighbor of x. Take $V_{1}=V\left(R_{k+1}\right) \backslash\{x\}$. Since $\left|V\left(R_{k+1}\right)\right|=n-3^{k}$ and $3^{k}<n \leq 3^{k+1}$, we have $0 \leq\left|V_{1}\right|=n-3^{k}-1<2 \cdot 3^{k}$, and so there are $0 \leq s \leq k+1,0 \leq p_{1} \leq 1,0 \leq p_{i} \leq 2$ for $i=2, \ldots, s-1$, and $1 \leq p_{s} \leq 2$ such that (5) holds. Note that $s=0$ only if $\left|V_{1}\right|=0$.

By (5), there are $p_{i} \cdot 3^{k+1-i}$ vertices in V_{1} such that the distance between x and these vertices is $2(k-i+2)$ for $i=1, \ldots, s$. Then

$$
\sum_{y \in V_{1}} d_{T}(x, y)=\sum_{i=1}^{s} 2(k-i+2) p_{i} \cdot 3^{k+1-i} .
$$

Note that $\left|V(T) \backslash V\left(R_{k+1}\right)\right|=3^{k}$. By (3), replacing k with $k-1$, we get

$$
\sum_{y \in V(T) \backslash V\left(R_{k+1}\right)} d_{T}\left(x^{*}, y\right)=2(k-1) \cdot 3^{k}+k+2,
$$

and so,

$$
\sum_{y \in V(T) \backslash V\left(R_{k+1}\right)} d_{T}(x, y)=\left|V(T) \backslash V\left(R_{k+1}\right)\right|+\sum_{y \in V(T) \backslash V\left(R_{k+1}\right)} d_{T}\left(x^{*}, y\right)=3^{k}(2 k-1)+k+2 .
$$

Thus,

$$
\begin{aligned}
\sum_{y \in V(T)} d_{T}(x, y) & =\sum_{y \in V_{1}} d_{T}(x, y)+\sum_{y \in V(T) \backslash V\left(R_{k+1}\right)} d_{T}(x, y) \\
& =\sum_{i=1}^{s} 2(k-i+2) p_{i} \cdot 3^{k+1-i}+3^{k}(2 k-1)+k+2
\end{aligned}
$$

Hence, the lemma follows.

3. Some basic properties of Wiener-minimal graphs of $\mathcal{C G}(n, 3)$

In this section, we give some basic properties of Wiener-minimal graphs of $\mathcal{C} \mathcal{G}(n, 3)$. For any $G \in \mathcal{C G}(n, 3)$, it is easy to see that G is a graph as depicted in Figure 2, where $C_{3}=w_{1} w_{2} w_{3}$ is the only cycle of length $3, G_{i}$ is a chemical tree of order $n_{i}, w_{i} \in V\left(G_{i}\right)$, and $d_{G_{i}}\left(w_{i}\right) \leq 2$ for $i=1,2,3$, and $n_{1}+n_{2}+n_{3}=n$.

Figure 2: A graph $G \in \operatorname{Cg}(n, 3)$.

Lemma 3.1. Let $G \in \mathcal{C} \mathcal{G}(n, 3)$ be a graph as depicted in Figure 2, with $n \geq 25$. If G is a Wiener-minimal graph of $\mathcal{C G}(n, 3)$, then $G_{i}=T_{n_{i}}(2,4)$ with $n_{i} \geq 3$ for $i=1,2,3$.

Proof. By Lemma 2.2, we only need to prove that $n_{i} \geq 3$ for $i=1,2,3$. Suppose to the contrary that there is $1 \leq i \leq 3$ such that $n_{i} \leq 2$. Without loss of generality, assume that $n_{2} \leq 2$. Then, $n_{1}+n_{3}=n-n_{2} \geq 23$. So, we assume that $n_{3} \geq n_{2}$ and $3^{k}<n_{1} \leq 3^{k+1}$, where $k \geq 2$.

Let $x \in V\left(G_{1}\right)$ be the right-most vertex on the line R_{k+1}. Let x^{*} be the vertex adjacent to x. Let $G^{\prime}=G-x^{*} x+w_{2} x$, $G_{1}^{\prime}=G_{1}-x, G_{2}^{\prime}=G_{2}+w_{2} x$, and $G_{3}^{\prime}=G_{3}$. By Lemma 2.4, we assume that

$$
\begin{equation*}
n_{1}-3^{k}-1=\sum_{i=1}^{s} p_{i} \cdot 3^{k+1-i}, \tag{8}
\end{equation*}
$$

where $0 \leq s \leq k+1,0 \leq p_{1} \leq 1,0 \leq p_{i} \leq 2$ for $i=2, \ldots, s-1$, and $1 \leq p_{s} \leq 2$, and we have

$$
\sum_{y \in V\left(G_{1}\right)} d_{G}(x, y)=\sum_{i=1}^{s} 2(k-i+2) p_{i} \cdot 3^{k+1-i}+3^{k}(2 k-1)+k+2,
$$

$$
\begin{aligned}
\sum_{y \in V\left(G_{1}^{\prime}\right)} d_{G^{\prime}}(x, y) & =\sum_{y \in V\left(G_{1}^{\prime}\right)}\left(2+d_{G^{\prime}}\left(w_{1}, y\right)\right)=2\left|V\left(G_{1}^{\prime}\right)\right|+\sum_{y \in V\left(G_{1}^{\prime}\right)} d_{G^{\prime}}\left(w_{1}, y\right) \\
& =2\left(n_{1}-1\right)+\frac{1}{2}\left(3^{k}(2 k-1)+1\right)+(k+1)\left(n_{1}-3^{k}-1\right) \\
& =(k+3) \sum_{i=1}^{s} p_{i} \cdot 3^{k+1-i}+\frac{1}{2}\left(3^{k}(2 k+3)+1\right) .
\end{aligned}
$$

Thus,

$$
\begin{align*}
W(G)-W\left(G^{\prime}\right) & =\sum_{i=1}^{3}\left(\sum_{y \in V\left(G_{i}\right)} d_{G}(x, y)-\sum_{y \in V\left(G_{i}^{\prime}\right)} d_{G^{\prime}}(x, y)\right) \\
& =\sum_{i=1}^{s}(k-2 i+1) p_{i} \cdot 3^{k+1-i}+\frac{1}{2}\left(3^{k}(2 k-5)+2 k+3\right)+(k+1) n_{2}+k n_{3} \tag{9}
\end{align*}
$$

Case 1. $k \geq 3$.
By (9), we have

$$
W(G)-W\left(G^{\prime}\right) \geq \frac{1}{2}\left(3^{k}(2 k-5)+2 k+3\right)+\sum_{i=3}^{k+1} 2(4-2 i) \cdot 3^{k+1-i}+2 k+1=\frac{1}{2}\left(3^{k}(2 k-7)+10 k+7\right)>0
$$

a contradiction.
Case 2. $k=2$.
If $p_{1}=1$, then by (9), we have

$$
W(G)-W\left(G^{\prime}\right) \geq \frac{1}{2}\left(3^{k}(2 k-5)+2 k+3\right)+3^{k}+\sum_{i=2}^{3} 2(3-2 i) \cdot 3^{k+1-i}+2 k+1=1
$$

If $p_{1}=0$, then by (8), $n_{1}-10 \leq 3 p_{2}+p_{3} \leq 8$, and so $n_{1} \leq 18$, and $n_{2}+n_{3} \geq 7$. By (9), we have

$$
W(G)-W\left(G^{\prime}\right) \geq \frac{1}{2}\left(3^{k}(2 k-5)+2 k+3\right)+\sum_{i=2}^{3} 2(3-2 i) \cdot 3^{k+1-i}+7 k+1=2
$$

Therefore, $W(G)>W\left(G^{\prime}\right)$, which again a contradiction.
In the following, we always assume that $n \geq 25$ and $G \in \mathcal{C} \mathcal{G}(n, 3)$ is a graph as depicted in Figure 3 , where $G_{i}=T_{n_{i}}(2,4)$ with $n_{i} \geq 3$ for $i=1,2,3, n_{1}+n_{2}+n_{3}=n, 3^{k}<n_{1} \leq 3^{k+1}, 3^{t}<n_{2} \leq 3^{t+1}$, and $3^{\ell}<n_{3} \leq 3^{\ell+1}$. Also, we denote $G=\left(G_{1}, n_{1}, k ; G_{2}, n_{2}, t ; G_{3}, n_{3}, \ell\right)$, or $G=\left(G_{1} ; G_{2} ; G_{3}\right)$ or $G=\left(n_{1} ; n_{2} ; n_{3}\right)$ for short.

Let $T=T_{n}(2,4)$ be a $(2,4)$-tree of height $k+1$ with root w as depicted in Figure 1. Now, we introduce the concept of a (2,4)-subtree of T.

Let $z \in V\left(R_{i}\right)(1 \leq i \leq k-1)$ and $N_{T}(z)=\left\{z^{*}, z_{1}, z_{2}, z_{3}\right\}$, where $z^{*} \in V\left(R_{i-1}\right)$ and $z_{1}, z_{2}, z_{3} \in V\left(R_{i+1}\right)$. Consider $T-z^{*} z-z z_{j}(1 \leq j \leq 3)$; observe that its component containing the vertex z is a (2,4)-tree of height $k-i+1$ or $k-i$ with the root z. We call such a $(2,4)$-tree a $(2,4)$-subtree of T. It is clear that for each vertex $z \in V\left(R_{i}\right)$ with $1 \leq i \leq k-1, T$ has three different $(2,4)$-subtrees with the root z.

Lemma 3.2. Let $G \in \mathcal{C} \mathcal{G}(n, 3)$ be the graph obtained from a unicyclic graph G_{0} and two (2,4)-trees T_{1} and T_{2} of height $m+1$, where $m \geq 1, V\left(T_{1}\right) \cap V\left(G_{0}\right)=\left\{w_{1}\right\}, V\left(T_{2}\right) \cap V\left(G_{0}\right)=\left\{w_{2}\right\}$, and $V\left(T_{1}\right) \cap V\left(T_{2}\right)=\phi$; see Figure 4. If both T_{1} and T_{2} are unsaturated, then G is not a Wiener-minimal graph of $\mathcal{C G}(n, 3)$.

Proof. Suppose that both T_{1} and T_{2} are unsaturated (2,4)-trees of height $m+1$. Let V_{i} be the set of all vertices on line ℓ_{m+1} of T_{i} for $i=1,2$. Then $0<\left|V_{i}\right|<2 \cdot 3^{m}$ for $i=1,2$. Take $V_{0}=V(G) \backslash\left(V_{1} \cup V_{2}\right)$. Note that for any $x_{1}, x_{2} \in V_{1}$ and $y_{1}, y_{2} \in V_{2}$, we have $d_{G}\left(x_{1}, y_{1}\right)=d_{G}\left(x_{2}, y_{2}\right)$ and

$$
\sum_{z \in V_{0}} d_{G}\left(x_{1}, z\right)=\sum_{z \in V_{0}} d_{G}\left(x_{2}, z\right), \sum_{z \in V_{0}} d_{G}\left(y_{1}, z\right)=\sum_{z \in V_{0}} d_{G}\left(y_{2}, z\right)
$$

For simplicity, let us take $d=d_{G}(x, y), D_{1}=\sum_{z \in V_{0}} d_{G}(x, z)$, and $D_{2}=\sum_{z \in V_{0}} d_{G}(y, z)$ for any $x \in V_{1}$ and $y \in V_{2}$. Then $d>2(m+1)$. Without loss of generality, we assume that $D_{1} \geq D_{2}$.

Figure 3: A graph $G \in \mathcal{C} \mathcal{G}(n, 3)$.

Figure 4: The graph $G \in \mathcal{C} \mathcal{G}(n, 3)$ used in Lemma 3.2.

We will prove that there is a graph $G^{\prime} \in \mathcal{C} G(n, 3)$ such that $W(G)>W\left(G^{\prime}\right)$. We prove it by induction on the height of T_{1} and T_{2}.

If the height of T_{1} and T_{2} is 2 (that is, $m=1$), then by Lemma 2.1, we assume that $3\left|\left|V_{1}\right|\right.$ or 3$|\left|V_{2}\right|$. Take $G^{\prime}=$ $G-w_{1} v_{1}-w_{2} u_{2}+w_{1} u_{2}+w_{2} v_{1}$, then $G^{\prime} \in \operatorname{Cg}(n, 3)$. If $\left|V_{2}\right| \leq 3$ and $\left|V_{1}\right| \leq 3$, then

$$
W(G)-W\left(G^{\prime}\right)=\left|V_{1}\right|\left(D_{1}+d\left|V_{2}\right|\right)-\left|V_{1}\right|\left(D_{2}+4\left|V_{2}\right|\right)=\left|V_{1}\right|\left(D_{1}-D_{2}\right)+\left|V_{1}\right|\left|V_{2}\right|(d-4)>0 .
$$

If $\left|V_{2}\right| \leq 3$ and $\left|V_{1}\right|>3$, then $3 \nmid\left|V_{1}\right|$, and so $3\left|\left|V_{2}\right|\right.$; that is, $| V_{2} \mid=3$. Hence,

$$
W(G)-W\left(G^{\prime}\right)=3\left(D_{1}+4\left(\left|V_{1}\right|-3\right)+d\left|V_{2}\right|\right)-3\left(D_{2}+d\left(\left|V_{1}\right|-3\right)+4\left|V_{2}\right|\right)=3\left(D_{1}-D_{2}\right)+3(d-4)\left(\left|V_{2}\right|+3-\left|V_{1}\right|\right)>0 .
$$

If $3<\left|V_{2}\right|<6$, then by Lemma 2.1, $\left|V_{1}\right|=3$, and hence

$$
\begin{aligned}
W(G)-W\left(G^{\prime}\right) & =\left|V_{1}\right|\left(D_{1}+3 d\right)+\left(\left|V_{2}\right|-3\right)\left(D_{2}+12\right)-\left|V_{1}\right|\left(D_{2}+12\right)-\left(\left|V_{2}\right|-3\right)\left(D_{1}+3 d\right) \\
& =\left(6-\left|V_{2}\right|\right)\left(D_{1}-D_{2}\right)+\left(6-\left|V_{2}\right|\right)(3 d-12)>0 .
\end{aligned}
$$

Thus, the result holds when the height of T_{1} and T_{2} is 2 .
Next, we suppose that $m \geq 1$ and that the result holds when the height of T_{1} and T_{2} is less than or equal to m. We will prove that the result is true when the height of T_{1} and T_{2} is $m+1$.

Consider all the $(2,4)$-subtrees with the root v_{1} or v_{2} of T_{1} and (2,4)-subtrees with the root u_{1} or u_{2} of T_{2}. By the inductive assumption, at most one of these (2,4)-subtrees is unsaturated. This implies that either $3^{m}| | V_{1} \mid$ or $3^{m}| | V_{2} \mid$. Let
$G^{\prime}=G-w_{1} v_{1}-w_{2} u_{2}+w_{1} u_{2}+w_{2} v_{1}$. Then $G^{\prime} \in \mathcal{C} \mathcal{G}(n, 3)$. If $\left|V_{2}\right| \leq 3^{m}$ and $\left|V_{1}\right| \leq 3^{m}$, then

$$
W(G)-W\left(G^{\prime}\right)=\left|V_{1}\right|\left(D_{1}+d\left|V_{2}\right|\right)-\left|V_{1}\right|\left(D_{2}+2(m+1)\left|V_{2}\right|\right)=\left|V_{1}\right|\left(D_{1}-D_{2}\right)+\left|V_{1}\right|\left|V_{2}\right|(d-2(m+1))>0 .
$$

If $\left|V_{2}\right| \leq 3^{m}$ and $\left|V_{1}\right|>3^{m}$, then $3^{m} \nmid\left|V_{1}\right|$, and so $3^{m}| | V_{2} \mid$; that is, $\left|V_{2}\right|=3^{m}$ and hence

$$
\begin{aligned}
W(G)-W\left(G^{\prime}\right) & =3^{m}\left((2 m+1)\left(\left|V_{1}\right|-3^{m}\right)+D_{1}+d\left|V_{2}\right|\right)-3^{m}\left(D_{2}+(2 m+1)\left|V_{2}\right|+d\left(\left|V_{1}\right|-3^{m}\right)\right) \\
& =3^{m}\left(D_{1}-D_{2}\right)+3^{m}(d-2(m+1))\left(\left|V_{2}\right|+3^{m}-\left|V_{1}\right|\right)>0
\end{aligned}
$$

If $\left|V_{2}\right|>3^{m}$, then $3^{m} \nmid\left|V_{2}\right|$, and so $3^{m}| | V_{1} \mid$; that is, $\left|V_{1}\right|=3^{m}$. Thus,

$$
\begin{aligned}
W(G)-W\left(G^{\prime}\right) & =\left|V_{1}\right|\left(D_{1}+3^{m} d\right)+\left(\left|V_{2}\right|-3^{m}\right)\left(D_{2}+2(m+1) 3^{m}\right)-\left|V_{1}\right|\left(D_{2}+2(m+1) 3^{m}\right)-\left(\left|V_{2}\right|-3^{m}\right)\left(D_{1}+3^{m} d\right) \\
& =\left(2 \cdot 3^{m}-\left|V_{2}\right|\right)\left(D_{1}-D_{2}\right)+\left(2 \cdot 3^{m}-\left|V_{2}\right|\right) 3^{m}(d-2(m+1))>0
\end{aligned}
$$

Therefore, the result holds when the height of T_{1} and T_{2} is $m+1$.
Lemma 3.3. Let $G=\left(G_{1}, n_{1}, k ; G_{2}, n_{2}, t ; G_{3}, n_{3}, \ell\right)$ be a Wiener-minimal graph of $\mathcal{C G}(n, 3)$ as depicted in Figure 3 with $3^{t}<n_{2}<3^{t+1}$.
(1). If $k=t$, then $n_{1}=3^{k+1}$.
(2). If $k>t$, then $3^{t+1} \mid\left(n_{1}-3^{k}\right)$.
(3). If $k=t+1$, then $n_{1}=2 \cdot 3^{k}$ or 3^{k+1}.

Proof. (1). It follows from Lemma 3.2.
(2). Let $k>t$. If $n_{1}=3^{k+1}$, then $n_{1}-3^{k}=2 \cdot 3^{k}$, and so $3^{t+1} \mid\left(n_{1}-3^{k}\right)$. We now assume that $3^{k}<n_{1}<3^{k+1}$. By Lemma 3.2, for any vertex v on line R_{k-t} of G_{1}, each (2,4)-subtree with the root v of G_{1} is saturated. This implies that $3^{t+1} \mid\left(n_{1}-3^{k}\right)$.
(3). If $k=t+1$, then by Part (2), $3^{k} \mid\left(n_{1}-3^{k}\right)$, and so $n_{1}-3^{k}=3^{k}$ or $2 \cdot 3^{k}$.

4. Some operations

In this section, we introduce three operations that are very useful to prove the main results.

Operation I

Let $G=\left(G_{1}, n_{1}, k ; G_{2}, n_{2}, t ; G_{3}, n_{3}, \ell\right) \in \mathcal{C} \mathcal{G}(n, 3)$ be a graph as depicted in Figure 3 with $3^{k}<n_{1} \leq 3^{k+1}$ and $3^{t} \leq$ $n_{2}<3^{t+1}$, and X be the set of m vertices on the line R_{k+1} of G_{1} with $1 \leq m \leq \min \left\{n_{1}-3^{k}, 3^{t+1}-n_{2}\right\}$. Let G^{\prime} be the graph obtained from G by moving all vertices of X from G_{1} to G_{2} such that G^{\prime} remains in the form of Figure 3. Then, $G^{\prime}=\left(G_{1}^{\prime}, n_{1}-m, k^{\prime} ; G_{2}^{\prime}, n_{2}+m, t ; G_{3}^{\prime}, n_{3}, \ell\right) \in \mathcal{C} \mathcal{G}(n, 3)$, where $k^{\prime}=k$ or $k-1$. We say that G^{\prime} is obtained from G by Operation I (moving \boldsymbol{m} vertices from G_{1} to G_{2}).

Lemma 4.1. Let $G^{\prime}=\left(G_{1}^{\prime}, n_{1}-m, k^{\prime} ; G_{2}^{\prime}, n_{2}+m, t^{\prime} ; G_{3}^{\prime}, n_{3}, \ell\right) \in \mathcal{C} \mathcal{G}(n, 3)$ be the graph obtained from G by Operation I (moving m vertices from G_{1} to G_{2}). Then

$$
\begin{align*}
W(G)-W\left(G^{\prime}\right)= & m\left(\frac{1}{2}\left(3^{k}(4 k+1)-3^{t}(4 t+1)\right)+(k+t+3)\left(n_{2}-n_{1}+m\right)+(k-t)\left(n_{3}+1\right)\right) \\
& +\sum_{x, y \in V\left(R_{k+1}\right) \backslash X}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{x, y \in V\left(R_{t+1}^{\prime}\right)}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right) \\
& +\sum_{x, y \in X}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{\substack{x \in X \\
y \in V\left(R_{k+1}\right) \backslash X}} d_{G}(x, y)-\sum_{\substack{x \in X \\
y \in V\left(R_{t+1}^{\prime}\right)}} d_{G^{\prime}}(x, y) . \tag{10}
\end{align*}
$$

Proof. For any vertex $x \in X$, by Lemmas 2.3 and 2.4, we have

$$
\sum_{z \in V\left(G_{1}\right) \backslash V\left(R_{k+1}\right)} d_{G}(x, z)=3^{k}(2 k-1)+k+2,
$$

$$
\begin{aligned}
& \sum_{z \in V\left(G_{2}\right)} d_{G}(x, z)=\sum_{z \in V\left(G_{2}\right)}\left(d_{G}\left(x, w_{2}\right)+d_{G}\left(w_{2}, z\right)\right) \\
&=(k+2)\left|V\left(G_{2}\right)\right|+\sum_{z \in V\left(G_{2}\right)} d_{G}\left(w_{2}, z\right) \\
&=(k+2) n_{2}+\frac{1}{2}\left(3^{t}(2 t-1)+1\right)+(t+1)\left(n_{2}-3^{t}\right) \\
&=(k+t+3)\left(n_{2}-3^{t}\right)+\frac{1}{2}\left(3^{t}(2 k+2 t+3)+1\right), \\
& \sum_{z \in V\left(G_{1}^{\prime}\right)} d_{G^{\prime}}(x, z)=\sum_{z \in V\left(G_{1}^{\prime}\right)}\left(d_{G^{\prime}}\left(x, w_{1}\right)+d_{G^{\prime}}\left(w_{1}, z\right)\right) \\
&=(t+2)\left|V\left(G_{1}^{\prime}\right)\right|+\sum_{z \in V\left(G_{1}^{\prime}\right)} d_{G^{\prime}}\left(w_{1}, z\right) \\
&=(t+2)\left(n_{1}-m\right)+\frac{1}{2}\left(3^{k}(2 k-1)+1\right)+(k+1)\left(n_{1}-3^{k}-m^{2}\right) \\
&=(k+t+3)\left(n_{1}-3^{k}-m^{2}\right)+\frac{1}{2}\left(3^{k}(2 k+2 t+3)+1\right), \\
& z \in V\left(G_{2}^{\prime}\right) \backslash\left(V\left(R_{t+1}^{\prime}\right) \cup X\right) \\
& \sum_{G^{\prime}}(x, z)=3^{t}(2 t-1)+t+2,
\end{aligned}
$$

and for any $u \in V\left(G_{3}\right)$, we have $d_{G}(x, u)-d_{G^{\prime}}(x, u)=k-t$. Thus,

$$
\begin{aligned}
& W(G)-W\left(G^{\prime}\right)=\sum_{x \in X, z \in V(G)} d_{G}(x, z)-\sum_{x \in X, z \in V\left(G^{\prime}\right)} d_{G^{\prime}}(x, z) \\
& =\sum_{x \in X}\left(\sum_{z \in V\left(G_{1}\right) \backslash V\left(R_{k+1}\right)} d_{G}(x, z)+\sum_{z \in V\left(G_{2}\right)} d_{G}(x, z)-\sum_{z \in V\left(G_{1}^{\prime}\right)} d_{G^{\prime}}(x, z)-\sum_{z \in V\left(G_{2}^{\prime}\right) \backslash\left(V\left(R_{t+1}^{\prime}\right) \cup X\right)} d_{G^{\prime}}(x, z)\right) \\
& +\sum_{x \in X, z \in V\left(G_{3}\right)}(k-t)+\sum_{x, y \in V\left(R_{k+1}\right) \backslash X}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{x, y \in V\left(R_{t+1}^{\prime}\right)}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right) \\
& +\sum_{x, y \in X}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{\substack{x \in X \\
y \in V\left(R_{k+1}\right) \backslash X}} d_{G}(x, y)-\sum_{\substack{x \in X \\
y \in V\left(R_{t+1}^{\prime}\right)}} d_{G^{\prime}}(x, y) \\
& =m\left(\frac{1}{2}\left(3^{k}(4 k+1)-3^{t}(4 t+1)\right)+(k+t+3)\left(n_{2}-n_{1}+m\right)+(k-t)\left(n_{3}+1\right)\right) \\
& +\sum_{x, y \in V\left(R_{k+1}\right) \backslash X}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{x, y \in V\left(R_{t+1}^{\prime}\right)}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right) \\
& +\sum_{x, y \in X}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{\substack{x \in X \\
y \in V\left(R_{k+1}\right) \backslash X}} d_{G}(x, y)-\sum_{\substack{x \in X \\
y \in V\left(R_{t+1}^{\prime}\right)}} d_{G^{\prime}}(x, y)
\end{aligned}
$$

Operation II

Let $G=\left(G_{1}, n_{1}, k ; G_{2}, n_{2}, t ; G_{3}, n_{3}, \ell\right) \in \mathcal{C} \mathcal{G}(n, 3)$ be a graph as depicted in Figure 3 with $3^{k}<n_{1} \leq 3^{k+1}, 3^{t} \leq n_{2}<3^{t+1}$, and $3^{\ell}<n_{3} \leq 3^{\ell+1}$. Let X be the set of m_{1} vertices on the line R_{k+1} of G_{1}, and Y be the set of m_{2} vertices on the line $R_{\ell+1}^{\prime \prime}$ of G_{3} with $1 \leq m_{1} \leq n_{1}-3^{k}, 1 \leq m_{2} \leq n_{3}-3^{\ell}$, and $m_{1}+m_{2} \leq 3^{t+1}-n_{2}$. Let G^{\prime} be the graph obtained from G by moving all vertices of X from G_{1} to G_{2} and moving all vertices of Y from G_{3} to G_{2}, respectively, such that G^{\prime} remains in the form of the graph shown in Figure 3. Then, $G^{\prime}=\left(G_{1}^{\prime}, n_{1}-m_{1}, k^{\prime} ; G_{2}^{\prime}, n_{2}+m_{1}+m_{2}, t ; G_{3}^{\prime}, n_{3}-m_{2}, \ell^{\prime}\right) \in \mathcal{C} \mathcal{G}(n, 3)$, where $k^{\prime}=k$ or $k-1$, and $\ell^{\prime}=\ell$ or $\ell^{\prime}=\ell-1$. We say that G^{\prime} is obtained from G by Operation II (moving $\boldsymbol{m}_{\boldsymbol{1}}$ vertices from $\boldsymbol{G}_{\mathbf{1}}$ to G_{2} and moving m_{2} vertices from G_{3} to G_{2}, respectively).

Lemma 4.2. Let $G^{\prime}=\left(G_{1}^{\prime}, n_{1}-m_{1}, k^{\prime} ; G_{2}^{\prime}, n_{2}+m_{1}+m_{2}, t ; G_{3}^{\prime}, n_{3}-m_{2}, \ell^{\prime}\right) \in \mathcal{C} \mathcal{G}(n, 3)$ be the graph obtained from G by Operation II (moving m_{1} vertices from G_{1} to G_{2} and moving m_{2} vertices from G_{3} to G_{2}, respectively). Then

$$
\begin{align*}
W(G)-W\left(G^{\prime}\right)= & m_{1}\left(\frac{1}{2}\left(3^{k}(4 k+1)-3^{t}(4 t+1)\right)+(k+t+3)\left(n_{2}-n_{1}+m_{1}\right)+(k-t)\left(n_{3}+1\right)\right) \\
& +m_{2}\left(\frac{1}{2}\left(3^{\ell}(4 \ell+1)-3^{t}(4 t+1)\right)+(\ell+t+3)\left(n_{2}-n_{3}+m_{1}+m_{2}\right)+(\ell-t)\left(n_{1}-m_{1}+1\right)\right) \\
& +\sum_{x, y \in V\left(R_{k+1}\right) \backslash X}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{x, y \in V\left(R_{t+1}^{\prime}\right)}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right) \\
& +\sum_{x, y \in V\left(R_{\ell+1}^{\prime \prime}\right) \backslash Y}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{\substack{x \in X \\
y \in V\left(R_{k+1}\right) \backslash X}} d_{G}(x, y)+\sum_{\substack{x \in Y \\
y \in V\left(R_{\ell+1}^{\prime \prime}\right) \backslash Y}} d_{G}(x, y) \\
& +\sum_{x, y \in X}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{x, y \in Y}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right) \\
& -\sum_{\substack{x \in X \\
y \in V\left(R_{t+1}^{\prime}\right)}} d_{G^{\prime}}(x, y)-\sum_{\substack{x \in Y \\
y \in V\left(R_{t+1}^{\prime}\right)}} d_{G^{\prime}}(x, y)-\sum_{\substack{x \in X \\
y \in Y}} d_{G^{\prime}}(x, y) . \tag{11}
\end{align*}
$$

Proof. Let H be the graph obtained from G by Operation I (moving m_{1} vertices from G_{1} to G_{2}). Take $H=\left(H_{1} ; H_{2} ; H_{3}\right)$. Then, G^{\prime} can be obtained from H by Operation I (moving m_{2} vertices from H_{3} to H_{2}). By Lemma 4.1, we have

$$
\begin{aligned}
& W(G)-W(H)=m_{1}\left(\frac{1}{2}\left(3^{k}(4 k+1)-3^{t}(4 t+1)\right)+(k+t+3)\left(n_{2}-n_{1}+m_{1}\right)+(k-t)\left(n_{3}+1\right)\right) \\
& +\sum_{x, y \in V\left(R_{k+1}\right) \backslash X}\left(d_{G}(x, y)-d_{H}(x, y)\right)+\sum_{x, y \in V\left(R_{t+1}^{\prime}\right)}\left(d_{G}(x, y)-d_{H}(x, y)\right) \\
& +\sum_{x, y \in X}\left(d_{G}(x, y)-d_{H}(x, y)\right)+\sum_{\substack{x \in X \\
y \in V\left(R_{k+1}\right) \backslash X}} d_{G}(x, y)-\sum_{\substack{x \in X \\
y \in V\left(R_{t+1}^{\prime}\right)}} d_{H}(x, y) \\
& =m_{1}\left(\frac{1}{2}\left(3^{k}(4 k+1)-3^{t}(4 t+1)\right)+(k+t+3)\left(n_{2}-n_{1}+m_{1}\right)+(k-t)\left(n_{3}+1\right)\right) \\
& +\sum_{x, y \in V\left(R_{k+1}\right) \backslash X}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{x, y \in V\left(R_{t+1}^{\prime}\right)}\left(d_{G}(x, y)-d_{H}(x, y)\right) \\
& +\sum_{x, y \in X}\left(d_{G}(x, y)-d_{H}(x, y)\right)+\sum_{\substack{x \in X \\
y \in V\left(R_{k+1}\right) \backslash X}} d_{G}(x, y)-\sum_{\substack{x \in X \\
y \in V\left(R_{t+1}^{\prime}\right)}} d_{H}(x, y) \quad \text { and } \\
& W(H)-W\left(G^{\prime}\right)=m_{2}\left(\frac{1}{2}\left(3^{\ell}(4 \ell+1)-3^{t}(4 t+1)\right)+(\ell+t+3)\left(n_{2}+m_{1}-n_{3}+m_{2}\right)+(\ell-t)\left(n_{1}-m_{1}+1\right)\right) \\
& +\sum_{x, y \in V\left(R_{\ell+1}^{\prime \prime}\right) \backslash Y}\left(d_{H}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{x, y \in V\left(R_{t+1}^{\prime}\right) \cup X}\left(d_{H}(x, y)-d_{G^{\prime}}(x, y)\right) \\
& +\sum_{x, y \in Y}\left(d_{H}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{\substack{x \in Y \\
y \in V\left(R_{\ell+1}^{\prime \prime}\right) \backslash Y}} d_{H}(x, y)-\sum_{\substack{x \in Y \\
y \in V\left(R_{t+1}^{\prime}\right) \cup X}} d_{G^{\prime}}(x, y) \\
& =m_{2}\left(\frac{1}{2}\left(3^{\ell}(4 \ell+1)-3^{t}(4 t+1)\right)+(\ell+t+3)\left(n_{2}-n_{3}+m_{1}+m_{2}\right)+(\ell-t)\left(n_{1}-m_{1}+1\right)\right) \\
& +\sum_{x, y \in V\left(R_{\ell+1}^{\prime \prime}\right) \backslash Y}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{x, y \in V\left(R_{t+1}^{\prime}\right)}\left(d_{H}(x, y)-d_{G^{\prime}}(x, y)\right) \\
& +\sum_{x, y \in X}\left(d_{H}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{\substack{x \in X \\
y \in V\left(R_{t+1}^{\prime}\right)}}\left(d_{H}(x, y)-d_{G^{\prime}}(x, y)\right) \\
& +\sum_{x, y \in Y}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{\substack{x \in Y \\
y \in V\left(R_{\ell+1}^{\prime \prime}\right) \backslash Y}} d_{G}(x, y)-\sum_{\substack{x \in Y \\
y \in V\left(R_{t+1}^{\prime}\right)}} d_{G^{\prime}}(x, y)-\sum_{\substack{x \in Y \\
y \in X}} d_{G^{\prime}}(x, y) .
\end{aligned}
$$

By adding the last two equations, we get (11).

Operation III

Let $G=\left(G_{1}, n_{1}, k ; G_{2}, n_{2}, t ; G_{3}, n_{3}, \ell\right) \in \mathcal{C} \mathcal{G}(n, 3)$ be a graph as depicted in Figure 3 with $3^{k}<n_{1} \leq 3^{k+1}, n_{2}=3^{t+1}$, and $3^{\ell} \leq n_{3}<3^{\ell+1}$. Let X and Y be the sets of m_{1} and m_{2} vertices on the line R_{k+1} of G_{1}, respectively, with $1 \leq m_{1} \leq 2 \cdot 3^{t+1}$, $1 \leq m_{2} \leq 3^{\ell+1}-n_{3}$, and $m_{1}+m_{2} \leq n_{1}-3^{k}$. Let G^{\prime} be the graph obtained from G by moving all vertices of X from G_{1} to G_{2} and moving all vertices of Y from G_{1} to G_{3}, respectively. Then, $G^{\prime}=\left(G_{1}^{\prime}, n_{1}-m_{1}-m_{2}, k^{\prime} ; G_{2}^{\prime}, n_{2}+m_{1}, t+1 ; G_{3}^{\prime}, n_{3}+m_{2}, \ell\right) \in$ $\mathcal{C G}(n, 3)$, where $k^{\prime}=k$ or $k-1$. We say that G^{\prime} is obtained from G by Operation III (moving $\boldsymbol{m}_{\mathbf{1}}$ and $\boldsymbol{m}_{\mathbf{2}}$ vertices from G_{1} to G_{2} and G_{3}, respectively).

Lemma 4.3. Let $G^{\prime}=\left(G_{1}^{\prime}, n_{1}-m_{1}-m_{2}, k^{\prime} ; G_{2}^{\prime}, n_{2}+m_{1}, t+1 ; G_{3}^{\prime}, n_{3}+m_{2}, \ell\right) \in \mathcal{C} \mathcal{G}(n, 3)$ be the graph obtained from G by Operation III (moving m_{1} and m_{2} vertices from G_{1} to G_{2} and G_{3}, respectively). Then

$$
\begin{align*}
W(G)-W\left(G^{\prime}\right)= & m_{1}\left(\frac{1}{2}\left(3^{k}(4 k+1)+3^{t+1}(2 k-2 t+3)\right)-(k+t+4)\left(n_{1}-m_{1}\right)+(k-t-1)\left(n_{3}+1\right)\right) \\
& +m_{2}\left(\frac{1}{2}\left(3^{k}(4 k+1)-3^{\ell}(4 \ell+1)+3^{t+1}(2 k-2 \ell)\right)+(k+\ell+3)\left(n_{3}-n_{1}+m_{1}+m_{2}\right)+(k-\ell)\left(m_{1}+1\right)\right) \\
& +\sum_{x, y \in V\left(R_{k+1}\right) \backslash(X \cup Y)}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{x, y \in V\left(R_{\ell+1}^{\prime \prime}\right)}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right) \\
& +\sum_{x, y \in X}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{x, y \in Y}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{\substack{x \in X \\
y \in V\left(R_{k+1}\right) \backslash X}} d_{G}(x, y) \\
& +\sum_{y \in V\left(R_{k+1}\right) \backslash(X \cup Y)} d_{G}(x, y)-\sum_{\substack{x \in Y \\
y \in V\left(R_{\ell+1}^{\prime \prime}\right)}} d_{G^{\prime}}(x, y) . \tag{12}
\end{align*}
$$

Proof. Let H be the graph obtained from G by Operation I (moving m_{1} vertices from G_{1} to G_{2}). Take $H=\left(H_{1} ; H_{2} ; H_{3}\right)$. Then G^{\prime} can be obtained from H by Operation I (moving m_{2} vertices from H_{1} to H_{3}). By Lemma 4.1, we have

$$
\begin{aligned}
& W(G)-W(H)=m_{1}\left(\frac{1}{2}\left(3^{k}(4 k+1)-3^{t+1}(4 t+5)\right)+(k+t+4)\left(3^{t+1}-n_{1}+m_{1}\right)+(k-t-1)\left(n_{3}+1\right)\right) \\
& +\sum_{x, y \in V\left(R_{k+1}\right) \backslash X}\left(d_{G}(x, y)-d_{H}(x, y)\right)+\sum_{x, y \in X}\left(d_{G}(x, y)-d_{H}(x, y)\right)+\sum_{\substack{x \in X \\
y \in V\left(R_{k+1}\right) \backslash X}} d_{G}(x, y) \\
& =m_{1}\left(\frac{1}{2}\left(3^{k}(4 k+1)+3^{t+1}(2 k-2 t+3)\right)-(k+t+4)\left(n_{1}-m_{1}\right)+(k-t-1)\left(n_{3}+1\right)\right) \\
& +\sum_{x, y \in V\left(R_{k+1}\right) \backslash(X \cup Y)}\left(d_{G}(x, y)-d_{H}(x, y)\right)+\sum_{x, y \in Y}\left(d_{G}(x, y)-d_{H}(x, y)\right) \\
& +\sum_{\substack{x \in Y \\
y \in V\left(R_{k+1}\right) \backslash(X \cup Y)}}\left(d_{G}(x, y)-d_{H}(x, y)\right)+\sum_{x, y \in X}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{\substack{x \in X \\
y \in V\left(R_{k+1}\right) \backslash X}} d_{G}(x, y) \quad \text { and } \\
& W(H)-W\left(G^{\prime}\right)=m_{2}\left(\frac{1}{2}\left(3^{k}(4 k+1)-3^{\ell}(4 \ell+1)+3^{t+1}(2 k-2 \ell)\right)+(k+\ell+3)\left(n_{3}-n_{1}+m_{1}+m_{2}\right)+(k-\ell)\left(m_{1}+1\right)\right) \\
& +\sum_{x, y \in V\left(R_{k+1}\right) \backslash(X \cup Y)}\left(d_{H}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{x, y \in V\left(R_{\ell+1}^{\prime \prime}\right)}\left(d_{H}(x, y)-d_{G^{\prime}}(x, y)\right) \\
& +\sum_{x, y \in Y}\left(d_{H}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{\substack{x \in Y \\
y \in V\left(R_{k+1}\right) \backslash(X \cup Y)}} d_{H}(x, y)-\sum_{\substack{x \in Y \\
y \in V\left(R_{\ell+1}^{\prime \prime}\right)}} d_{G^{\prime}}(x, y) \\
& =m_{2}\left(\frac{1}{2}\left(3^{k}(4 k+1)-3^{\ell}(4 \ell+1)+3^{t+1}(2 k-2 \ell)\right)+(k+\ell+3)\left(n_{3}-n_{1}+m_{1}+m_{2}\right)+(k-\ell)\left(m_{1}+1\right)\right) \\
& +\sum_{x, y \in V\left(R_{k+1}\right) \backslash(X \cup Y)}\left(d_{H}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{x, y \in V\left(R_{\ell+1}^{\prime \prime}\right)}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right) \\
& +\sum_{x, y \in Y}\left(d_{H}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{\substack{x \in Y \\
y \in V\left(R_{k+1}\right) \backslash(X \cup Y)}} d_{H}(x, y)-\sum_{\substack{x \in Y \\
y \in V\left(R_{\ell+1}^{\prime \prime}\right)}} d_{G^{\prime}}(x, y) .
\end{aligned}
$$

By adding the last two equations, we get (12).

5. Some auxiliary lemmas

Let $G=\left(G_{1}, n_{1}, k ; G_{2}, n_{2}, t ; G_{3}, n_{3}, \ell\right) \in \mathcal{C} \mathcal{G}(n, 3)$ be the graph as depicted in Figure 3. If not specifically stated, we say that moving m vertices from G_{1} to G_{2} always mean that we move the right-most m vertices on the last layer of G_{1} to G_{2}, and then arrange these m vertices on the last layer of G_{2} on top of the original vertices (if G_{2} is unsaturated) or on a new layer of G_{2} (if G_{2} is saturated), such that the obtained graph remains in the form of the graph shown in Figure 3.

Lemma 5.1. Let $G=\left(G_{1}, n_{1}, k ; G_{2}, n_{2}, t ; G_{3}, n_{3}, \ell\right) \in \mathcal{C} \mathcal{G}(n, 3)$ be the graph as depicted in Figure 3, where $k \geq t+1$, $3^{k}<n_{1} \leq 3^{k+1}$, and $3^{t}<n_{2}<3^{t+1}$. If G is a Wiener-minimal graph of $\mathcal{C G}(n, 3)$, then the following statements hold:
(1). The inequality $k \leq t+2$ holds.
(2). If $k=t+1$, then $n_{3}<3^{t+1}$.
(3). If $k=t+2$, then $n_{3}<2 \cdot 3^{t+1}$.
(4). If $k=t+2$, then $n_{1} \neq 2 \cdot 3^{k}+r \cdot 3^{k-1}$ with $r=1$, 2 or 3 .
(5). If $k=t+2, n_{3} \geq 3^{t+1}$, then $n_{1} \neq 3^{k}+r \cdot 3^{k-1}$ with $r=1$ or 2 .

Proof. By Lemma 3.3(2), $3^{t+1} \mid\left(n_{1}-3^{k}\right)$. Thus, $n_{1}-3^{k} \geq 3^{t+1}$ and n_{1} can be written as

$$
\begin{equation*}
n_{1}=3^{k}+2 \cdot 3^{t}+\sum_{i=1}^{k-t+1} p_{i} \cdot 3^{k+1-i} \tag{13}
\end{equation*}
$$

where $0 \leq p_{1} \leq 1,0 \leq p_{i} \leq 2$ for $i=2, \ldots, k-t$, and $p_{k-t+1}=1$.
Take $m=3^{t+1}-n_{2}$. Let X be the set of the right-most m vertices on the line R_{k+1} of G_{1} and Y be the set of the right-most $n_{2}-3^{t}$ vertices, except for X, on the line R_{k+1} of G_{1}. Let $G^{\prime}=\left(n_{1}-m ; n_{2}+m ; n_{3}\right) \in \mathcal{C G}(n, 3)$ be the graph obtained from G by Operation I (moving m vertices from G_{1} to G_{2}). Then

$$
\begin{aligned}
\sum_{\substack{x \in X \\
y \in V\left(R_{k+1}\right) \backslash X}} d_{G}(x, y)-\sum_{\substack{x \in X \\
y \in V\left(R_{t+1}^{\prime}\right)}} d_{G^{\prime}}(x, y) & =\sum_{\substack{x \in X \\
y \in V\left(R_{k+1}\right) \backslash(X \cup Y)}} d_{G}(x, y)+\sum_{\substack{x \in X \\
y \in Y}} d_{G}(x, y)-\sum_{\substack{x \in X \\
y \in V\left(R_{t+1}^{\prime}\right)}} d_{G^{\prime}}(x, y) \\
& =\sum_{\substack{x \in X X \\
y \in V\left(R_{k+1}\right) \backslash(X \cup Y)}} d_{G}(x, y)=|X| \sum_{i=1}^{k-t+1} 2(k-i+2) p_{i} \cdot 3^{k+1-i} .
\end{aligned}
$$

By Lemma 4.1, we have

$$
\begin{align*}
W(G)-W\left(G^{\prime}\right)= & m\left(\frac{1}{2}\left(3^{k}(4 k+1)-3^{t}(4 t+1)\right)+(k+t+3)\left(n_{2}-n_{1}+m\right)+(k-t)\left(n_{3}+1\right)\right) \\
& +\sum_{\substack{x \in X \\
y \in V\left(R_{k+1}\right) \backslash X}} d_{G}(x, y)-\sum_{\substack{x \in X \\
y \in V\left(R_{t+1}^{\prime}\right)}} d_{G^{\prime}}(x, y) \\
= & \left(3^{t+1}-n_{2}\right)\left(\frac{1}{2}\left(3^{k}(2 k-2 t-5)+3^{t}(2 k-2 t+5)\right)+(k-t)\left(n_{3}+1\right)\right. \\
& \left.+\sum_{i=1}^{k-t}(k-t-2 i+1) p_{i} \cdot 3^{k+1-i}-3^{t}(k-t+1)\right) . \tag{14}
\end{align*}
$$

(1). If $k \geq t+3$, then $\sum_{i=1}^{k-t}(k-t-2 i+1) p_{i} \cdot 3^{k+1-i} \geq \sum_{i=3}^{k-t} 2(4-2 i) \cdot 3^{k+1-i}$. Thus, by (14), we have

$$
W(G)-W\left(G^{\prime}\right) \geq \frac{1}{2}\left(3^{t+1}-n_{2}\right)\left(3^{k}(2 k-2 t-7)+3^{t}(12 k-12 t-3)+2(k-t)\left(n_{3}+1\right)\right)>0
$$

a contradiction.
(2). If $k=t+1$ and $n_{3} \geq 3^{t+1}$, then by (14), we have $W(G)-W\left(G^{\prime}\right)=\left(3^{t+1}-n_{2}\right)\left(1-3^{t+1}+n_{3}\right)>0$, a contradiction.
(3). If $k=t+2$ and $n_{3} \geq 2 \cdot 3^{t+1}$, then

$$
\sum_{i=1}^{k-t}(k-t-2 i+1) p_{i} \cdot 3^{k+1-i} \geq-2 \cdot 3^{k-1}
$$

By (14), we have

$$
W(G)-W\left(G^{\prime}\right) \geq\left(3^{t+1}-n_{2}\right)\left(3^{t+1}+2\right)>0
$$

a contradiction.
(4). If $k=t+2$ and $n_{1}=2 \cdot 3^{k}+r \cdot 3^{k-1}$ with $r=1,2$ or 3 , then $p_{1}=1$ and $p_{2}=r-1$ in (13), and hence

$$
\sum_{i=1}^{k-t}(k-t-2 i+1) p_{i} \cdot 3^{k+1-i}=3^{k}-(r-1) \cdot 3^{k-1}
$$

By (14), we have $W(G)-W\left(G^{\prime}\right)=\left(3^{t+1}-n_{2}\right)\left(2+(3-r) \cdot 3^{t+1}+2 n_{3}\right)>0$, a contradiction.
(5). If $k=t+2, n_{3} \geq 3^{t+1}$, and $n_{1}=3^{k}+r \cdot 3^{k-1}$ with $r=1$ or 2 , then $p_{1}=0$ and $p_{2}=r-1$ in (13), and thus

$$
\sum_{i=1}^{k-t}(k-t-2 i+1) p_{i} \cdot 3^{k+1-i}=-(r-1) \cdot 3^{k-1}
$$

By (14), we have $W(G)-W\left(G^{\prime}\right) \geq\left(3^{t+1}-n_{2}\right)\left(2+(2-r) \cdot 3^{t+1}\right)>0$, a contradiction.
Lemma 5.2. Let $G=\left(G_{1}, n_{1}, k ; G_{2}, n_{2}, t ; G_{3}, n_{3}, \ell\right) \in \mathcal{C} \mathcal{G}(n, 3)$ be the graph as depicted in Figure 3, where $k \geq t+2$, $3^{k}<n_{1} \leq 3^{k+1}$, and $n_{2}=3^{t+1}$. If G is a Wiener-minimal graph of $\mathcal{C G}(n, 3)$, then the following statements hold:
(1). The inequality $k \leq t+3$ is valid.
(2). The inequality $n_{3}<3^{k}$ is valid.
(3). If $k=t+2$ and $n_{3} \geq 3^{t+1}$, then either $3^{k}+2 \cdot 3^{k-1}<n_{1} \leq 2 \cdot 3^{k}$ or $n_{1}>2 \cdot 3^{k}+2 \cdot 3^{k-1}$.
(4). If $k=t+3$, then $3^{k}+2 \cdot 3^{k-2}<n_{1} \leq 2 \cdot 3^{k}$.
(5). If $k=t+3$ and $n_{3} \geq 3^{t+2}$, then either $n_{1} \leq 3^{k}+2 \cdot 3^{k-2}$ or $n_{1}>3^{k}+2 \cdot 3^{k-1}$.

Proof. Suppose that m is a positive integer such that $0<m \leq 2 \cdot 3^{t+1}$ and $3^{t+1} \mid\left(n_{1}-3^{k}-m\right)$. Then $n_{1}-3^{k}-m$ can be written as

$$
\begin{equation*}
n_{1}-3^{k}-m=\sum_{i=1}^{k-t} p_{i} \cdot 3^{k+1-i} \tag{15}
\end{equation*}
$$

where $0<m \leq 2 \cdot 3^{t+1}, 0 \leq p_{1} \leq 1,0 \leq p_{i} \leq 2$ for $i=2, \ldots, k-t-1$, and $p_{k-t} \leq 1$. Let X be the set of right-most m vertices on the line R_{k+1} of G_{1}. Let $G^{\prime}=\left(n_{1}-m ; n_{2}+m ; n_{3}\right)$ be the graph obtained from G by Operation I (moving m vertices from G_{1} to G_{2}). Note that

$$
\sum_{\substack{x \in X \\ y \in V\left(R_{k+1}\right) \backslash X}} d_{G}(x, y)=m \sum_{i=1}^{k-t} 2(k-i+2) p_{i} \cdot 3^{k+1-i}
$$

Then, by Lemma 4.1, replacing t with $t+1$, we have

$$
\begin{align*}
& W(G)-W\left(G^{\prime}\right) \\
= & m\left(\frac{1}{2}\left(3^{k}(4 k+1)-3^{t+1}(4 t+5)\right)+(k+t+4)\left(3^{t+1}-n_{1}+m\right)+(k-t-1)\left(n_{3}+1\right)\right)+\sum_{\substack{x \in X \\
y \in V\left(R_{k+1}\right) \backslash X}} d_{G}(x, y) \\
= & m\left(\frac{1}{2}\left(3^{k}(2 k-2 t-7)+3^{t+1}(2 k-2 t+3)\right)+\sum_{i=1}^{k-t}(k-t-2 i) p_{i} \cdot 3^{k+1-i}+(k-t-1)\left(n_{3}+1\right)\right) \tag{16}\\
\geq & m\left(\frac{1}{2}\left(3^{k}(2 k-2 t-7)+3^{t+1}(2 k-2 t+3)\right)+\sum_{i=1}^{k-t-1}(k-t-2 i) p_{i} \cdot 3^{k+1-i}-(k-t) \cdot 3^{t+1}+(k-t-1)\left(n_{3}+1\right)\right) \tag{17}
\end{align*}
$$

(1). If $k \geq t+4$, then $\sum_{i=1}^{k-t-1}(k-t-2 i) p_{i} \cdot 3^{k+1-i} \geq \sum_{i=3}^{k-t-1} 2(4-2 i) \cdot 3^{k+1-i}$. By (17), we have

$$
W(G)-W\left(G^{\prime}\right) \geq \frac{m}{2}\left(3^{k}(2 k-2 t-9)+3^{t+2}(4 k-4 t-5)+2(k-t-1)\left(n_{3}+1\right)\right)>0, \quad \text { a contradiction. }
$$

(2). If $n_{3} \geq 3^{k}$, then

$$
\sum_{i=1}^{k-t-1}(k-t-2 i) p_{i} \cdot 3^{k+1-i} \geq \sum_{i=2}^{k-t-1} 2(2-2 i) \cdot 3^{k+1-i}
$$

because $t+2 \leq k \leq t+3$ by Part (1). From (17), it follows that

$$
W(G)-W\left(G^{\prime}\right) \geq \frac{m}{2}\left(3^{k}(4 k-4 t-15)+3^{t+2}(4 k-4 t-1)+2 k-2 t-2\right)>0
$$

which yields a contradiction.
(3). If $k=t+2, n_{3} \geq 3^{t+1}$, and $r \cdot 3^{k}<n_{1} \leq r \cdot 3^{k}+2 \cdot 3^{k-1}$ with $r=1$ or 2 , then we choose m such that $p_{1}=r-1$ and $p_{2}=0$ in (15). By (16), we have $W(G)-W\left(G^{\prime}\right) \geq m>0$, a contradiction.
(4). If $k=t+3$, then (15) becomes

$$
\begin{equation*}
n_{1}-3^{k}-m=p_{1} \cdot 3^{k}+p_{2} \cdot 3^{k-1}+p_{3} \cdot 3^{k-2} \tag{18}
\end{equation*}
$$

where $0<m \leq 2 \cdot 3^{k-2}, 0 \leq p_{1} \leq 1,0 \leq p_{2} \leq 2$, and $p_{3} \leq 1$. If $3^{k}<n_{1} \leq 3^{k}+2 \cdot 3^{k-2}$, then $p_{1}=p_{2}=p_{3}=0$ in (18), and hence by (16), we have $W(G)-W\left(G^{\prime}\right)=m\left(2+(k-t-1) n_{3}\right)>0$, a contradiction. If $n_{1}>2 \cdot 3^{k}$, then $p_{1}=1$ in (18), and thus

$$
\sum_{i=1}^{k-t}(k-t-2 i) p_{i} \cdot 3^{k+1-i} \geq(k-t-2) \cdot 3^{k}+2(k-t-4) \cdot 3^{k-1}-(k-t) \cdot 3^{k-2}
$$

By (16), we have $W(G)-W\left(G^{\prime}\right) \geq m\left(2+(k-t-1) n_{3}\right)>0$, a contradiction.
(5). If $k=t+3, n_{3} \geq 3^{t+2}$, and $3^{k}+2 \cdot 3^{k-2}<n_{1} \leq 3^{k}+2 \cdot 3^{k-1}$, then we choose m such that $p_{1}=0$ and $p_{2}+p_{3} \leq 2$ in (18), and hence $\sum_{i=1}^{k-t}(k-t-2 i) p_{i} \cdot 3^{k+1-i}=-p_{2} \cdot 3^{k-1}-3 p_{3} \cdot 3^{k-2}=-\left(p_{2}+p_{3}\right) \cdot 3^{k-1} \geq-2 \cdot 3^{k-1}$. By (16), we have $W(G)-W\left(G^{\prime}\right) \geq 2 m>0$, a contradiction.

Lemma 5.3. Let $G=\left(G_{1}, n_{1}, k ; G_{2}, n_{2}, t ; G_{3}, n_{3}, \ell\right) \in \mathcal{C} \mathcal{G}(n, 3)$ be the graph as depicted in Figure 3, where $k=t=\ell+1$, $3^{k}+3^{k-1}+2 \cdot 3^{k-2}+1<n_{1} \leq 3^{k+1}, n_{2}=3^{t+1}$, and $n_{3}=3^{\ell+1}$. Take

$$
m= \begin{cases}2 \cdot 3^{k-1}, & \text { if } 3^{k}+3^{k-1}+2 \cdot 3^{k-2}+1<n_{1} \leq 2 \cdot 3^{k}+2 \cdot 3^{k-1} \\ 3^{k+1}-n_{1}+3^{k-1}, & \text { if } 2 \cdot 3^{k}+2 \cdot 3^{k-1}<n_{1} \leq 3^{k+1}\end{cases}
$$

Let $G^{\prime}=\left(G_{1}^{\prime}, 3^{k}-m, k^{\prime} ; G_{2}^{\prime}, 3^{t+1}+n_{1}-3^{k}+m+2 \cdot 3^{\ell}, t+1 ; G_{3}^{\prime}, 3^{\ell}, \ell-1\right) \in \mathcal{C} \mathcal{G}(n, 3)$ where $k^{\prime}=k-2$ or $k^{\prime}=k-1$. Then
(1). If $\ell \geq 2$, then $W(G)>W\left(G^{\prime}\right)$.
(2). If $\ell=1$ and $2 \cdot 3^{k}<n_{1} \leq 3^{k+1}$, then $W(G)>W\left(G^{\prime}\right)$.
(3). If $\ell=1$ and $3^{k}+3^{k-1}+2 \cdot 3^{k-2}+1<n_{1} \leq 2 \cdot 3^{k}$, then $W(G)<W\left(G^{\prime}\right)$.

Proof. Let X be the set of the right-most m vertices on the line R_{k} of G_{1}. Let $H=\left(H_{1} ; H_{2} ; H_{3}\right)$ be the graph obtained from G by Operation II (moving all vertices of $V\left(R_{k+1}\right)$ from G_{1} to G_{2} and moving all vertices of $V\left(R_{\ell+1}^{\prime \prime}\right)$ from G_{3} to G_{2}, respectively). Here the last layer vertices of H_{2} are the vertices of $V\left(R_{\ell+1}^{\prime \prime}\right) \cup V\left(R_{k+1}\right)$. In the sequence of the last layer vertices of H_{2}, we arrange the vertices of $V\left(R_{\ell+1}^{\prime \prime}\right)$ first and then the vertices of $V\left(R_{k+1}\right)$. The graph G^{\prime} then can be obtained from H by Operation I (moving all vertices of X from H_{1} to H_{2}). The last layer vertices of G_{2}^{\prime} are the vertices of $V\left(R_{\ell+1}^{\prime \prime}\right) \cup X \cup V\left(R_{k+1}\right)$. For the sake of calculations, in the sequence of the last layer vertices of G_{2}^{\prime}, we arrange the vertices of $V\left(R_{\ell+1}^{\prime \prime}\right)$ first, then the vertices of X, and finally the vertices of $V\left(R_{k+1}\right)$. By Lemmas 4.1 and 4.2, we have

$$
\begin{aligned}
W(G)-W(H)= & \left(n_{1}-3^{k}\right)\left(\frac{1}{2}\left(3^{k}(4 k+1)-3^{t+1}(4 t+5)\right)+(k+t+4)\left(3^{t+1}-3^{k}\right)+(k-t-1)\left(3^{\ell+1}+1\right)\right) \\
& +2 \cdot 3^{\ell}\left(\frac{1}{2}\left(3^{\ell}(4 \ell+1)-3^{t+1}(4 t+5)\right)+(\ell+t+4)\left(3^{t+1}-3^{\ell+1}+n_{1}-3^{k}+2 \cdot 3^{\ell}\right)\right. \\
& \left.+(\ell-t-1)\left(3^{k}+1\right)\right)+\sum_{x, y \in V\left(R_{k+1}\right)}\left(d_{G}(x, y)-d_{H}(x, y)\right)-\sum_{\substack{x \in V\left(R_{k+1}\right) \\
y \in V\left(R_{\ell+1}^{\prime \prime}\right)}} d_{H}(x, y),
\end{aligned}
$$

and

$$
\begin{aligned}
W(H)-W\left(G^{\prime}\right)= & m\left(\frac{1}{2}\left(3^{k-1}(4 k-3)-3^{t+1}(4 t+5)\right)+(k+t+3)\left(3^{t+1}+n_{1}-3^{k}+2 \cdot 3^{\ell}-3^{k}+m\right)\right. \\
& \left.+(k-t-2)\left(3^{\ell}+1\right)\right)+\sum_{x, y \in V\left(R_{k+1}\right) \cup V\left(R_{\ell+1}^{\prime \prime}\right)}\left(d_{H}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{x, y \in X}\left(d_{H}(x, y)-d_{G^{\prime}}(x, y)\right) \\
& +\sum_{\substack{x \in X \\
y \in V\left(R_{k}\right) \backslash X}} d_{H}(x, y)-\sum_{\substack{x \in X \\
y \in V\left(R_{k+1}\right) \cup V\left(R_{\ell+1}^{\prime \prime}\right)}} d_{G^{\prime}}(x, y) \\
= & m\left(\frac{1}{2}\left(3^{k-1}(4 k-3)-3^{t+1}(4 t+5)\right)+(k+t+3)\left(3^{t+1}+n_{1}-3^{k}+2 \cdot 3^{\ell}-3^{k}+m\right)\right. \\
& \left.+(k-t-2)\left(3^{\ell}+1\right)\right)+\sum_{x, y \in V\left(R_{k+1}\right)}\left(d_{H}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{\substack{x \in V\left(R_{k+1}\right) \\
y \in V\left(R_{l+1}^{\prime}\right)}}\left(d_{H}(x, y)-d_{G^{\prime}}(x, y)\right) \\
& +\sum_{x, y \in X}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{\substack{x \in X \\
y \in V\left(R_{k}\right) \backslash X}} d_{G}(x, y)-\sum_{\substack{x \in X \\
y \in V\left(R_{k+1}\right)}} d_{G^{\prime}}(x, y)-\sum_{\substack{x \in X X \\
y \in V\left(R_{\ell+1}^{\prime \prime}\right)}} d_{G^{\prime}}(x, y) .
\end{aligned}
$$

Note that $3^{k-1} \leq m<2 \cdot 3^{k-1}$ and $\left|V\left(R_{\ell+1}^{\prime \prime}\right)\right|+|X|+\left|V\left(R_{k+1}\right)\right|=2 \cdot 3^{\ell}+m+n_{1}-3^{k-1} \leq 3^{k+1}$. Then

$$
\begin{gathered}
\sum_{\substack{x \in V\left(R_{k+1}\right) \\
y \in V\left(R_{\ell+1}^{\prime}\right)}} d_{G^{\prime}}(x, y)=\left|V\left(R_{\ell+1}^{\prime \prime}\right)\right|\left|V\left(R_{k+1}\right)\right| \cdot 2(k+1)=3^{\ell}\left(n_{1}-3^{k}\right)(4 k+4), \\
\sum_{x, y \in X}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)=3^{k-1}\left(m-3^{k-1}\right)(2 k-2(t+1))=-2 \cdot 3^{k-1}\left(m-3^{k-1}\right), \\
\sum_{\substack{x \in X \\
y \in V\left(R_{\ell+1}^{\prime \prime}\right)}} d_{G^{\prime}}(x, y)=2 \cdot 3^{\ell}\left(3^{k-1} \cdot 2 t+\left(m-3^{k-1}\right) \cdot 2(t+1)\right) .
\end{gathered}
$$

Thus,

$$
\begin{aligned}
W(G)-W\left(G^{\prime}\right)= & (W(G)-W(H))+\left(W(H)-W\left(G^{\prime}\right)\right) \\
= & n_{1}\left(2 \cdot 3^{k-1}-1\right)-m\left(3^{k-1}(10 k+17)+2\right)+m\left(n_{1}+m\right)(2 k+3)-4 \cdot 3^{2 k-1}-3^{k-1} \\
& +\sum_{x, y \in V\left(R_{k+1}\right)}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{\substack{x \in X \\
y \in V\left(R_{k}\right) \backslash X}} d_{G}(x, y)-\sum_{\substack{x \in X \\
y \in V\left(R_{k+1}\right)}} d_{G^{\prime}}(x, y) .
\end{aligned}
$$

Case 1. $3^{k}+3^{k-1}+2 \cdot 3^{k-2}+1<n_{1} \leq 2 \cdot 3^{k}+2 \cdot 3^{k-1}$.
In this case, we have $|X|=m=2 \cdot 3^{k-1}$ and $\sum_{x \in X, y \in V\left(R_{k}\right) \backslash X} d_{G}(x, y)=0$. Thus,

$$
W(G)-W\left(G^{\prime}\right)=n_{1}\left(3^{k-1}(4 k+8)-1\right)-3^{2 k-2}(12 k+34)-5 \cdot 3^{k-1}+\sum_{x, y \in V\left(R_{k+1}\right)}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)-\sum_{\substack{x \in X \\ y \in V\left(R_{k+1}\right)}} d_{G^{\prime}}(x, y) .
$$

Subcase $1.13^{k}+3^{k-1}+2 \cdot 3^{k-2}+1<n_{1} \leq 3^{k}+2 \cdot 3^{k-1}$.
Note that if $\ell=1$ then $3^{k}+3^{k-1}+2 \cdot 3^{k-2}+1=3^{k}+2 \cdot 3^{k-1}$. Hence $\ell \geq 2$. Since

$$
\sum_{\substack{x \in X \\ y \in V\left(R_{k+1}\right)}} d_{G^{\prime}}(x, y)=\left|V\left(R_{k+1}\right)\right|\left(3^{k-1} \cdot 2 t+3^{k-1} \cdot 2(t+1)\right)=\left(n_{1}-3^{k}\right) 3^{k-1}(4 t+2),
$$

$$
\sum_{x, y \in V\left(R_{k+1}\right)}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)=0
$$

we have

$$
\begin{aligned}
W(G)-W\left(G^{\prime}\right) & =n_{1}\left(2 \cdot 3^{k}-1\right)-28 \cdot 3^{2 k-2}-5 \cdot 3^{k-1} \\
& \geq\left(3^{k}+3^{k-1}+2 \cdot 3^{k-2}+2\right)\left(2 \cdot 3^{k}-1\right)-28 \cdot 3^{2 k-2}-5 \cdot 3^{k-1} \\
& =7 \cdot 3^{k-2}-2>0 .
\end{aligned}
$$

Subcase $1.23^{k}+2 \cdot 3^{k-1}<n_{1} \leq 2 \cdot 3^{k}$.
Note that

$$
\begin{aligned}
\sum_{\substack{x \in X \\
y \in V\left(R_{k+1}\right)}} d_{G^{\prime}}(x, y) & =3^{k-1}\left|V\left(R_{k+1}\right)\right| \cdot 2(t+1)+3^{k-1} \cdot 2 \cdot 3^{k-1} \cdot 2 t+3^{k-1}\left(\left|V\left(R_{k+1}\right)\right|-2 \cdot 3^{k-1}\right) \cdot 2(t+1) \\
& =\left(n_{1}-3^{k}\right) 3^{k-1}(4 k+4)-4 \cdot 3^{2 k-2}, \\
\sum_{x, y \in V\left(R_{k+1}\right)}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right) & =2 \cdot 3^{k-1}\left(\left|V\left(R_{k+1}\right)\right|-2 \cdot 3^{k-1}\right)(2 k-2(t+1))=20 \cdot 3^{2 k-2}-4 n_{1} \cdot 3^{k-1} .
\end{aligned}
$$

Thus,

$$
W(G)-W\left(G^{\prime}\right)=2 \cdot 3^{2 k-2}-5 \cdot 3^{k-1}-n_{1} .
$$

If $\ell=1$, then $k=2$ and $W(G)-W\left(G^{\prime}\right) \leq 2 \cdot 3^{2 k-2}-5 \cdot 3^{k-1}-\left(3^{k}+2 \cdot 3^{k-1}+1\right)=3^{k-1}\left(2 \cdot 3^{k-1}-10\right)-1<0$. If $\ell \geq 2$, then $k \geq 3$ and $W(G)-W\left(G^{\prime}\right) \geq 2 \cdot 3^{2 k-2}-5 \cdot 3^{k-1}-2 \cdot 3^{k}=3^{k-1}\left(2 \cdot 3^{k-1}-11\right)-1>0$.

Subcase $1.32 \cdot 3^{k}<n_{1} \leq 2 \cdot 3^{k}+2 \cdot 3^{k-1}$.
Note that

$$
\begin{aligned}
\sum_{\substack{x \in X \\
y \in V\left(R_{k+1}\right)}} d_{G^{\prime}}(x, y) & =3^{k-1}\left|V\left(R_{k+1}\right)\right| \cdot 2(t+1)+3^{k-1} \cdot 2 \cdot 3^{k-1} \cdot 2 t+3^{k-1}\left(\left|V\left(R_{k+1}\right)\right|-2 \cdot 3^{k-1}\right) \cdot 2(t+1) \\
& =\left(n_{1}-3^{k}\right) 3^{k-1}(4 k+4)-4 \cdot 3^{2 k-2}, \\
\sum_{x, y \in V\left(R_{k+1}\right)}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right) & =2 \cdot 3^{k-1} \cdot 3^{k-1}(2 k-2(t+1))+3^{k-1}\left(\left|V\left(R_{k+1}\right)\right|-3^{k}\right)(2(k+1)-2 t) \\
& =-16 \cdot 3^{2 k-2}+2 n_{1} \cdot 3^{k-1} .
\end{aligned}
$$

Thus, $W(G)-W\left(G^{\prime}\right)=n_{1}\left(2 \cdot 3^{k}-1\right)-34 \cdot 3^{2 k-2}-5 \cdot 3^{k-1} \geq 3^{k-1}\left(2 \cdot 3^{k-1}-5\right)-1>0$.
Case 2. $2 \cdot 3^{k}+2 \cdot 3^{k-1}<n_{1} \leq 3^{k+1}$.
In this case, $|X|=m=10 \cdot 3^{k-1}-n_{1}$. Let S be the set of the left-most $n_{1}-2 \cdot 3^{k}-2 \cdot 3^{k-1}$ vertices on the line R_{k+1} of G_{1}. Then, $|S|=n_{1}-8 \cdot 3^{k-1} \leq 3^{k-1},\left|V\left(R_{k+1}\right) \backslash S\right|=5 \cdot 3^{k-1}$, and $|S|+|X|=2 \cdot 3^{k-1}=\left|V\left(R_{k}\right) \backslash X\right|+|X|$; that is, $|S|=\left|V\left(R_{k}\right) \backslash X\right|$. Note that

$$
\begin{aligned}
\sum_{\substack{x \in X \\
y \in V\left(R_{k+1}\right)}} d_{G^{\prime}}(x, y) & =\sum_{x \in X, y \in S} d_{G^{\prime}}(x, y)+3^{k-1} \cdot 5 \cdot 3^{k-1} \cdot 2(t+1)+\left(m-3^{k-1}\right)\left(3^{k} \cdot 2(t+1)+2 \cdot 3^{k-1} \cdot 2 t\right) \\
& =\sum_{x \in X, y \in S} d_{G^{\prime}}(x, y)+3^{2 k-2}(10 k+10)+\left(3^{k+1}-n_{1}\right) \cdot 3^{k-1}(10 k+6), \\
\sum_{\substack{x \in X \\
y \in V\left(R_{k}\right) \backslash X}} d_{G}(x, y)-\sum_{x \in X, y \in S} d_{G^{\prime}}(x, y) & =|S| \cdot 3^{k-1}(2 k-2(t+1))=-2 \cdot 3^{k-1}\left(n_{1}-8 \cdot 3^{k-1}\right),
\end{aligned}
$$

$$
\sum_{x, y \in V\left(R_{k+1}\right)}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)=0
$$

Therefore, $W(G)-W\left(G^{\prime}\right)=70 \cdot 3^{2(k-1)}-7 \cdot 3^{k}-n_{1}\left(7 \cdot 3^{k-1}-1\right) \geq 7 \cdot 3^{2(k-1)}-4 \cdot 3^{k}>0$.
Lemma 5.4. Let $G=\left(G_{1}, n_{1}, k ; G_{2}, n_{2}, t ; G_{3}, n_{3}, \ell\right) \in \mathcal{C G}(n, 3)$ be the graph as depicted in Figure 3 , where $k=t+1, t=\ell+1$, $n_{1}=2 \cdot 3^{k}, 3^{t}<n_{2}<3^{t+1}$ and $n_{3}=3^{\ell+1}$. If G is a Wiener-minimal graph of $\mathcal{C G}(n, 3)$, then $3^{t}<n_{2}<\frac{1}{2} \cdot 3^{t+1}-\frac{1}{2}$.

Proof. Suppose to the contrary that $\frac{1}{2} \cdot 3^{t+1}-\frac{1}{2} \leq n_{2}<3^{t+1}$. Let X be the set of the right-most $2 \cdot 3^{\ell+1}$ vertices on the line R_{k+1} of G_{1} and Y be the set of the right-most m vertices, except for X, on the line R_{k+1} of G_{1}, where

$$
m= \begin{cases}3^{t}, & \text { if } \frac{1}{2} \cdot 3^{t+1}-\frac{1}{2} \leq n_{2} \leq 2 \cdot 3^{t} \\ 3^{t+1}-n_{2}, & \text { if } 2 \cdot 3^{t}<n_{2}<3^{t+1}\end{cases}
$$

Let $G^{\prime}=\left(G_{1}^{\prime}, n_{1}-2 \cdot 3^{\ell+1}-m, k^{\prime} ; G_{2}^{\prime}, n_{2}+m, t ; G_{3}^{\prime}, 3^{\ell+2}, \ell+1\right) \in \mathcal{C} \mathcal{G}(n, 3)$ be the graph obtained from G by Operation III (moving $2 \cdot 3^{\ell+1}$ and m vertices from G_{1} to G_{3} and G_{2}, respectively), where $k^{\prime}=k$ or $k-1$. Here, the last layer vertices of
G_{2}^{\prime} are the vertices of $Y \cup V\left(R_{t+1}^{\prime}\right)$. For the sake of calculations, in the sequence of the last layer vertices of G_{2}^{\prime}, we arrange the vertices of Y first and then the vertices of $V\left(R_{t+1}^{\prime}\right)$. Note that

$$
\sum_{\substack{x \in X \\ y \in V\left(R_{k+1}\right) \backslash X}} d_{G}(x, y)=3^{t} \cdot 2 \cdot 3^{t} \cdot 2(t+1)=3^{2 t}(4 t+4)
$$

By Lemma 4.3, replacing $t, \ell, m_{1}, m_{2}, n_{1}, n_{3}$ with $\ell, t, 2 \cdot 3^{\ell+1}, m, 2 \cdot 3^{k}, n_{2}$, respectively, we have

$$
\begin{aligned}
W(G)-W\left(G^{\prime}\right)= & -2 \cdot 3^{2 t+1}+2 n_{2} \cdot 3^{t}+2 \cdot 3^{t}+m\left(3^{t}(-4 t-6)+(2 t+4)\left(n_{2}+m\right)+1\right) \\
& +\sum_{\substack{x \in Y \\
y \in V\left(R_{k+1}\right) \backslash(X \cup Y)}} d_{G}(x, y)-\sum_{\substack{x \in Y \\
y \in V\left(R_{t+1}^{\prime}\right)}} d_{G^{\prime}}(x, y)
\end{aligned}
$$

Case 1. $\frac{1}{2} \cdot 3^{t+1}-\frac{1}{2} \leq n_{2} \leq 2 \cdot 3^{t}$.
In this case, $|Y|=m=3^{t}$ and $V\left(R_{k+1}\right) \backslash(X \cup Y)=\phi$. Hence,

$$
\sum_{x \in Y, y \in V\left(R_{t+1}^{\prime}\right)} d_{G^{\prime}}(x, y)=3^{t}\left(n_{2}-3^{t}\right) \cdot 2(t+1)
$$

and thus, we have $W(G)-W\left(G^{\prime}\right)=-2 \cdot 3^{2 t+1}+4 n_{2} \cdot 3^{t}+3^{t+1} \geq-2 \cdot 3^{2 t+1}+2\left(3^{t+1}-1\right) \cdot 3^{t}+3^{t+1}=3^{t}>0$, a contradiction.
Case 2. $2 \cdot 3^{t}<n_{2}<3^{t+1}$.
Note that $|Y|=m=3^{t+1}-n_{2}<3^{t}$. Let H be the set of the left-most $3^{t}-m$ vertices on the line R_{t+1}^{\prime} of G_{2}. Then $|H|=3^{t}-m=\left|V\left(R_{k+1}\right) \backslash(X \cup Y)\right|$ and

$$
\sum_{x \in Y, y \in V\left(R_{t+1}^{\prime}\right)} d_{G^{\prime}}(x, y)=m \cdot 3^{t} \cdot 2(t+1)+\sum_{x \in Y, y \in H} d_{G^{\prime}}(x, y) .
$$

Hence, we have $W(G)-W\left(G^{\prime}\right)=2 \cdot 3^{2 t+1}+5 \cdot 3^{t}-n_{2}\left(2 \cdot 3^{t}+1\right)>2 \cdot 3^{2 t+1}+5 \cdot 3^{t}-3^{t+1}\left(2 \cdot 3^{t}+1\right)=2 \cdot 3^{t}>0$, a contradiction.
Lemma 5.5. Let $G=\left(G_{1}, n_{1}, k ; G_{2}, n_{2}, t ; G_{3}, n_{3}, \ell\right) \in \mathcal{C} \mathcal{G}(n, 3)$ be the graph as depicted in Figure 3, where $k=t+2$, $n_{1}=3^{k}+p \cdot 3^{k-1}(1 \leq p \leq 2)$, and $3^{t}<n_{2}<3^{t+1}$. If G is a Wiener-minimal graph of $\mathcal{C G}(n, 3)$, then $n_{3} \neq 3^{t}$.
Proof. Suppose to the contrary that $n_{3}=3^{t}$. Let $G^{\prime}=\left(n_{1}+n_{2}-3^{t} ; 3^{t} ; n_{3}\right) \in \mathcal{C G}(n, 3)$ be the graph obtained from G by Operation I (moving all vertices of $V\left(R_{t+1}^{\prime}\right)$ from G_{2} to G_{1}). Note that

$$
\sum_{\substack{x \in V\left(R_{t+1}^{\prime}\right) \\ y \in V\left(R_{k+1}\right)}} d_{G^{\prime}}(x, y)=\left(n_{2}-3^{t}\right) \cdot 2 k p \cdot 3^{k-1}
$$

By Lemma 4.1, replacing m, k, t, n_{2}, n_{1} with $\left(n_{2}-3^{t}\right), t, k, n_{1}, n_{2}$, respectively, we have

$$
W(G)-W\left(G^{\prime}\right)=\left(n_{2}-3^{t}\right)\left(p \cdot 3^{t+1}-2-2 n_{3}\right)=\left(n_{2}-3^{t}\right)\left((3 p-2) \cdot 3^{t}-2\right)>0
$$

a contradiction.
Lemma 5.6. Let $G=\left(G_{1}, n_{1}, k ; G_{2}, n_{2}, t ; G_{3}, n_{3}, \ell\right) \in \mathcal{C} \mathcal{G}(n, 3)$ be the graph as depicted in Figure 3, where $k=t=\ell$, and $3^{k}<n_{1}<3^{k+1}, n_{2}=3^{t+1}, n_{3}=3^{\ell+1}$. If G is a Wiener-minimal graph of $\mathcal{C G}(n, 3)$, then either $n_{1}=3^{k}+1$ or $n_{1}>\frac{5}{2} \cdot 3^{k}-\frac{3}{2}$.
Proof. Suppose to the contrary that $3^{k}+2 \leq n_{1} \leq \frac{5}{2} \cdot 3^{k}-\frac{3}{2}$. Take $X=V\left(R_{\ell+1}^{\prime \prime}\right)$. Let Y be the set of the left-most m vertices on line R_{k+1} of G_{1}, where

$$
m= \begin{cases}n_{1}-3^{k}, & \text { if } 3^{k}+2 \leq n_{1} \leq 2 \cdot 3^{k} \\ 3^{k}, & \text { if } 2 \cdot 3^{k}<n_{1} \leq \frac{5}{2} \cdot 3^{k}-\frac{3}{2}\end{cases}
$$

Then $|X|=2 \cdot 3^{\ell}=2 \cdot 3^{t}$, and $|Y|=m \leq 3^{t}$. Let $G^{\prime}=\left(G_{1}^{\prime}, n_{1}-m, k^{\prime} ; G_{2}^{\prime}, 3^{t+1}+2 \cdot 3^{\ell}+m, t+1 ; G_{3}^{\prime}, 3^{\ell}, \ell-1\right) \in \mathcal{C G}(n, 3)$ be the graph obtained from G by Operation II (moving moving all vertices of X from G_{3} to G_{2}, and all vertices of Y from G_{1} to G_{2}, respectively), where $k^{\prime}=k$ or $k-1$. Here, the last layer vertices of G_{2}^{\prime} are the vertices of $X \cup Y$. In the sequence of the last layer vertices of G_{2}^{\prime}, we arrange the vertices of X first and then the vertices of Y. Then

$$
\sum_{x \in X, y \in Y} d_{G^{\prime}}(x, y)=2 m \cdot 3^{t} \cdot 2(t+1) .
$$

By Lemma 4.2, replacing $t, k, \ell, m_{1}, m_{2}, n_{1}, n_{2}, n_{3}$ with $t+1, \ell, k, 2 \cdot 3^{\ell}, m, 3^{\ell+1}, 3^{t+1}, n_{1}$, respectively, we have

$$
W(G)-W\left(G^{\prime}\right)=2 \cdot 3^{\ell}\left(3^{\ell}-n_{1}-1\right)+m\left(3^{\ell}(2 \ell+8)+(2 \ell+4)\left(m-n_{1}\right)-1\right)+\sum_{\substack{x \in Y \\ y \in V\left(R_{k+1}\right) \backslash Y}} d_{G}(x, y) .
$$

Case 1. $3^{k}+2 \leq n_{1} \leq 2 \cdot 3^{k}$.
In this case, $m=n_{1}-3^{k}$ and $V\left(R_{k+1}\right) \backslash Y=\phi$. Thus, we have $W(G)-W\left(G^{\prime}\right)=\left(n_{1}-3^{\ell}\right)\left(2 \cdot 3^{\ell}-1\right)-2 \cdot 3^{\ell}>0$, a contradiction.
Case 2. $2 \cdot 3^{k} \leq n_{1} \leq \frac{5}{2} \cdot 3^{k}-\frac{3}{2}$.
Note that $m=3^{k}$ and

$$
\sum_{\substack{x \in Y \\ y \in V\left(R_{k+1}\right) \backslash Y}} d_{G}(x, y)=3^{k}\left(n_{1}-2 \cdot 3^{k}\right) \cdot 2(k+1)
$$

Thus, we have $W(G)-W\left(G^{\prime}\right)=3^{\ell}\left(10 \cdot 3^{\ell}-4 n_{1}-3\right) \geq 3^{\ell+1}>0$, a contradiction.
Lemma 5.7. Let $G=\left(G_{1}, n_{1}, k ; G_{2}, n_{2}, t ; G_{3}, n_{3}, \ell\right) \in \mathcal{C} \mathcal{G}(n, 3)$ be the graph as depicted in Figure 3, where $k=\ell=t$, $\ell \geq 2$, $n_{2}=3^{t+1}$, and $n_{3}=3^{\ell+1}$. If G is a Wiener-minimal graph of $\mathcal{C G}(n, 3)$, then $n_{1} \neq 3^{k}+1$.

Proof. Suppose to the contrary that $n_{1}=3^{k}+1$. Let X be the set of the right-most $3^{t-1}-1$ vertices on the line $V\left(R_{t}^{\prime}\right)$ of $G_{2}, Y=V\left(R_{k}\right), V\left(R_{k+1}\right)=\{v\}$, and suppose that the $\left(3^{t-1}+1\right)$-th vertex on the line $V\left(R_{t}^{\prime}\right)$ of G_{2} is u.

Let $H=\left(H_{1} ; H_{2} ; H_{3}\right)$ be the graph obtained from G by Operation II (moving all vertices of $V\left(R_{t+1}^{\prime}\right)$ from G_{2} to G_{3} and moving the vertex v from G_{1} to G_{3}, respectively). Here, the last layer vertices of H_{3} are the vertices of $V\left(R_{t+1}^{\prime}\right) \cup\{v\}$. In the sequence of the last layer vertices of H_{3}, we arrange the vertices of $V\left(R_{t+1}^{\prime}\right)$ first and then the vertex v. Let $G^{\prime}=\left(G_{1}^{\prime} ; G_{2}^{\prime} ; G_{3}^{\prime}\right)$ be the graph obtained from H by Operation II (moving all vertices of Y from H_{1} to H_{3} and moving all vertices of X from H_{2} to H_{3}, respectively). Then $G^{\prime}=\left(3^{k-1} ; 2 \cdot 3^{t-1}+1 ; 3^{\ell+1}+2 \cdot 3^{t}+3^{t-1}+2 \cdot 3^{k-1}\right) \in \mathcal{C G}(n, 3)$. The last layer vertices of G_{3}^{\prime} are the vertices of $V\left(R_{t+1}^{\prime}\right) \cup\{v\} \cup X \cup Y$. For the sake of calculations, in the sequence of the last layer vertices of G_{3}^{\prime}, we arrange the vertices of $V\left(R_{t+1}^{\prime}\right)$ first, then the vertex v, then the vertices of X, and finally the vertices of Y. Note that $V\left(R_{t+1}^{\prime}\right)=2 \cdot 3^{t},|X|=3^{t-1}-1$, and $|Y|=2 \cdot 3^{k-1}$. Thus,

$$
\begin{aligned}
\sum_{x \in V\left(R_{t+1}^{\prime}\right)} d_{H}(v, x) & =\sum_{x \in V\left(R_{t+1}^{\prime}\right)} d_{G^{\prime}}(v, x)=2 \cdot 3^{t} \cdot 2(t+1)=3^{t}(4 t+4), \\
\sum_{\substack{x \in X \\
y \in V\left(R_{t}^{\prime}\right) \backslash X}} d_{H}(x, y) & =\sum_{\substack{x \in X \\
y \in V\left(R_{t}^{\prime}\right) \backslash X}} d_{G}(x, y)=3^{t-1}\left(3^{t-1}-1\right) \cdot 2 t+\sum_{x \in X} d_{G}(u, x), \\
\sum_{\substack{x \in X \\
y \in V\left(R_{t+1}^{\prime}\right) \cup\{v\}}} d_{G^{\prime}}(x, y) & =2 \cdot 3^{t}\left(3^{t-1}-1\right) \cdot 2(t+1)+\sum_{x \in X} d_{G^{\prime}}(v, x), \\
\sum_{\substack{x \in Y \\
y \in V\left(R_{t+1}^{\prime}\right) \cup\{v\}}} d_{G^{\prime}}(x, y) & =2 \cdot 3^{k-1}\left(2 \cdot 3^{t} \cdot 2(t+1)+2 t\right)=3^{2 t-1}(8 t+8)+4 t \cdot 3^{t-1}, \\
\sum_{\substack{x \in X \\
y \in Y}} d_{G^{\prime}}(x, y) & =2 \cdot 3^{k-1}\left(3^{t-1}-1\right) \cdot 2 t=4 t \cdot 3^{2 t-2}-4 t \cdot 3^{t-1}, \\
\sum_{x \in X} d_{G}(u, x) & =\sum_{x \in X} d_{G^{\prime}}(v, x) .
\end{aligned}
$$

By Lemma 4.2, replacing $X, Y, k, \ell, t, n_{1}, n_{2}, n_{3}, m_{1}, m_{2}$ with $V\left(R_{t+1}^{\prime}\right),\{v\}, t, k, \ell+1,3^{t+1}, 3^{\ell+1}, 3^{k}+1,2 \cdot 3^{t}, 1$, respectively, we have

$$
W(G)-W(H)=3^{t}(4 t+4)-1-\sum_{x \in V\left(R_{t+1}^{\prime}\right)} d_{H}(v, x)=-1
$$

By Lemma 4.2, replacing $k, \ell, t, n_{1}, n_{2}, n_{3}, m_{1}, m_{2}$ with $t-1, k-1, \ell+1,3^{t}, 3^{\ell+1}+2 \cdot 3^{t}+1,3^{k}, 3^{t-1}-1,2 \cdot 3^{k-1}$, respectively, we have

$$
\begin{aligned}
W(H)-W\left(G^{\prime}\right)= & 3^{2 t-2}(38 t+43)-3^{t-1}(10 t+19)+2+\sum_{\substack{x \in X \\
y \in V\left(R_{t}^{\prime}\right) \backslash X}} d_{H}(x, y)-\sum_{\substack{x \in X \\
y \in V\left(R_{t+1}^{\prime}\right) \cup\{v\}}} d_{G^{\prime}}(x, y) \\
& -\sum_{\substack{x \in Y \\
y \in V\left(R_{t+1}^{\prime}\right) \cup\{v\}}} d_{G^{\prime}}(x, y)-\sum_{\substack{x \in X \\
y \in Y}} d_{G^{\prime}}(x, y) \\
= & 7 \cdot 3^{2 t-2}-7 \cdot 3^{t-1}+2 .
\end{aligned}
$$

By adding the last two equations, we arrive at $W(G)-W\left(G^{\prime}\right)=7 \cdot 3^{2 t-2}-7 \cdot 3^{t-1}+1>0$, a contradiction.

Lemma 5.8. Let $G=\left(G_{1}, n_{1}, k ; G_{2}, n_{2}, t ; G_{3}, n_{3}, \ell\right) \in \mathcal{C} \mathcal{G}(n, 3)$ be the graph as depicted in Figure 3, where $k=t+1$, $\ell=t$, $3^{k}+3^{k-1}+1 \leq n_{1} \leq 2 \cdot 3^{k}+3^{k-1}, n_{2}=3^{t+1}$, and $n_{3}=3^{\ell+1}$. Take

$$
m= \begin{cases}2 \cdot 3^{\ell}, & \text { if } 3^{k}+3^{k-1}+1 \leq n_{1} \leq 3^{k}+2 \cdot 3^{k-1} \\ 3^{k+1}-n_{1}-2 \cdot 3^{t}, & \text { if } 3^{k}+2 \cdot 3^{k-1}<n_{1} \leq 2 \cdot 3^{k}+3^{k-1}\end{cases}
$$

Let $G^{\prime}=\left(G_{1}^{\prime}, n_{1}+2 \cdot 3^{t}+m, k ; G_{2}^{\prime}, 3^{t}, t-1 ; G_{3}^{\prime}, n_{3}-m, \ell^{\prime}\right) \in \mathcal{C} \mathcal{G}(n, 3)$ be the graph obtained from G by Operation II (moving all vertices on line R_{t+1}^{\prime} of G_{2} to G_{1}, and moving m vertices on line $R_{\ell+1}^{\prime \prime}$ of G_{3} to G_{1}, respectively), where $\ell^{\prime}=\ell$ or $\ell-1$, such that G^{\prime} remains in the form of the graph depicted in Figure 3.
(1). If $n_{1}=3^{k}+3^{k-1}+1$, then $W(G)<W\left(G^{\prime}\right)$.
(2). If $n_{1}=3^{k}+3^{k-1}+2$, then $W(G)=W\left(G^{\prime}\right)$.
(3). If $3^{k}+3^{k-1}+2<n_{1} \leq 3^{k}+\frac{5}{2} \cdot 3^{k-1}-\frac{3}{2}$, then $W(G)>W\left(G^{\prime}\right)$.
(4). If $3^{k}+\frac{5}{2} \cdot 3^{k-1}-\frac{3}{2}<n_{1} \leq 2 \cdot 3^{k}+3^{k-1}$, then $W(G)<W\left(G^{\prime}\right)$.

Proof. Take $X=V\left(R_{t+1}^{\prime}\right)$. Let Y be the set of the right-most m vertices on the line $R_{\ell+1}^{\prime \prime}$ of G_{3}. The last layer vertices of G_{1}^{\prime} are the vertices of $X \cup Y \cup V\left(R_{k+1}\right)$. For the sake of calculations, in the sequence of the last layer vertices of G_{1}^{\prime}, we arrange the vertices of X first, then the vertices of Y, and finally the vertices of $V\left(R_{k+1}\right)$. By Lemma 4.2, replacing $k, t, n_{1}, n_{2}, n_{3}, m_{1}, m_{2}$ with $t, k, 3^{t+1}, n_{1}, 3^{\ell+1}, 2 \cdot 3^{k-1}, m$, respectively, we have

$$
\begin{aligned}
W(G)-W\left(G^{\prime}\right)= & 3^{2 k-2}(-12 k-16)+3^{k-1}\left((4 k+4) n_{1}-(6 k+6) m-2\right)+m\left((2 k+2)\left(n_{1}+m\right)-1\right) \\
& +\sum_{\substack{x \in Y \\
y \in V\left(R_{\ell+1}^{\prime \prime}\right) \backslash Y}} d_{G}(x, y)+\sum_{x, y \in Y}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)-\sum_{\substack{x \in X \\
y \in V\left(R_{k+1}\right)}} d_{G^{\prime}}(x, y) \\
& -\sum_{\substack{x \in Y \\
y \in V\left(R_{k+1}\right)}} d_{G^{\prime}}(x, y)-\sum_{\substack{x \in X \\
y \in Y}} d_{G^{\prime}}(x, y)
\end{aligned}
$$

Case 1. $3^{k}+3^{k-1}+1 \leq n_{1} \leq 3^{k}+2 \cdot 3^{k-1}$.
In this case, $|Y|=m=2 \cdot 3^{\ell}=2 \cdot 3^{k-1}$. Note that

$$
\begin{aligned}
\sum_{x, y \in Y}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right) & =-2 \cdot 3^{2 k-2} \\
\sum_{\substack{x \in X \\
y \in V\left(R_{k+1}\right)}} d_{G^{\prime}}(x, y) & =2 \cdot 3^{k-1}\left(n_{1}-3^{k}\right) \cdot 2(k+1) \\
\sum_{\substack{x \in Y \\
y \in V\left(R_{k+1}\right)}} d_{G^{\prime}}(x, y)+\sum_{\substack{x \in X \\
y \in Y}} d_{G^{\prime}}(x, y) & =3^{k-1}\left(2 \cdot 3^{k-1}+n_{1}-3^{k}\right)(2 k+2(k+1)) .
\end{aligned}
$$

Therefore, we have

$$
W(G)-W\left(G^{\prime}\right)=-8 \cdot 3^{2 k-2}+3^{k-1}\left(2 n_{1}-4\right)=2 \cdot 3^{k-1}\left(n_{1}-3^{k}-3^{k-1}-2\right)
$$

If $n_{1}=3^{k}+3^{k-1}+1$, then $W(G)<W\left(G^{\prime}\right)$.
If $n_{1}=3^{k}+3^{k-1}+2$, then $W(G)=W\left(G^{\prime}\right)$.
If $3^{k}+3^{k-1}+2<n_{1} \leq 3^{k}+2 \cdot 3^{k-1}$, then $W(G)>W\left(G^{\prime}\right)$.
Case 2. $3^{k}+2 \cdot 3^{k-1}<n_{1} \leq 2 \cdot 3^{k}$.
Note that $3^{k-1}=3^{\ell} \leq|Y|=m=7 \cdot 3^{k-1}-n_{1}<2 \cdot 3^{k-1}$. Let H_{0} be the set of the right-most 3^{ℓ} vertices on the line $R_{\ell+1}^{\prime \prime}$ of G_{3}. Take $H_{1}=Y \backslash H_{0}$ and $H_{2}=V\left(R_{\ell+1}^{\prime \prime}\right) \backslash Y$. Let the vertices of H_{3} be the $\left(3^{k}+1\right)$-th to $\left(3^{k}+m-3^{k-1}\right)$-th vertices in the last layer of G_{1}^{\prime}. Let H_{4} be the set of the left-most $n_{1}-3^{k}-2 \cdot 3^{k-1}$ vertices on the line $V\left(R_{k+1}\right)$ of G_{1}. Then $3^{k-1}=3^{\ell}=\left|H_{1}\right|+\left|H_{2}\right|=\left|H_{3}\right|+\left|H_{4}\right|=3^{k-1}$. Hence

$$
\begin{aligned}
& \sum_{\substack{x \in Y \\
y \in V\left(R_{\ell+1}^{\prime \prime}\right) \backslash Y}} d_{G}(x, y)=\left(2 \cdot 3^{\ell}-m\right) 3^{\ell} \cdot 2(\ell+1)+\sum_{x \in H_{1}, y \in H_{2}} d_{G}(x, y) \\
& \sum_{x \in X, y \in V\left(R_{k+1}\right)} d_{G^{\prime}}(x, y)=2 \cdot 3^{k-1}\left(n_{1}-3^{k}\right) \cdot 2(k+1)=3^{k-1}\left(n_{1}-3^{k}\right)(4 k+4),
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{x, y \in Y}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)=3^{\ell}\left(m-3^{\ell}\right)(2(\ell+1)-2(k+1))=-2 \cdot 3^{\ell}\left(m-3^{\ell}\right), \\
& \sum_{\substack{x \in Y \\
y \in V\left(R_{k+1}\right)}} d_{G^{\prime}}(x, y)+\sum_{\substack{x \in X \\
y \in Y}} d_{G^{\prime}}(x, y) \\
= & 2 m \cdot 3^{k-1} \cdot 2 k+2 \cdot 3^{k-1}\left(m-3^{k-1}\right) \cdot 2(k+1)+3^{k-1}\left(n_{1}-3^{k}\right) \cdot 2(k+1)+\sum_{x \in H_{3}, y \in H_{4}} d_{G^{\prime}}(x, y) .
\end{aligned}
$$

Thus, we have

$$
W(G)-W\left(G^{\prime}\right)=22 \cdot 3^{2 k-2}-3^{k+1}-n_{1}\left(4 \cdot 3^{k-1}-1\right)
$$

If $3^{k}+2 \cdot 3^{k-1}<n_{1} \leq 3^{k}+\frac{5}{2} \cdot 3^{k-1}-\frac{3}{2}$, then

$$
W(G)-W\left(G^{\prime}\right) \geq \frac{5}{2} \cdot 3^{k-1}-\frac{3}{2}>0
$$

If $3^{k}+\frac{5}{2} \cdot 3^{k-1}-\frac{3}{2}<n_{1} \leq 2 \cdot 3^{k}$, then

$$
W(G)-W\left(G^{\prime}\right) \leq-\frac{3}{2} \cdot 3^{k-1}-\frac{1}{2}<0
$$

Case 3. $2 \cdot 3^{k}<n_{1} \leq 2 \cdot 3^{k}+3^{k-1}$.
In this case, $0 \leq|Y|=m=7 \cdot 3^{k-1}-n_{1}<3^{k-1}=3^{\ell}$. Let S_{0} be the set of the right-most $3^{\ell}-m$ vertices, except for Y, on the line $R_{\ell+1}^{\prime \prime}$ of G_{3}. Let S_{1} be the set of the left-most $n_{1}-2 \cdot 3^{k}$ vertices on the line $V\left(R_{k+1}\right)$ of G_{1}. Then $3^{k-1}=3^{\ell}=\left|S_{0}\right|+|Y|=|Y|+\left|S_{1}\right|=3^{k-1}$. Thus,

$$
\begin{aligned}
& \sum_{\substack{x \in Y \\
y \in V\left(R_{\ell+1}^{\prime \prime}\right) \backslash Y}} d_{G}(x, y)=3^{\ell} m \cdot 2(\ell+1)+\sum_{\substack{x \in S_{0} \\
y \in Y}} d_{G}(x, y), \\
& \sum_{x \in X, y \in V\left(R_{k+1}\right)} d_{G^{\prime}}(x, y)=2 \cdot 3^{k-1}\left(3^{k} \cdot 2(k+1)+2 k\left(n_{1}-2 \cdot 3^{k}\right)\right) \\
& \sum_{\substack{x \in Y \\
y \in V\left(R_{k+1}\right)}} d_{G^{\prime}}(x, y)+\sum_{\substack{x \in X \\
y \in Y}} d_{G^{\prime}}(x, y)=m\left(2 \cdot 3^{k-1} \cdot 2 k+3^{k} \cdot 2(k+1)\right)+\sum_{\substack{x \in S_{1} \\
y \in Y}} d_{G^{\prime}}(x, y) .
\end{aligned}
$$

Consequently, we have $W(G)-W\left(G^{\prime}\right)=-14 \cdot 3^{2 k-2}+n_{1}\left(2 \cdot 3^{k-1}+1\right)-3^{k+1} \leq-2 \cdot 3^{k-1}<0$.
Lemma 5.9. Let $G=\left(G_{1}, n_{1}, k ; G_{2}, n_{2}, t ; G_{3}, n_{3}, \ell\right) \in \mathcal{C} \mathcal{G}(n, 3)$ be the graph as depicted in Figure 3, where $k=t+2$, $\ell \leq t$, $3^{k}<n_{1}<3^{k+1}, n_{2}=3^{t+1}$, and $n_{3}=3^{\ell+1}$. If G is a Wiener-minimal graph of $\mathfrak{C g}(n, 3)$, then either $3^{k}<n_{1} \leq 3^{k}+2 \cdot 3^{k-1}$ or $n_{1} \geq 2 \cdot 3^{k}$.

Proof. Suppose to the contrary that $3^{k}+2 \cdot 3^{k-1}<n_{1}<2 \cdot 3^{k}$. Let X be the set of the right-most m vertices on the line R_{t+1}^{\prime} of G_{2}, where

$$
m= \begin{cases}2 \cdot 3^{t}, & \text { if } 3^{k}+2 \cdot 3^{k-1}<n_{1} \leq 3^{k}+2 \cdot 3^{k-1}+3^{k-2} \\ 2 \cdot 3^{k}-n_{1}, & \text { if } 3^{k}+2 \cdot 3^{k-1}+3^{k-2}<n_{1}<2 \cdot 3^{k}\end{cases}
$$

Let $G^{\prime}=\left(G_{1}^{\prime}, n_{1}+m, k ; G_{2}^{\prime}, n_{2}-m, t^{\prime} ; G_{3}^{\prime}, n_{3}, \ell\right) \in \mathcal{C} \mathcal{G}(n, 3)$ be the graph obtained from G by Operation I (moving m vertices on line R_{t+1}^{\prime} of G_{2} to G_{1}), where $t^{\prime}=t$ or $t-1$. By Lemma 4.1, replacing $k, t, n_{1}, n_{2}, n_{3}$ with $t, k, 3^{t+1}, n_{1}, 3^{\ell+1}$, respectively, we have

$$
\begin{aligned}
W(G)-W\left(G^{\prime}\right)= & m\left(3^{k-2}(-22 k-11)+(2 k+1)\left(n_{1}+m\right)-2 \cdot 3^{\ell+1}-2\right)+\sum_{\substack{x \in X \\
y \in V\left(R_{t+1}\right) \backslash X}} d_{G}(x, y) \\
& +\sum_{x, y \in V\left(R_{k+1}\right)}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{x, y \in X}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)-\sum_{x \in X, y \in V\left(R_{k+1}\right)} d_{G^{\prime}}(x, y) \\
\geq & m\left(3^{k-2}(-22 k-11)+(2 k+1)\left(n_{1}+m\right)-2 \cdot 3^{t+1}-2\right)+\sum_{\substack{x \in X \\
y \in V\left(R_{t+1}\right) \backslash X}} d_{G}(x, y) \\
& +\sum_{x, y \in V\left(R_{k+1}\right)}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)+\sum_{x, y \in X}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)-\sum_{x \in X, y \in V\left(R_{k+1}\right)} d_{G^{\prime}}(x, y) .
\end{aligned}
$$

Case 1. $3^{k}+2 \cdot 3^{k-1}<n_{1} \leq 3^{k}+2 \cdot 3^{k-1}+3^{k-2}$.
Note that $|X|=m=2 \cdot 3^{t}=2 \cdot 3^{k-2}$. Suppose that the vertices of X are the $\left(2 \cdot 3^{k-1}+1\right)$-th to $\left(2 \cdot 3^{k-1}+2 \cdot 3^{k-2}\right)$-th vertices in the last layer of G_{1}^{\prime}. Let V_{1} be the set of the left-most $2 \cdot 3^{k-1}$ vertices on the line R_{k+1} of G_{1}, and take $V_{2}=V\left(R_{k+1}\right) \backslash V_{1}$. Then, we have

$$
\sum_{\substack{x \in X \\ y \in V\left(R_{k+1}\right)}} d_{G^{\prime}}(x, y)=2 \cdot 3^{k-2}\left(2 \cdot 3^{k-1} \cdot 2 k+\left(n_{1}-3^{k}-2 \cdot 3^{k-1}\right) \cdot 2(k-1)\right)
$$

and hence

$$
W(G)-W\left(G^{\prime}\right) \geq-10 \cdot 3^{2 k-2}+2 \cdot 3^{k-1}\left(5 \cdot 3^{k-1}+1\right)-4 \cdot 3^{k-2}=2 \cdot 3^{k-2}>0
$$

a contradiction.
Case 2. $3^{k}+2 \cdot 3^{k-1}+3^{k-2}<n_{1}<2 \cdot 3^{k}$.
In this case, $|X|=m=2 \cdot 3^{k}-n_{1}<2 \cdot 3^{k}-\left(3^{k}+2 \cdot 3^{k-1}+3^{k-2}\right)=2 \cdot 3^{k-2}$. The last layer vertices of G_{1}^{\prime} are the vertices of $V\left(R_{k+1}\right) \cup X$. In the sequence of the last layer vertices of G_{1}^{\prime}, we arrange the vertices of $V\left(R_{k+1}\right)$ first and then the vertices of X. Let V_{1} be the set of the left-most $2 \cdot 3^{k-1}$ vertices on the line R_{k+1} of G_{1}. Let V_{2} be the set of the left-most 3^{k-2} vertices, except for V_{1}, on the line R_{k+1} of G_{1}. Take $V_{3}=V\left(R_{k+1}\right) \backslash\left(V_{1} \cup V_{2}\right)$ and $H_{1}=V\left(R_{t+1}^{\prime}\right) \backslash X$. Then $\left|V_{3}\right|+|X|=2 \cdot 3^{k-2}=\left|H_{1}\right|+|X|$; that is, $\left|V_{3}\right|=\left|H_{1}\right|$. thus, we have

$$
\begin{aligned}
& \sum_{\substack{x \in X \\
y \in V\left(R_{k+1}\right)}} d_{G^{\prime}}(x, y)=2 m \cdot 3^{k-1} \cdot 2 k+3^{k-2} m \cdot 2(k-1)+\sum_{\substack{x \in X \\
y \in V_{3}}} d_{G^{\prime}}(x, y) \\
& \sum_{\substack{x \in X \\
y \in V\left(R_{t+1}\right) \backslash X}} d_{G}(x, y)=\sum_{\substack{x \in X \\
y \in H_{1}}} d_{G}(x, y)
\end{aligned}
$$

Therefore, we have $W(G)-W\left(G^{\prime}\right) \geq\left(2 \cdot 3^{k}-n_{1}\right)\left(3^{k-1}-2\right)>0$, a contradiction.
Lemma 5.10. Let $G=\left(G_{1}, n_{1}, k ; G_{2}, n_{2}, t ; G_{3}, n_{3}, \ell\right) \in \mathcal{C} \mathcal{G}(n, 3)$ be the graph as depicted in Figure 3, where $k=t+2$, $\ell=t$, $n_{2}=3^{t+1}$, and $n_{3}=3^{\ell+1}$. If G is a Wiener-minimal graph of $\mathcal{C G}(n, 3)$, then $n_{1} \neq 2 \cdot 3^{k}+2 \cdot 3^{k-1}+1$.

Proof. Suppose to the contrary that $n_{1}=2 \cdot 3^{k}+2 \cdot 3^{k-1}+1$. Let $G^{\prime}=\left(G_{1}^{\prime} ; G_{2}^{\prime} ; G_{3}^{\prime}\right) \in \mathcal{C} \mathcal{G}(n, 3)$ be the graph obtained from G by moving $2 \cdot 3^{t+1}$ and $2 \cdot 3^{\ell+1}$ vertices on the line R_{k+1} of G_{1} to G_{2} and G_{3}, respectively. Then $\left|V\left(G_{1}^{\prime}\right)\right|=3^{k}+3^{k-1}+1$. By Lemma 5.8(1), the inequality $W(G)>W\left(G^{\prime}\right)$ is obtained, which yields a contradiction.

Lemma 5.11. Let $G=\left(G_{1}, n_{1}, k ; G_{2}, n_{2}, t ; G_{3}, n_{3}, \ell\right) \in \mathcal{C G}(n, 3)$ be the graph as depicted in Figure 3, where $k=t+3$, $\ell=t$, $3^{k}<n_{1}<3^{k+1}, n_{2}=3^{t+1}$, and $n_{3}=3^{\ell+1}$. If G is a Wiener-minimal graph of $\mathcal{C G}(n, 3)$, then either $3^{k}<n_{1} \leq 3^{k}+2 \cdot 3^{k-2}$ or $3^{k}+3^{k-1}+2 \cdot 3^{k-2}+2 \cdot 3^{k-3}+1<n_{1}<3^{k+1}$.

Proof. Suppose to the contrary that $3^{k}+2 \cdot 3^{k-2}<n_{1} \leq 3^{k}+3^{k-1}+2 \cdot 3^{k-2}+2 \cdot 3^{k-3}+1$. Let X be the set of the left-most $2 \cdot 3^{k-2}$ vertices on the line R_{k+1} of G_{1}. Let Y be the set of the left-most m vertices, except for X, on the line R_{k+1} of G_{1}, where

$$
m= \begin{cases}n_{1}-3^{k}-2 \cdot 3^{k-2}, & \text { if } n_{1} \leq 3^{k}+3^{k-1}+3^{k-2} \\ 2 \cdot 3^{k-2}, & \text { if } n_{1}>3^{k}+3^{k-1}+3^{k-2}\end{cases}
$$

Let $G^{\prime}=\left(G_{1}^{\prime} ; G_{2}^{\prime} ; G_{3}^{\prime}\right) \in \mathcal{C} \mathcal{G}(n, 3)$ be the graph obtained from G by Operation III (moving $2 \cdot 3^{k-2}$ vertices from G_{1} to G_{2} and moving m vertices from G_{1} to G_{3}, respectively). Note that

$$
\sum_{x, y \in V\left(R_{k+1}\right) \backslash(X \cup Y)}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)=0 .
$$

By Lemma 4.3, replacing $\ell, m_{1}, m_{2}, n_{3}$ with $\ell+1,2 \cdot 3^{k-2}, m, 3^{\ell+1}$, respectively, we have

$$
\begin{aligned}
W(G)-W\left(G^{\prime}\right)= & 3^{2 k-4}(44 k+26)+4 \cdot 3^{k-2}-3^{k-2} n_{1}(4 k+2)+m\left(3^{k-2}(22 k+17)+(2 k+1)\left(m-n_{1}\right)+2\right) \\
& +\sum_{\substack{x \in Y \\
y \in V(R k+1) \backslash(X \cup Y)}} d_{G}(x, y)+\sum_{\substack{x \in X \\
y \in V\left(R_{k+1}\right) \backslash X}} d_{G}(x, y)+\sum_{x, y \in Y}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right) .
\end{aligned}
$$

Case 1. $3^{k}+2 \cdot 3^{k-2}<n_{1} \leq 3^{k}+3^{k-1}$.
In this case, $|Y|=m=n_{1}-3^{k}-2 \cdot 3^{k-2} \leq 3^{k-2}$ and $V\left(R_{k+1}\right) \backslash(X \cup Y)=\phi$. Thus,

$$
\sum_{\substack{x \in X \\ y \in V\left(R_{k+1}\right) \backslash X}} d_{G}(x, y)=2 m \cdot 3^{k-2} \cdot 2(k-1),
$$

and hence, we have $W(G)-W\left(G^{\prime}\right)=2\left(n_{1}+3^{k-1}\left(2 \cdot 3^{k-3}-3\right)\right)>0$, a contradiction.
Case 2. $3^{k}+3^{k-1}<n_{1} \leq 3^{k}+3^{k-1}+3^{k-2}$.
Note that $3^{k-2}<|Y|=m=n_{1}-3^{k}-2 \cdot 3^{k-2} \leq 2 \cdot 3^{k-2}$ and $V\left(R_{k+1}\right) \backslash(X \cup Y)=\phi$. Therefore,

$$
\begin{gathered}
\sum_{\substack{x \in X \\
y \in V\left(R_{k+1}\right) \backslash X}} d_{G}(x, y)=2 \cdot 3^{k-2}\left(3^{k-2} \cdot 2(k-1)+\left(m-3^{k-2}\right) \cdot 2 k\right), \\
\sum_{x, y \in Y}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)=3^{k-2}\left(m-3^{k-2}\right)(2 k-2(\ell+2))=2 \cdot 3^{k-2}\left(m-3^{k-2}\right) .
\end{gathered}
$$

Thus, we have $W(G)-W\left(G^{\prime}\right)=2 \cdot 3^{k-1}\left(n_{1}-34 \cdot 3^{k-3}-3\right)+2 n_{1}>0$, a contradiction.
Case 3. $3^{k}+3^{k-1}+3^{k-2}<n_{1} \leq 3^{k}+3^{k-1}+2 \cdot 3^{k-2}+2 \cdot 3^{k-3}+1$.
In this case, It holds that $|Y|=m=2 \cdot 3^{k-2}=2 \cdot 3^{\ell+1}$. So,

$$
\begin{gathered}
\sum_{\substack{x \in X \\
y \in V\left(R_{k+1}\right) \backslash X}} d_{G}(x, y)=2 \cdot 3^{k-2}\left(3^{k-2} \cdot 2(k-1)+2 k\left(n_{1}-3^{k}-3^{k-1}\right)\right) \\
\sum_{\substack{x \in Y \\
y \in V\left(R_{k+1}\right) \backslash(X \cup Y)}} d_{G}(x, y)=\left(n_{1}-3^{k}-3^{k-1}-3^{k-2}\right)\left(3^{k-2} \cdot 2 k+3^{k-2} \cdot 2(k-1)\right), \\
\sum_{x, y \in Y}\left(d_{G}(x, y)-d_{G^{\prime}}(x, y)\right)=3^{2 k-4}(2 k-2(\ell+2))=2 \cdot 3^{2 k-4} .
\end{gathered}
$$

Therefore, we have $W(G)-W\left(G^{\prime}\right)=2 \cdot 3^{k-2}\left(44 \cdot 3^{k-2}-3 n_{1}+4\right) \geq 2 \cdot 3^{k-2}>0$, a contradiction.
Lemma 5.12. Let $G=\left(G_{1}, n_{1}, k ; G_{2}, n_{2}, t ; G_{3}, n_{3}, \ell\right) \in \mathcal{C} \mathcal{G}(n, 3)$ be the graph as depicted in Figure 3, where $k=\ell+1$, $t=\ell+2,3^{k}<n_{1}<3^{k+1}, n_{2}=3^{t+1}$, and $n_{3}=3^{\ell+1}$. If G is a Wiener-minimal graph of $\mathcal{C G}(n, 3)$, then $3^{k}<n_{1} \leq \frac{1}{2} \cdot 3^{k+1}-\frac{3}{2}$.

Proof. Suppose to the contrary that $\frac{1}{2} \cdot 3^{k+1}-\frac{3}{2}<n_{1}<3^{k+1}$. Let $G^{\prime}=\left(G_{1}^{\prime} ; G_{2}^{\prime} ; G_{3}^{\prime}\right) \in \mathcal{C} \mathcal{G}(n, 3)$ be the graph obtained from G by Operation III (moving $2 \cdot 3^{\ell+1}$ vertices and $3^{k+1}-n_{1}$ vertices on the line R_{t+1}^{\prime} of G_{2} to G_{3} and G_{1}, respectively). Since $\left|V\left(G_{2}^{\prime}\right)\right|=3^{t+1}-2 \cdot 3^{\ell+1}-3^{k+1}+n_{1}$, we have

$$
3^{t}+\frac{5}{2} \cdot 3^{t-1}-\frac{3}{2}<\left|V\left(G_{2}^{\prime}\right)\right|<2 \cdot 3^{t}+3^{t-1}
$$

By Lemma 5.8(4), we have $W(G)>W\left(G^{\prime}\right)$, a contradiction.

6. Main result

In this section, we give a characterization of the Wiener-minimal graphs of $\mathcal{C G}(n, 3)$.
Theorem 6.1. Let $G \in \mathcal{C} \mathcal{G}(n, 3)$ be a Wiener-minimal graph of $\mathcal{C G}(n, 3)$ with $n \geq 25$. If $n=10 \cdot 3^{\ell}+2$ with $\ell \geq 1$, then $G \cong\left(3^{\ell+1}+3^{\ell}+2 ; 3^{\ell+1} ; 3^{\ell+1}\right)$ or $G \cong\left(2 \cdot 3^{\ell+1}+2 \cdot 3^{\ell}+2 ; 3^{\ell} ; 3^{\ell}\right)$. If $n \neq 10 \cdot 3^{\ell}+2$ for any $\ell \geq 1$, then $G \cong\left(n_{1} ; n_{2} ; n_{3}\right)$, where $n_{1}+n_{2}+n_{3}=n$, and one of the following holds:
(1). $n_{1}=3^{k+1}, n_{2}=3^{t+1}, n_{3}=3^{\ell+1}, t=\ell$, and $t \leq k \leq t+2$.
(2). $n_{1}=2 \cdot 3^{k}, 3^{t}<n_{2}<\frac{1}{2} \cdot 3^{t+1}-\frac{1}{2}, n_{3}=3^{\ell+1}, k=t+1$, and $t=\ell+1$.
(3). $n_{1}=2 \cdot 3^{k}, 3^{t}<n_{2}<3^{t+1}, n_{3}=3^{\ell+1}, k=t+2$, and $\ell \leq t \leq \ell+1$.
(4). $\frac{5}{2} \cdot 3^{k}-\frac{3}{2}<n_{1}<3^{k+1}, n_{2}=3^{t+1}, n_{3}=3^{\ell+1}$, and $k=t=\ell$.
(5). $3^{k}<n_{1}<3^{k}+3^{k-1}+2$ or $3^{k}+\frac{5}{2} \cdot 3^{k-1}-\frac{3}{2}<n_{1}<3^{k+1}, n_{2}=3^{t+1}, n_{3}=3^{\ell+1}, k=t+1$ and $t=\ell$.
(6). $n_{1}=2 \cdot 3^{k}$ or $2 \cdot 3^{k}+2 \cdot 3^{k-1}+1<n_{1}<3^{k+1}, n_{2}=3^{t+1}, n_{3}=3^{\ell+1}, k=t+2$ and $t=\ell$.
(7). $3^{k}+3^{k-1}+2 \cdot 3^{k-2}+2 \cdot 3^{k-3}+1<n_{1} \leq 2 \cdot 3^{k}$ and $n_{1} \neq 46,47,48, n_{2}=3^{t+1}, n_{3}=3^{\ell+1}, k=t+3$ and $t=\ell$.
(8). $n_{1}=2 \cdot 3^{k}, n_{2}=3^{t+1}, n_{3}=3^{\ell+1}, k=\ell+3$ and $t=\ell+1$.
(9). $3^{k}<n_{1} \leq 2 \cdot 3^{k}, n_{2}=3^{t+1}, n_{3}=3^{\ell+1}, k=t=2$ and $\ell=1$.
(10). $3^{k}<n_{1} \leq 3^{k}+3^{k-1}+2 \cdot 3^{k-2}+1, n_{2}=3^{t+1}, n_{3}=3^{\ell+1}, k=t=\ell+1$ and $\ell \geq 2$.
(11). $3^{k}<n_{1} \leq \frac{1}{2} \cdot 3^{k+1}-\frac{3}{2}, n_{2}=3^{t+1}$, $n_{3}=3^{\ell+1}, k=\ell+1$ and $t=\ell+2$.

Proof. Let $G \in \mathcal{C} \mathcal{G}(n, 3)$ be a Wiener-minimal graph of $\mathcal{C} \mathcal{G}(n, 3)$, where $n \geq 25$. By Lemma 3.1,

$$
G=\left(G_{1}, n_{1}, k ; G_{2}, n_{2}, t ; G_{3}, n_{3}, \ell\right)
$$

has the form of the graph shown in Figure 3, where $G_{i}=T_{n_{i}}(2,4)$ with $n_{i} \geq 3$ for $i=1,2,3, n_{1}+n_{2}+n_{3}=n, 3^{k}<n_{1} \leq 3^{k+1}$, $3^{t}<n_{2} \leq 3^{t+1}$, and $3^{\ell}<n_{3} \leq 3^{\ell+1}$. We consider four cases.

Case 1. $n_{1}=3^{k+1}, n_{2}=3^{t+1}, n_{3}=3^{\ell+1}$, and $k \geq \ell \geq t$.
By Lemma 5.2(1) and Lemma 5.2(4), $k \leq t+2$. If $k=t+2$, then by Lemma 5.2(2), $\ell=k-2=t$. If $k=t+1$, then by Lemma 5.3, $\ell \neq k$; that is, $\ell=t$. consequently, $t=\ell$ and $t \leq k \leq t+2$.
Case 2. $3^{k}<n_{1}<3^{k+1}, 3^{t}<n_{2}<3^{t+1}, 3^{\ell}<n_{3}<3^{\ell+1}$, and $k \geq \ell \geq t$.
By Lemma 3.3(1), the numbers k, t, and ℓ are different. Thus, $k=t+2$ and $\ell=t+1$ by Lemma 5.1(1), which contradicts Lemma 5.1(3). Thus, there is no such case.

Case 3. $3^{k}<n_{1}<3^{k+1}, 3^{t}<n_{2}<3^{t+1}$, and $n_{3}=3^{\ell+1}$, and $k \geq t$.
By Lemma 3.3(1), Lemmas 3.3(2), and Lemma 5.1(1), $t+1 \leq k \leq t+2$ and $3^{t+1} \mid\left(n_{1}-3^{k}\right)$.
Subcase 3.1. $k=t+1$.
By Lemma 3.3(3) and Lemma 5.1(2), $n_{1}=2 \cdot 3^{k}$ and $n_{3}=3^{\ell+1}<3^{t+1}$. Therefore, $t>\ell$. If $t \geq \ell+2$, then this contradicts Lemma 5.2(2) because $n_{1}>3^{k}=3^{t+1}$. Hence, $t=\ell+1$. By Lemma 5.4, $3^{t}<n_{2}<\frac{1}{2} \cdot 3^{t+1}-\frac{1}{2}$.

Subcase 3.2. $k=t+2$.
Note that $3^{k-1} \mid\left(n_{1}-3^{k}\right)$ and $3^{k}<n_{1}<3^{k+1}$. Then

$$
\begin{equation*}
n_{1}-3^{k}=p_{1} \cdot 3^{k}+p_{2} \cdot 3^{k-1} \tag{19}
\end{equation*}
$$

where $0 \leq p_{1} \leq 1,0 \leq p_{2} \leq 2$, and $p_{1}+p_{2} \geq 1$. By Lemma 5.1(3), $n_{3}<2 \cdot 3^{t+1}$; that is, $\ell \leq t$. By Lemma 5.2(1), $k \leq \ell+3$. Hence, $\ell \leq t \leq \ell+1$. If $t=\ell$, then by (19), Lemma 5.1(4), and Lemma 5.1(5), $n_{1}=2 \cdot 3^{k}$ because $n_{3}=3^{\ell+1}=3^{t+1}$. If $t=\ell+1$, then by Lemma 5.2(4), $3^{k}+2 \cdot 3^{k-2}<n_{1} \leq 2 \cdot 3^{k}$. Hence, by (19), either $n_{1}=2 \cdot 3^{k}$ or $n_{1}=3^{k}+p_{2} \cdot 3^{k-1}$ with $1 \leq p_{2} \leq 2$. By Lemma 5.5, $n_{1}=2 \cdot 3^{k}$.

Case 4. $3^{k}<n_{1}<3^{k+1}, n_{2}=3^{t+1}, n_{3}=3^{\ell+1}$, and $t \geq \ell$.
By Lemma 5.2(1) and Lemma 5.2(4), $k \leq \ell+3$ and $t \leq \ell+2$. By Lemma 5.1(1) and Lemma 5.1(4), $t \leq k+1$. Thus, $\ell \leq t \leq \ell+2$ and $t-1 \leq k \leq \ell+3$.

Subcase 4.1. $t=\ell$.
If $k=t-1$, then it contradicts Lemma 5.1(2).
If $k=t$, then by Lemma 5.6 and Lemma 5.7, $n_{1}>\frac{5}{2} \cdot 3^{k}-\frac{3}{2}$.
If $k=t+1$, then by Lemma 5.8(2) and Lemma 5.8(3), either $3^{k}<n_{1} \leq 3^{k}+3^{k-1}+2$ or $3^{k}+\frac{5}{2} \cdot 3^{k-1}-\frac{3}{2}<n_{1}<3^{k+1}$.
If $k=t+2$, then by Lemma 5.2(3), Lemma 5.9, and Lemma 5.10, either $n_{1}=2 \cdot 3^{k}$ or $2 \cdot 3^{k}+2 \cdot 3^{k-1}+1<n_{1}<3^{k+1}$.
If $k=t+3$, then by Lemma 5.2(4) and Lemma 5.11, $3^{k}+3^{k-1}+2 \cdot 3^{k-2}+2 \cdot 3^{k-3}+1<n_{1} \leq 2 \cdot 3^{k}$. If $t=\ell=0$ and $n_{1}=3^{k}+2 \cdot 3^{k-1}+p=3^{3}+2 \cdot 3^{2}+p$, where $p=1,2,3$; that is, $n_{2}=n_{3}=3$ and $n_{1}=46,47$, or 48 , then by Lemma 5.3(3), there is the graph $H=\left(n_{1}-30 ; 27 ; 9\right) \in \mathcal{C} \mathcal{G}(n, 3)$ such that $W(H)<W(G)$. Therefore, $n_{1} \neq 46,47,48$.

In particular, by Lemma 5.8(2), the two graphs corresponding to " $k=t+1$ and $n_{1}=3^{k}+3^{k-1}+2$ " and " $k=t+2$ and $n_{1}=2 \cdot 3^{k}+2 \cdot 3^{k-1}+2$ " have the same Wiener index; that is, $W(\widehat{G})=W(\bar{G})$, where $\widehat{G}=\left(3^{\ell+1}+3^{\ell}+2 ; 3^{\ell+1} ; 3^{\ell+1}\right)$ and $\bar{G}=\left(2 \cdot 3^{\ell+1}+2 \cdot 3^{\ell}+2 ; 3^{\ell} ; 3^{\ell}\right)$. In this case, $n=10 \cdot 3^{\ell}+2$, which implies that for $n=10 \cdot 3^{\ell}+2$, there are two Wiener-minimal graphs $\widehat{G}, \bar{G} \in \mathcal{C} G(n, 3)$.

Subcase 4.2. $t=\ell+1$.
Note that $\ell \leq k \leq \ell+3$. By Lemma 5.1(2) and Lemma 5.2(2), $k \neq \ell$ and $k \neq \ell+2$.
If $k=\ell+1$ and $\ell=1$, then by Lemma 5.3(2), $3^{k}<n_{1} \leq 2 \cdot 3^{k}$. If $k=\ell+1$ and $\ell \geq 2$, then by Lemma 5.3(1), $3^{k}<n_{1} \leq 3^{k}+3^{k-1}+2 \cdot 3^{k-2}+1$.

If $k=\ell+3$, then by Lemma 5.2(4), Lemma 5.2(5), and Lemma 5.9, $n_{1}=2 \cdot 3^{k}$.
Subcase 4.3. $t=\ell+2$.
In this subcase, $\ell+1 \leq k \leq \ell+3$. By Lemma 5.2(2), $n_{1}<3^{t}$; that is, $k<t=\ell+2$. therefore, $k=\ell+1$. By Lemma 5.12, $3^{k}<n_{1} \leq \frac{1}{2} \cdot 3^{k+1}-\frac{3}{2}$.

Corollary 6.1. Let $G \in \mathcal{C} \mathcal{G}(n, 3)$ be a Wiener-minimal graph of $\mathcal{C G}(n, 3)$, where $n \geq 25$. The graph G is unique except for $n=10 \cdot 3^{\ell}+2$ with $\ell \geq 1$. For $n=10 \cdot 3^{\ell}+2$ with $\ell \geq 1$, there are exactly two such graphs.

7. Conclusion

In this paper, the problem of determining the Wiener-minimal graphs is completely solved for unicyclic chemical graphs of order n and girth 3. It turns out that for $n=10 \cdot 3^{\ell}+2$ with $\ell \geq 1$, there are exactly two Wiener-minimal graphs. However, for every $n \geq 25$, satisfying $n \neq 10 \cdot 3^{\ell}+2$, there exists exactly one such Wiener-minimal graph. Determining the Wiener-minimal graphs in the case of general graphs of fixed order with given girth and maximum degree remains an open problem.

Acknowledgements

The authors are extremely thankful to the anonymous reviewers for their valuable comments and suggestions. This work was supported by Shanxi Scholarship Council of China (Grant No. 2022-149).

References

[1] H. Chen, C. Li, Wiener index, Kirchhoff index in graphs with given girth and maximum degree, MATCH Commun. Math. Comput. Chem. 88 (2022) $683-703$.
[2] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 (2001) 211-249
[3] M. Fischermann, A. Hoffmann, D. Rautenbach, L. Székely, L. Volkmann, Wiener index versus maximum degree in trees, Discrete Appl. Math. 122 (2002) 127-137.
[4] Y. Hong, H. Liu, X. Wu, On the Wiener index of unicyclic graphs, Hacettepe J. Math. Stat. 40 (2011) 63-68.
[5] M. Knor, R. Škrekovski, A. Tepeh, Mathematical aspects of Wiener index, Ars Math. Contemp. 11 (2016) 327-352.
[6] M. Knor, R. Škrekovski, A. Tepeh, Chemical graphs with the minimum value of Wiener index, MATCH Commun. Math. Comput. Chem. 81 (2019) 119-132.
[7] H. Liu, M. Lu, A unified approach to extremal cacti for different indices, MATCH Commun. Math. Comput. Chem. 58 (2007) 183-194.
[8] P. Luo, C. Q. Zhang, X. D. Zhang, Wiener index of unicycle graphs with given number of even degree vertices, Discrete Math. Algorithm. Appl. 12(4) (2020) 2050054.
[9] S. Tan, The minimum Wiener index of unicyclic graphs with a fixed diameter, J. Appl. Math. Comput. 56 (2018) 93-114.
[10] K. Xu, M. Liu, K. C. Das, I. Gutman, B. Furtula, A survey on graphs extremal with respect to distance-based topological indices, MATCH Commun. Math. Comput. Chem. 71 (2014) 461-508.
[11] G. Yu, L. Feng, On the Wiener index of unicyclic graphs with given girth, Ars Combin. 94 (2010) 361-369.

[^0]: *Corresponding author (ybgao@nuc.edu.cn).

