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Abstract

This article deals with the solution and asymptotic analysis for a porous-elastic system with fractional-order time delay.
Semigroup theory is used. The existence and uniqueness of the solution are obtained by applying the Lumer-Phillips
Theorem. Additionally, two results for the asymptotic behavior are presented concerning the (i) strong stability of the
Co-semigroup associated with the system by using a general criterion due to Arendt-Batty and Lyubich-V4, (ii) exponential
stability by applying Gearhart-Priiss-Huang’s theorem.
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1. Introduction

Elastic materials with voids, which have good physical properties, have been widely used in engineering, such as vehicles,
airplanes, large space structures, etc. Due to their extensive applications, the elasticity problems of these types of materials
have become critical issues that attract the attention of many researchers. Since elastic solids with voids provide one of
the simple extensions of classical elasticity theory, they allow the treatment of porous solids in which the matrix material
is elastic and the interstices are voids of material; see [18, 28] for details.

Consider the following equations of evolution for one-dimensional theories of porous materials:

pPuUtt = T,
Jou = Hy + G,

where T is tension, H is balanced tension, G is balanced body force, ¢ is heat, p is the reference mass density, J = pok, po
is the mass the density that is assumed positive, k is the equilibrated inertia that is also assumed positive, the variables u
and ¢ are the displacement of the solid elastic material and the volume fraction, respectively. The constitutive equations
are given as:

T = pug + bo,
H = 6¢£137
G = —bu, — &9,

where u, b, 0,and £, are the constitutive coefficients, whose physical meanings are well known. The constitutive coeffi-
cients in the one-dimensional case satisfy the following relations:

pw>0, 6>0 and b* < pé. (@))
When we introduce the constitutive equations into the evolution equations in the interval (0, L), we get
pu(x, 1) — gy (z,t) — by (z,t) =0, z € (0,L), t € (0,00),

(p)
Jou(x,t) — Opue(x,t) + bug(z,t) + Ep(x,t) =0, z € (0,L), t € (0,00).
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Since b2 < p¢, we have

2

2
M%P+%MW%WP=C%M+¢@>+(u—2)wﬁ2& @)

and hence the energy of the system is given by

L
B =5 [ (ol + 7162 + 610u? + lusf? + 2o+ €10P) o
A direct calculation leads to 4 E(t) = 0; that is, the system (p) is conservative. For a realistic situation, research on porous
elastic systems has been carried out in recent decades considering several stabilization mechanisms; see [4,8-12,15,27,
29,32, 34, 35]. In the present paper, we are interested in the internal damping of fractional order with time delay.

An essential advantage of fractional differential equations in applications is their non-local property, making fractional
calculus more attractive. In [19], the concept of the fractional derivatives, specifically, the Riemann-Liouville, Liouville,
Caputo, Weyl, and Riesz versions, are introduced, and the so-called fundamental theorem of fractional calculus is presented
and discussed in all these different versions. A new fractional derivative with a non-singular kernel involving exponential
and trigonometric functions was proposed in [2]. The suggested fractional operator includes the Caputo-Fabrizio fractional
derivative as a particular case.

The Caputo fractional integral of order «, 0 < a < 1, is defined by

1 t
I‘lwt:—/ t —s)* tw(s)ds, 3
0= gy |, =9 ()
where T is the well-known gamma function, w € L'(0,L) and ¢ > 0.
The Caputo fractional derivative operator of order « is defined by

D%w(t) = I'""“Duw(t) := _ /t(t - s)_ad—w(s)ds 4)
N T T(1-a) ) ds ’
with w € W1 1(0,L), and t > 0.
In this work, we use the slightly different versions of (3) and (4), with weight exponential; see [5]. Let 0 < @ < 1 and
n > 0. The exponential fractional integral of order « is defined by

t
(1% Tw](t) = F(la) / (t =) e " Dw(r)dr, we L0, L), ¢ > 0. )
0

The exponential fractional derivative operator of order o, 0 < o < 1, with respect to the time variable ¢ is defined by

1 ¢ dw
a,n — o\ —a,—n(t—s) 1,1
;"M (t) Ti—a) /o (t—s) % o (s)ds, we W>*(0,L), t > 0. (6)
From (5) and (6), we deduce that

07 Mw(t) = [T "wy)(t). @)

The control of partial differential equations with time delay is an attractive area of research. Time delays often arise
in many physical, chemical, biological, and economic phenomena; see [36] and references therein. Whenever energy is
physically transmitted from one place to another, a delay is associated with the transmission (see [33]). The central question
is that delays source can destabilize an asymptotically stable system in the absence of delays (see [7]). We consider the

following model:
s (1, 8) — pttgr (2, 1) —bdy (2, £) +a1 0, M u(x, t — 1) +agug(x,t) = 0,
(P)
J 11 (x,1) = 0Ppe (x, ) +bug (2, 1) +EP(2, 1) +d1 07> ™ d(x, t — o) +dagi(x, 1) = 0,

where 71,75 > 0 are the time delays and as, da, a1, a; positive parameters. System (P) is completed with initial and
boundary conditions:

(u(=,0),¢(2,0)) = (uo(x), ¢o(x)), (ur(x,0),d¢(x,0)) = (u1(x), ¢1(x)), = € (0, L),
ut(x7t - Tl) = fO(xat - 7—1)3 ¢t(xat - 7_2) = go(iL’,t - 7—2)3 S (O7L)a te (OvTi)7
u(0,t) = u(L,t) = ¢(0,t) = ¢(L,t) =0, in (0, 00),

such that (ug, u1, fo, 0, ¢1, go) belong to a suitable functional spaces.
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During the last few years, stabilizing porous elastic systems with different damping have been studied in a significant
number of publications. We mention here some of them. In [9], the existence of a global solution and the exponential
decay was given for a nonlinear porous elastic system with delay, where a nonlinear source, as well as the delay, acted in
the volume fraction equation. A one-dimensional linear porous system with finite memory effective on the equilibrated
stress vector was considered in [13] and an energy decay rate was given for which exponential and polynomial rates are
special cases. In [4], the exponential stability was proved for a one-dimensional porous-thermoelastic system with two
kinds of damping: viscosity and thermal dissipation. A porous-thermoelastic system with Cattaneo’s law heat conduction
and the energy associated with the solution, not necessarily positive (b? = 1&), was analyzed in [11]. In [23], it is shown
that viscoelasticity and temperature produce slow decay in time; however, when the viscoelasticity is coupled with porous
damping or with micro-temperatures, the exponential decay holds. In [29], a porous-elasticity problem with history was
studied and it was shown that when the porous viscosity and the elastic dissipation are present, the system lacks analyticity
but has exponential decay. A transmission problem for a porous-elastic system with internal dissipation was considered in
[32] and it was proved that the semigroup associated with the dissipative system is analytic and consequently exponentially
stable. For more results on porous elasticity, see [6,8,12,14-16,20, 26,27,34,35] and the references therein. As far as we
know, introducing a fractional delay term in the internal feedback of the porous elastic system makes our problem different
from those previously considered in the literature.

This paper is organized as follows. In Section 2, the problem (P) is reformulated in an augmented system (P’), coupling
the (P) system with a suitable diffusion equation. Section 3 shows that the energy functional E(¢) associated with the
augmented system (P’) is dissipative. Section 4 deals with the semigroup setup for the augmented problem. Section 5
establishes the well-posedness of the system (P’). In Section 6, the strong stability of the Cy-semigroup associated with the
system is proved using the Arendt-Batty and Lyubich-Vi’s general criterion. In Section 7, exponential stability is proved
by applying Gearhart-Priiss-Huang’s theorem.

2. Augmented model

Proposition 2.1 (see [24]). Let w be a function defined as

2a—1
wly) =yl 2, ye(-o0,+0), 0<a<l.

Then, the relation between the Input U and the Output O of the following system
ee(y: ) + y2e(y,t) +ne(y,t) — Ut)w(y) =0, >0, t>0,

©(y,0) =0,

(€)]
00
o = [ el
here v = SR _ ! d U € C([0, +00)), is given b
where 7 = — _F(a)F(l—a)an , +00)), is given by
O(t) = I'~* u(t) = D*"U (1), ©)
where .
1
Iy = —/ t— s)* e Mty (s)ds. (10)
o] = ey | =9 (5)
Proof. Multiplying the first equation of (8) by e(y2+")t, we get
WMoy (1) + (1) e (y, 1) = w(y)e U (1),
that is,
5 () (1)) = wly)el U ). (11
O

Performing integration on (0,¢) in (11), we obtain

o (y, 1) — p(y,0) = w(y) / LU (s) ds.
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As p(y,0) = 0, we have
t
o(t,y) = w(y)/ e~ +7')(tfs)U(s) ds. (12)
0
By using (12) in the last equation of (8), we get
o t
0w = 7/ / w())® e~ NI (s) ds dy,
—oo0 J0
that is,
t —+oo 5
o) = 7/ / 921~ (V) (=7 (5) dy ds. (13)
o Jo
Taking o = y%(t — s), we get do = 2y(t — s)d¢ and
O,afl _ y20471 . (t _ 5)&
Y t—s
Thus, we have
o7t — ) "o = 2% dy. (14)
From (13) and (14), we obtain
t
o) = 'y/ (t—s)" e =) / c®re™7 do U(s) ds
0 0
1 t (t-5)
— _ —a,—n(t—s T
¥ /0 (t — s)“e () U(s) ds
1 t (t-5)
_ _ —a,—n(t—s
I‘(1704)/0(75 s)" e U(s) ds
= I'"™"U(t).
O
We make the following assumptions about the damping and delay functions:
a1n® 7t < ag,
{ | ~1|771 y ~2 (15)
ld1|ng?™" < da.
Let us introduce the following new variables:
Zl(x7p7 t) = ’U,t((E,t - Tlp)7 in ]07 L[X]O> 1[X]O7 +OO[7 (16)
22(xapa t) = ¢t(z7t - 7-2p)7 in ]07 L[X]07 1[X]07 +OO[
Then, for j = 1,2, we have
{ Tizit(x, p,t) + zjp(z, p,t) = 0, in 0, L[x]0, 1[x]0, 4+o0], a7

z1(2,0,t) = ug(x,t), 22(x,0,t) = ¢e(x,t), in ]0, L[Xx]0, +o0].

The strategy is the elimination of the fractional derivatives in time. To do this, first, we consider the equations given

in (16) with p = 1. Applying Proposition 2.1 with U; (t) = a121(x, 1,t) and taking into account (7), that is,
(772 Ty (1) = 05 "ao(),

we deduce

’y/ wi(y)p1(y,t) dy =O(t)
:Il_a’nUl(t)
=I'""%Nq, 2 (2,1, 1)

=ay Iy (z,t — 11) = a0 Mz, t — 7).

(18)
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Similarly, considering the second equation of (16) with p = 1 and Us(t) = a1 22(x, 1,t), we get

?/ wo(y)p2(y,t) dy = @107 ¢(x,t — 11). (19)

Now, by using (18) and (19), we reformulate system (P) into the augmented model:
+oo
puet (2, t) — Puge (2,1) — b (,1) + v/m(y)sm(x, y, t)dy + azuy(t) =0,

lelt(mvpv t) + le(xapa t) = Oa
e1e(x,y,t) + [y* + mlei (2, y,t) — z1(2, 1, t)wi (y) =0,

Tl 0) a0+ b 0,1) + €002 0) 3 n(0)ente v, Dy + () =0,
Tozot (T, p, t) + 2op(x, p, t) = 0, e

Pau(x,y,t) + [y* +nlpa(z,y,t) — 22(2, 1, t)wa(y) =0,

(u(,0), ¢(x,0)) = (uo(x), po(2)), 1in (0,L),

(ue(2,0), ¢¢(2,0)) = (wi(z), ¢1(z)), in (0,L),

ug(w,t — 1) = folw,t —71), (2t —72) = go(z,t —72), t€(0,7)

u(0,t) = u(L,t) = ¢(0,t) = ¢(L,t) =0, in (0,00),

991(11/; 0) = @2(y,0) = Oa

sin(ay7)ag sin(aam)as

where v = and 7 = , while w; (y) and wa(y) come from Proposition 2.1.

3. Energy of the system

In this section, it is shown that the energy functional E(t) associated with the augmented system (P’) is dissipative.

Lemma 3.1. For all A\ € R and n > 0, we have

= [y = a4
re [A[+ 7+ y?

and

1
_ ly>4 : _ E ]
Az = ————dy | =c(A[+n)27,
B (A + 7+ y2)
where, c and ¢ are positive constants given by

d
dr2 ™1

_ - dm e
©7 o0 (24 1) sin(anm) and &= (21“ (§+1) /1 £ dg)

Proof. See Page 60 in [25]. O

Lemma 3.2. If A € D, = C\ ] — o0, —1)] then

e Wi(y) m
dy = A a-l
/m A+ Sin(om)( )

Proof. See Page 4 in [1]. O
Taking into account (2), the energy associated with the problem (P’) is defined by

14 L J (" 5 (" 2 I L 2 g § v 2

L 1 L 1
! / / |21 (2, p) Ppda + 22 / / 2o, p)Pdpde
2 0 0 2 0 0

N ) 5l [ e )
TREL / / (o (y 1) Py + 1 / / (oa(y, t) 2dyda, (20)
0 —00 0 —00
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where o 2()) . )
wily wily
d 2a9 — d
bl ([ S0y} <on<n (-l ([ 5 a)),
21)

+o0o 2 +o00 2
- w3 (y) > ( _ s (/ w3 (y) ))
dy | <vy < 2a0 — d .
il (/OO Fan, ) <m0 17 L Eim™
Remark 3.1. From Lemma 3.2, the condition (21) leads to

{ Tilay|ng™t Y<um<n (26L2 —lay|nt* ™ 1) ;

TQ‘CLH‘”I]S < Vo < To (2(12 — |a1|77a2 1) .

Proposition 3.1. Let (u, 21,91, 9, 22, 2) be the solution of (P'). Then, there is a positive constant C such that E(t) defined

by (20) satisfies

LB()=—C ( | Gt 0f + oo + <|<z>t<x,t>2+|z2<x,1,t>2>dx>.

Proof. Multiplying (P’); by us, (P’)4 by ¢:, and making integration by parts, we obtain

1d oo
ra [ ol + a4 0+ 100+ 200+ €l o= [ [ o
0

/ o} /+°° y)p2(z,y,t)dydx
—/ ur(0) dm—a2/ 60 (1) 2d.

Multiplying (P’)s by |v|e¢1, (P')s by |7|¢2, and integrating on (0, L) x (—o0, +00), we get

+o0 +o00 +o0
s [ [ e oran s 14 [ [ Bl orae = b [0l

L “+oco
*WI/O/ [v? + n2)le2 (@, y, t) P dyda

L “+oo
+ 1 / a1 (21, 0) / wor(y)er (@, y, t)dyde
0

— 00

L “+o0
+ ) / 2ol 1,8) / wa(y)pa(e, y, t)dyd.
0

— 00

Multiplying (P’)s and (P’)5 by v12; and 225, respectively, and integrating on (0, L) x (0, 1), we obtain

1d L 1 , L 1 , ! L , ,
—— Vl/ / |z1(x, p, t)] dpdx—i—ug/ / |z2(z, p, t)|*dpdz 3 = —7/ (lz1(z, 1,8)|° = |ue(z, t)]|*)dx
2dt o Jo o Jo 2 Jo

V27{1

L
5 /(Izz(a:,l,t)F—|¢>t(x,t)\2)dx.

0

From (23)—(25), we obtain

d
450 = a [ TPt [00Pa— [uf 5w vt
_'7/(?515/ y)p2(w,y,t) dydw—lv\// y* +mllei(z,y, 1) dyde

+oo
WI// Y + ma]|pa(z, y, 1) dydaﬂrhl/ 21 x,l,t)/ w1 (y)e1(,y, t)dydx

— 00

L “+o0 I/17'fl L )
il [l [ @t [ bt )P
0

—o0 0

-1 L ~1 L ot
_ %/ |zl(x,1,t>\2dx+%/ \¢t<x,t>|2dx_%/ |2(, 1, 8) P dav.
0 0 0

(22)

(23)

(29)

(25)

(26)
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Using Cauchy-Schwarz inequality, we get
1 1
Ry B :
’/ y)ej(z,y, )dy‘ < </ S——dy </ (y° +nj)|wj(w,y7t)l2dy) :
—o Y +77] — o0
Thus,
L ~+o0
[ a1 [ wwetenndvds] <
0 —00
1
“+oo 2
< zi(z,1,t)|dx //er z,y,t)|>dydz | |
(/yM)(/u |>< mles .. 0)dy
L “+o0
| wtet) [ oo dyd| <
0 —00
1 1 1
+oow2(y) 2 L 2 L p+4oo 2
([ 5 a) ([ rtora) ([ 6P emiees P )
e Y Em 0 0 J-
+oo
@) [ walwpato,y. tidyis| <
0 —o00
1
+oo 2
< x,t)|*dzx + x,v, 2dydzx | .
(/wy2+n2)</¢t )? )(//y n2) |2 ( y)l.u)
Using the Cauchy-Schwarz and Young inequalities in (26) and the estimates above, we get
d I ! /L Bhl  wnr! /L 2
SB) < —ap + L 4 L L 1
G20 < (ot B 200 ) [opar + (B2 - 2520 [V opa
~172 -1 L 2 -1 L
v (g M2 2oms / (e, )2z + 22 B _ v / |22(x, 1, 1) Pd,
2 2 2 2 0
which implies that
d g 2 2 r 2 2
PO < =C1 | (lue(z, )] + a2, 1,0 )dz = Co | ([de(2, )" + [22(, 1, 1)) da,
0 0
with ) ) ) )
(. YHE | T Ify]  wnm
C’lmm{( as + 5 + 5 , 5 5 ,
27

~ 12 —1 IQ ~ —1
Cg:min{(—dg+ M; + VQ;Q ) ( 22|7| - VQEQ >}

As v; is chosen to satisfy the assumption (21), the constants C; and C; are positive. The proof of Proposition (3.1) is

complete.

4. Semigroup setup

In this section, we present the semigroup formulation for the augmented problem. Let U = (u, v, 21, ¢1, ¢, ¥, 22, 02) 7,

v = u; and ¢ = ¢;. The system (P’) can be written as a Cauchy evolution problem

U, = AU,
U(O) = (’ILQ,U]_, ¢017¢07,¢)17¢02)T7

O

where

(28)
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where the operator A : D(A) C H — H is defined by

v
b Feo a
Huwm + 7¢a: - z/ w1(y)<p1(x, yvt)dy - 727]
p P ) p

—Z (. p, 1)
T1

—(?+ m)er + 21z, 1, Hwi (y)

AU = , (29)
¥
) +oo a~2
j¢zaz—* _*(b_*/ (Pgivy, )dy_jd}
_Z2p
~ (z,p,t)

— (4 m2)p2 + z2(x, 1, t)wa(y)

with domain
v, P E H&(O,L), u, P € H2(O,L) N BT(%(O,L)7

—(* +m)er + z1(z, Dwi(y) € L2 ((0, L) x (—00,+00)),
—(y? 4+ n2)p2 + za(x, Dwa(y) € L* ((0,L) x (=00, +0)),
DA)=UeH
z1 € L*((0,L) x H'(0, L)), 22 € L*((0,L) x H'(0, L)),
lyler, lylewa € L ((0,L) x (=00, +00)),

(v,v) = (21,22)(-,0) on (0,L).

and the phase space # is given by
H = (Hy(0,L) x L*(0, L) x L*((0,L) x (0,1)) x L*((0, L) x (—oo,+oo)))2. (30)

Clearly, D(A) is dense in H. Take U = (u, v, z1, 91, ¢, , 22, 02)T and U = (u,v, 21, P1, ¢, ¥, Z2, p2)* . The inner product in
is defined by

L
({U.U)n = /0 [P0 + T + pug Ty + 6u by + b(upd + W d) + Edg) da

L 1 L 1
+ 1 / / z1(z,p)z1(z, p)dpdx + vy / / 2 (x, p)Z2(x, p)dpdx
0 0 0 0
L +oo L “+o0
il [ ewmagdo v 1) [ ey, (31)
0 —00 0 —00

From (2) we recall that u|u,|? + 2bu,¢ + £|6|> > 0, and therefore

L
1015 = (U, U)s = / [plv? + T + plus|* + 6|6a|* + 2busd + €| 0[] dw
0

L 1 L 1
+0 / / |21 (2, p)|Pdpda + v / / |2 (e, p) Pdpda
0 0 0 0
L “+o0 L “+o0
1 / / o1 Pdyda + |3 / / \paPdyd, 32)
0 —00 0 —00

Remark 4.1. The conditions |y|p1, |y|e2 € L% ((0, L) x (=00, +00)) are essential to ensure that f |y| — pidy € L2(0, L),
as we have considered the integral in the sense of Lebesgue. In other words, the absolute value of w(y)yp; must also be

is a norm in H.

integrable over the real line.
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5. Existence and uniqueness of the solution

In this section, we study the well-posedness of the system (P’) using the semigroup theory of linear operators. We use
the Lumer-Phillips Theorem (see Theorem 4.3 on Page 13 in [30]).

Lemma 5.1. The operator A is dissipative.

Proof. Take U = (u,v, @1, 0,1, p2)T € D(A). Straightforward calculation leads to

L
Re(AU,U)y :—ag/ v dx—dg/ )% dx
+oo +oo
*7726/ / y)e1(z,y, )dydI*vRe/ w/ (y)2(z,y, t)dydx

’R/ /zlpmpzlxpdpdx——’l%e/ /zzpmszxp)dpdx

Iv\Re/ / y? + mllp1(z, y) P dyde — Iv\Re/ / y? + o) |p2(z, y) P dyda

—+oo

“+o0
+ Iy[Re / 21 (1) / ()T (. y)dyda + [3|Re / 2oz, 1) / 2 (y)73(, y, £)dyd. 33)

—0o0 0 —o0

Using z (z,0) = v(z) and z2(x,0) = ¢(x), we note that

L 1 L 1
ﬂRe/ / z1p(z, p)Z1 (2, p)dpdz + @Re/ / zop(z,p)Z2(x, p)dpdz
1 0 Jo T2 0 Jo

L 1 L 1
Y L TR L X
=2 [0 P+ 2 [ [ 2 s 39)

L L
_i zZ1\x 2—1)552 X Q zZ2(X 2 x2 Z.
= = [ a@ DR = k@R + 22 [z )P - pe)P

Applying the Cauchy-Schwarz and Young’s inequalities, and then proceeding in the same way as in the proof of Proposition
3.1, we obtain
12 —1 L 12 —1 L
ReAU. U)o < (=an + D0 4+ 252 ) [Motopas + (A= 202 [ aato s
0 0

~ 12 —1 L I —1 L
+(-a+ D2 22 ) [ par+ LAL_rvems [ et vy
2 2 ) )y 2 > ) )y

L L
=01 [(o@P + faa(o 1)) = Co [ (0(0) + [aatar Do < 0 (35)
0 0
i oo w3 (y) .
where C; and C; are positive constants and [; = / g dy, j=1,2. O
—00 7

Theorem 5.1. The operator A, defined by (29), is the infinitesimal generator of a Cy-semigroup of contractions S(t), t > 0,
on H.

Proof. As A is densely defined and dissipative, it is enough to prove that A is maximal. Given F = (f, fo, -, f7, fs)T € H
consider the resolving equation in #:

K

(I-AU=F (36)

We need to show that the solution U = (u, v, p1,¢,9,p2)T € H of (36) is in D(A). The resolving equation in terms of its
components is given by

u—v=f € H}0,L), 37)
7 b v [T as 2

V— —Ugg — 7¢x + / wl(y)(pl(l'vy)dy - —Uv= f2 € L (07 L)7 (38)
p P P J-co P

a4 2= fy € L2((0,0) ¥ (0,1)), (39)
1
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o1+ (W +m)er — z1(x, Dwi(y) = f1 € L*((0, L) x (=00, +00)), (40)
¢—¢=f5 € H(%(OaL)v (41)
B) b 3 oo az 2
V= Gout Jut 5o+ [ wealsdy - 2o fy € H0.L) (42)
2+ 22 = fr € L2((0.1) x (0,1)), (43)
2
@2 + (Y +m2) 2 — 22w, Dwa(y) = fs € L?((0,L) x (=00, +00)) . (44)
From (37) and (41), we get
v=u— € Hi0,L),
{ fi 01( ) (45)
v=¢—fs € Hy(0,L).
By using (40) and (44), we find ¢, (i = 1,2) such that
_ f4(£L', y) + Zl(ma 1)w1(y)
Y1 = yg + m +1 5
(46)
_ fs(@,y) + z(x, Dws(y)
w2 y2+m+1 '
From (39) and (43) and (z1, 22)(x,0) = (v, ¥)(z), it follows that
P
z1(z,p) = u(z)e P — fi(z)e TP + Tle_ﬁp/ e f5(x, s)ds,
0 (47)
“a(ayp) = O(a)e ™ = fula)e ™+ e [ il 5)ds.
0
Using
1
(z1)o(x) = = fi(z)e ™™ 4+ e ™ / e’ fa(x, s)ds,
0
1
(s2)o(e) = ~fs(@)e ™ 4 e [ €7 frlas)ds,
0
and (47), we deduce that
z1(x, 1) =u(z)e™™ + (21)0(x),
{ 1(2,1) = u(x) (21)o(z) 48)
z2(x,1) = dp(x)e™™F + (22)0 ().
By using (45) in (38) and (42), we obtain u and ¢, which satisfy the following system:
+oo
PU = gy — by + 7/ wi(y)e1(x,y)dy + azu = p(f1 + f2) + a2 f1,
- a0
Jo — 0¢ze + bug + &P+ ’3’/ wa(y)p2(z, y)dy + da¢ = J(f5 + fo) + dzfs.
Combining (46) and (49), we get
+oo 2
PU — gy — by + 7 /m z1(z, 1)y2°f7§1y)ﬂdy + azu
T Wi (y) fa(z, y)
=p(f1+ f2) +azfr —7/700 Prmil Y,
(50)

“+o0o

2
~ w3 (y) ~
— 1)—=23

+oo

:J(f5+f6)+a~2f5_'7/ w2(y)

_ 92U e y)dy.
- y2+772+1f8( y)dy

Using (48) in (50), and recalling the fact that

too Wz(y) ™ a;
Jid — 1 Noey—1 29 1 Na—1 i—1.9
/_oo y24+n; +1 Y sin(ajw)( +75) fy( +1j) v J v
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we obtain
pU — fillgy — by + u (ar(1+m)* " e™™ + ay)

= p(fi + fo) — a1 (1 +m)* (z1)o()

+oo
+ag f1 — /OC ygiln()_‘_lﬂl( y)dy,

(51)
J¢ - 6¢xz + bu:}c + §¢ + (b (a2(1 + ”72)052_16_72 + CL~2)

= J(f5+ fo) + az(1 +12)*2 " (22)0(x)

+oo
. . w2 (y)
+as fs — —— fs(z, y)dy.
2f5 7/_00 y2+n2+1f8( y)dy

Solving the system (51) is equivalent to finding (u, ¢) € H}(0,L) x HJ(0, L) such that

L L L L
,0/ uxdx — u/ Uge XdT — b doxdz + (a1 (1 +m)* e ™ + as) / uxdx
0 0 0 0

L 1 “+oo
—P/ (f1 + f2)xdz — ar (1 +m1)™' 1/0 (21)o(x )Xd$+az/f1xd$— / / 2+7§)+1f4($ y)dydz,

L L L L L
J/O(b(dx — 5/0gz5mCdx + b/oum(dac + f/()(b(d:v + (a2(1 )2 le ™ a”z)/ogb(d:v

L
:J/O (f5+f6)Cdac—a2(1+772)0‘2_1/ (22 (daz—l—@/ﬁ;{dm— / / 7 +772+1 fs(z,y)dydx

for all (x, ¢) € H}(0,L) x H}(0,L). Making integration by parts, we get

L

L L L
p/ uxdx+u/ u$x$dw+b/ PXxdr + (ar(1+m)* le ™ +a2)/ uxdzx
0 0 0 0

L
_ _ a;—1 _
fp/o (fi + fo)xdz — a1 (1 +m) / (z1)o(x )xdx+a2/f1xdx / /OO 7 +mﬂf 4(x,y)dydz,

L L L L L
J /0 oCdz + 5 /0 GuCodar + b /0 woldar + € /O oCdz + (as(1+ 1) e ™™ + i) /0 $Cda

L
04271
=1 [ st gt a4 [ Cantar s [gcae =3 [ ¢ [T g gy,
The problem given in the above systems is equivalent to finding (u, ¢) € V for the following variational problem:

B((u, 0), (x;Q) =L((x.¢), ¥ (x.Q) €V, (52)

withB: VxV — CandL:V — C, where V = H}(0,L) x H(0, L) is a Hilbert space equipped with the following norm

L L L L L L
| (u, 9)||% = p/ |u|2d:1c+§/ |¢z|2d:c+J/ |¢|2dx+u/ |um\2dx+2b/ uqudx—l—f/ |p|*da
0 0 0 0 0 0

L L
+ (a1(1 +m)* e 4 ag) / |u|?dx + (ag(l +m)2 e 4 dg) / \¢|2d33,
0 0

and
L

L L L L L L
B((u,6), (x,0)) = dr+6 | GuCodr+J d Xadz 4D wdr+b | ucd d
(u.6), (%)) p/o uxac+/0¢< v+ /0¢<x+u/0ux :c+/0¢x x+/0ucx+£/0 oCda

L L
+ (a1(1 + ) e 4 a2) / uxdr + (ag(l + )2 e 4 dg) / ¢ldx,
0 0
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L L L L
L((x,¢)) = p /0 (1 + fo)xdz + as /0 Fixde + s /0 fsda+ /0 (fs + fo)Cda

—ap(1+mn)> ! /0 (z1)o(x)xdx — a(1 + ng)*2 ™! /0 (22)0(x)Cdx

[T e 5 [ [

A straightforward calculation shows that B is a sesquilinear, bounded, and coercive form on the Hilbert space V x V
and that L is a linear and continuous form on V. By applying the Lax-Milgram Lemma, we deduce that for all (x,() €
H}(0,L) x H}(0, L), variational problem (52) has a unique solution (u,¢) € H}(0,L) x H}(0,L). Because of the standard
elliptic regularity, it follows from (49) that (u, ¢) € H?(0, L) x H?(0, L), and thus

(u,¢) € [Hy(0,L) N H?(0,L)] x [H3 (0, L) N H?(0, L)].

Clearly, v,v € H}(0,L). Finally, to complete the proof that (u,v,$,%) € D(A), note that the last condition |y|¢1, |y|p2 €

L%((0,L) x (—00,+00)) imposed by the domain of A is satisfied, because 0 < «; < 1, j = 1,2. Therefore, we conclude that

A is maximal. O
The existence and uniqueness of the solution are given by the next theorem.

Theorem 5.2. (a) If Uy € H, then the system (28) has a unique weak solution

UeC'RL,H).

(b) If Uy € D(A), then the system (28) has a unique strong solution
UeC' Ry, D(A)NCHRL,H).

Proof. Note that A is the infinitesimal generator of the Cj-semigroup of contractions S(t) = e, where ¢t > 0. Define
U(t) = e*U(0). By the general theory of semigroups of linear operators, U(t) is a unique solution of (28) satisfying the
conditions (a) and (b). O

6. Asymptotic stability

In this section, we use a general criterion due to Arendt-Batty [3] and Lyubich-Vi [22] to show the asymptotic stability of
the Cy-semigroup S(t) = ‘A associated with the system (P’).

Theorem 6.1 (Stability Theorem: see Page 837 in [3]). Let A be the generator of a bounded Cy-semigroup {S(t)},>o over
a Hilbert space H. If no eigenvalue of A lies on the imaginary axis iR and if o(A) N iR is countable, then {S(t)};>0 is
asymptotically stable. That is, tli)m IS(t)z||l =0 for all x € H.

Lemma 6.1. The generator A has no eigenvalue on iR.
Proof. We consider two cases according to i\ # 0 and i\ = 0. Here,
H = (HE(0,L) x L*(0, L) x L*((0, L) x (0,1)) x L*((0, L) x (=00, +0)))". (53)

Case 1: i\ # 0. Let us argue by contradiction. Suppose that there exists A € R, X # 0 and U # 0 such that AU = i\U; we
have the following equations in terms of its components:

idu—v=0in H}(0, L), (54)
b v [T 2
iAv — um — ¢+ = | wilz,y)er(z,y)dy + 22y=0inL (0,L), (55)
p p P o p
Az + ’iﬁ = 01in L2((0,L) x (0,1)), (56)
1
Z)‘Spl + (y2 + 771)801 - 21(517, 1)0‘)1 (l’,y) =0in LQ((OaL) X (—OO, +OO)7 (57)

iXg —¢ =01in HJ(0,L), (58)
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SO b A dy+ 20— 0in L2(0, L (59)

1 1/}7j¢zm+juz+j¢+j[mw2(y)@2($ay) y+71/1* mn ( 9 )a

Xz + iﬁ —0in L2((0,L) x (0,1)), (60)
2

iNpa + (Y* + m2)p2 — 22(z, Dwa(y) = 0 in L*((0, L) x (—o0, +00). (61)

Consider U € D(A) with the unit norm |U||3; = 1. By making the inner product of U with AU in the resolvent equation,
taking the real part, and using (35), we get

L L
Cl/ (Jof* + [2(z, 1)|?) dz + 02/ ([9]* + |z2(z, 1)[?) dz = 0, C1,Co > 0,
0 0
and thus,
v=0, v=0, z(r,1)=0, j=1,2, ae. in L*((0,L). (62)

From (54) and (58), we obtain

u=¢=0, ae. in L?((0,L). (63)
From (57) and (61), we deduce that

©1,02 =0, a.e. in L?((0, L). (64)
Using (62), (63), (64), we get

_ﬁuwx - éﬁbz =0,
P p

g b £, _ (65)
u(0) = ¢(0) = u(L) = ¢(L) =0.
Multiplying (65), » respectively by pu, J¢ and integrating on (0, L), we obtain
L L
—u/ Uprdx — b/ ¢udr =0,
0 0 (66)
L L L
—6/ Grrddx + b/ Uy pdx +§/ opdr = 0.
0 0 0
Integrating by parts, we get
L L L L L
,u/ |t |2 da + b/ ¢uzdx =0 and (5/ | |2 d + b/ Ugpdx +§/ |p|>dz = 0.
0 0 0 0 0
Adding the above equations and taking the real part, we obtain
L L L L
u/ \u1|2dx+2b/ uxgzﬁdx—kf/ \¢|2dx+5/ | |dx = 0.
0 0 0 0
Using (2), we have
L b \/7 2 b2 L ) L )
— Uy + fcb) dz + (,u— >/ || dx+6/ | |“dx = 0.
/o (\/E €/ Jo 0
b2
By (1), we have y — 3 > 0, and thus
Uy, ¢ = 0, a.e. in L*((0,L). (67)
From (63) and (67), we deduce that
u,¢ =0, a.e. in Hy((0,L), (68)

and thereby ||U||3 = 0, and we have a contradiction. Therefore, A # 0 is not an eigenvalue of A.

Case 2: i\ = 0. Taking A\ = 0 in the resolvent equation, we get v = 0,% = 0,z;(z,1) = 0,01 = 0,05 = 0, a.e. in L?((0, L)
and so, —AU = 0 leads to (65). Proceeding in the same way as in Case 1, we deduce that ||U||3; = 0 and thus we have a
contradiction. Therefore, A = 0 is not an eigenvalue of .A. O
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Remark 6.1. Note that Lemma 6.1 is related to the first condition of Theorem 6.1. The second condition of Theorem 6.1
will be satisfied if we show that o(A) NiR is at most a countable set. The proof of this fact will be obtained as an immediate
consequence of the next proposition.

Proposition 6.1. iR C p(A), the resolvent set of A.

Proof. If iR C p(A) is not valid, there would be a A € R such that i\ € o(A), the spectrum of A, which contradicts the fact
that there are no eigenvalues of A on the imaginary axis iR. O

Lemma 6.2. 5(A) N iR is countable.

Proof. As iR C p(A) we have o(A) NiR = { }. O

The main result of this section is the next theorem.
Theorem 6.2. The Cy-semigroup S(t) = et is asymptotically stable; that is, for U(0) € D(A), the solution of (28) satisfies
lim ||et‘AU0||'H =0.
t—o0
Proof. As A has no eigenvalue in iR and ¢(A) N iR is countable, by Theorem 6.1, the Cy-semigroup S(t) = e*4, t > 0, is
asymptotically stable on H O
7. Exponential stability

In order to prove the exponential stability, we use the following result, which is due to Gearhart [17] (see also [21,31]):

Theorem 7.1. Let S(t) = e! be a Cy-semigroup of contractions on a Hilbert space H. Then, S(t) is exponentially stable, if
and only if,
p(A) D {i; BeR}=iR (69)

and
|,81\igl (i8I — A)ilng(q{) < 00. (70)

Theorem 7.2. The Cy-semigroup S(t) = ', t > 0, is exponentially stable on H.
Proof. The resolvent equation
(M- AU =F, AeR, (71)

Where U = (uavazl7¢17¢7w7227¢2)T S D(A) and F = (f17f27f37f47f57f67f77f8)T S H7 leads to

iu—v = fi,
_ b Foo a
ido—Pup — 2, + Z/ wi(z, Y1 (@ y)dy + —v = fo,
p P P P
iAZl + Zﬂ = f37
71
ixp1+ (Y2 +m)er — z1(z, Dwi (z,y) = fa,
(72)
iNp—Y = fs,
i)\z/)—é¢ —&—ﬁu +£¢+§I/+O@w() (x,y)d +@¢ = f
J:rm Jx 7 J_Oo 2\Y)p2\T,y)ay 7 — J6,
Z‘>\22 + Zﬁ = f7a
T2
iAp2 + (Y +m2)p2 — z2(x, Dwa(y) = fs.
Making the inner product of U with F' in (71) and taking the real part, we get
|Re (AU, U) gy | < U3l F 3¢ (73)

From (35), we deduce

L L L
| w@pds, [ puids, [l Pds < Ul El (14)
0 0 0
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From (72), and (72)g, we find ;, i = 1,2, such that
o = fa(z,y) + =1 (2, Dwi (y)
y2+m+1 ’
m (75)
oy = fs(z,y) + z2(x, Dwa(y)
y2+m+1 '
Applying Young’s inequality, we obtain
w1 (y) fa
e1llL2((0,1) % (~o0,to0)) < || Ty zx7127+‘_
lorllzeo.)x(—oo oo Y2 +m +iA L2 (—00,+00) Iext, Dl .0 Y2+ + A L2(0,L)x (—00,+00)
1 V2
2
<21 — o) ———(|A o1 =2 1 _ 76
(20 - a0 s 07 ) e Doy + e ilorn sy O
and
ywi () Yfa
Y , —o0, 400 <’. z1(z, 1 ’ +‘_
| 901HL2((0L)X( el Y2 4+ 40\ L2(—o00,+00) et )HLZ(OL) Y2+ +iA L2(0,L) x (—00,400)
1 V2
™
< (200 ——— (A o=l 1 77
(200 gz O+ 07 ) e Do + =il )
Analogously, we have
w2(y) Is
o2l 0,0 oortoen < || 2 Jeate Dllzzon + | oo
2{| L2((0,L) x (— o0, +-00)) eEarasy N 2(z, Dlz20,1) R | R
: V3
- 2
<201 - ag)— @22 D)2 78
(20— a0) s (A +m72)  healo Doy + 57l 78
and
yw2(y) yfs
ye 2((0, —00,400 g‘ — zo(x, 1 2(0, +‘
ly22ll L2((0,L) x (—00,400)) e lz2(x, 1) 22(0,1) R | S
2 V2
e
< | 20— (|A\| + 0‘21) zo(x, 1 + (79
(200 gy O+ 0% ) e Do + = folaosrecc
Multiplying (72)s by J¢ and integrating on (0, L), we get
L L L L
i/\J/ wcédx—é/ ¢mq§dx+b/ um¢da§—|—§/ ¢odr
0 0 0 0
L p+oo L L
+7 [ 3] cweatndyds [ wdiz =7 [ gidds. 60
0 —o0 0 0

By (72)5 we get

—6/0Lq§m¢dx+b/OLqubdx+§/oL|¢|2dx

/ [[2dz — 5 /¢/+°° <p2xy)dyd$—a2/ w¢>dx+J/ f6¢dx+J/ T,

and integrating by parts, we obtain

L L L L L
5/ |¢I|2dx—|—b/ qubdx—i—f/ |¢|2dx:J/ \w\%zm—dg/ Yodx
0 0 0 0 0

+oo L
5 / 3 / Yoo, y)dyda + J / fobd+ 7 wfsda:
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and thus

/ " ydd

—+o0
¢ / Y)oa(a, y)dyde

L L L L
5/ \¢m|2da:+b/ uz(bdx—i-f/ 16[2dz :J/ (b [2dz + o
0 0 0

+J / | f6@ + ¥ f5|da. (81)

Multiplying (72), by pu and integrating on (0, L), we get

L 400 L
i)\p/ vudxr — u/ Ugpzr WAL — b/ ¢ udr + 'y/ / y)p1(z,y)dydx + ag/ vudr = fgudx
0 0 0

and using (72),, we have

L L 400 L
—u/ Uy UdT — b/ ¢ udr = ,0/ |v|2dx — ag/ vudx — / / y)p1(x,y)dydx + p fguda: + p/ vfide.
0

Making integration by parts, we obtain

/ |t dx+b/ gzm,dz_p/ Kl dx—ag/o vadz — / /m V)1, y)dydx+p/L(f2u+vﬁ)dz

and thus

L L
,u/ |ug|?da + b/ Puzdr < / |v|2dz 4 v
0 0

By adding (81) and (82), we get

+ as

+oo
/ / y)p1(x, y)dydx

L
+ p/ |for + vfi|de. (82)
0

L
/ vudx
0

L L _ L L
u/ \u$|2dw+b/ (dnTw-l—ux(b)dw—i—{/ |¢\2da:+5/ | |2 dx
0 0 0 0

/ jolPdz + 7 / WPdz 4 / 7 [ / 5[ waeste e

L L L L
/0 vudz /0 e +,0/0 |f2ﬂ+vﬁ|d$+J/O |fed + 1 f5|dz. (83)

Applying the Cauchy-Schwarz inequality, we get

1
“+o0 “+o0 wiy 2 b) L “+o0o
/ / y)er(z,y)dyde| < |lullL2(0,1) (/ |21( ) dy> / / W +m)ler(x, y)*dyda
oo YT M 0 J-oo

Using Young’s inequality, we have

/ /W Ydydz| < < /+oo SOl 2 +1/L/+m( 2 4 n)|er (2, y) Pdyda
x,y)ay D) - y2+771 ) 12(0,L) % ) . Yy m)|p1(T,y yax.

Using Poincaré’s inequality, we obtain

/ /+°° vy)dyds| < C /+°° 1 W 1Y s 2 +1/L/+m<2+ o1 (,y) Pdydz.  (84)
y)e1(z, y)dy Sovr\ L 2 am Y zlliL20,0) T 5, 0 Yy~ +m)ie1(@,y)|"ayaz.

+75

+ as + do

N

Analogously, we find

“+o0
/ ¢/ y)pa(x, y)dyde| <

Applying the inequalities of Cauchy-Schwarz, Young, and Poincaré, we get

L
/ vudx
0

+00 2 1 L pteo
c, (/ |°‘)22(y)| dy) ”d)a:H%?(O L+ 7/ / (y2 + 772)|(p2(.7;,y)|2dyd$(}. (85)

—oo YT M2 ’ 2e 0 —00

[N e

L
</0 [@lfvlde < lull 220,y [0l 20,y < HUHQL?(&L) IIUHLsz) Cl\uwllmuﬁ EHUH%Q(O,L)' (86)
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“hd | 1feldz < lullzzo 0y 1 o] Nelldao.cy + 5l ol ry < SCollualBaoy + gl ol ®7)
Ufedr| < ull fa|dw < {luf{z2(0,n) |1 f2llL2(0,2) < S l1UllT2(0,1) 9 1/21IL2(0,0) S 5CpllUaliL2(o,0) T 5 1121112 (0,1)-
L € 2 1 2
ude| < ollron W0 < §CI9l 00 + e ¥lE0.0y (88)
L
Sfodz| < SO0 + oo foll (89)
. (bfﬁ X I B plIPzllL2(0,L) % 6 L2(0,L)"
[ el < Sl + B (90)
A 50| X 2 L2(0,L) T 9 1/5llL2(0,L)-
Choosing ¢ > 0 small enough and using the inequalities (74) and (84)—(90), we deduce from the inequality (83) that
L L B L L
p [ lualdo b [ 6w 4 w)do v [ lofde 6 [ joude < CIFI + CIF U oD
0 0 0 0
From (72); 7, it follows that
21(z,p) = e APz (2,0) + 7'167””””/ eS8 fa(x, 5)ds = e Py(z) 4 TleﬂATlp/ eATIS fo(x, 5)ds
0 0
and
. . P ) . P
2o(z,p) = e AP 2 (2, 0) + 7'26_1/\7—213/ eAT2S £ (1, 5)ds = e AP () 4 Tge_”‘”p/ A28 fo (2, 8)ds,
0 0
where we have
l21(z, D)l 22¢(0,)x (0,1)) < lv(@) | 2200,2) + Tl f3 (2, )| L2((0,) % (0,1)) (92)
and
||Z2($ P)”L2 (0,L)x(0,1)) & < l(w )||L2(O,L) +7'2||f7(l‘,p)||L2((0,L)x(0,1))- (93)
By (74), (76), (78), (91)-(93), we conclude that
1013 < C'lU || Fllae + ClIF |3, C',C > 0.
Applying Young’s inequality, we arrive at
U113, < ClIFI3, € >0,
and thus
Ul < CIFfl3, VU € D(A). (94)
Finally, (94) leads to
1A = A) Ml < C
and hence (70) is proved. By Theorem 7.1, the Cy-semigroup S(t) = ¢4, t > 0, is exponentially stable on #. O

Acknowledgment

The authors thank the anonymous referees for their suggestions, which improved this manuscript.

References

[1] Z. Achouri, N. Amroun, A. Benaissa, The Euler-Bernoulli beam equation with boundary dissipation of fractional derivative type, Math. Methods Appl. Sci. 40 (2017)

3837-3854.

[2] A. Alshabanat, M. Jleli, S. Kumar, B. Samet, Generalization of Caputo-Fabrizio fractional derivative and applications to electrical circuits, Front. Phys. 8 (2020) #64.

[31 W. Arendt, C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc. 306 (1988) 837-852.
[4] P.S. Casas, R. Quintanilla, Exponential decay in one-dimensional porous-thermo-elasticity, Mech. Res. Commun. 32 (2005) 652—-658.
[5]1 J. Choi, R. Maccamy, Fractional order Volterra equations with applications to elasticity, . Math. Anal. Appl. 139 (1989) 448-464.

[6] S. C. Cowin, The viscoelastic behavior of linear elastic materials with voids, J. Elasticity 15 (1985) 185-191.

[7] R.Datko, J. Lagnese, M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM oJ. Control Optim. 24 (1986) 152—-156.



W. R. Oliveira, S. M. S. Cordeiro, C. A. Raposo, and C. A. C. Baldez / Electron. J. Math. 6 (2023) 15-32 32

[8

[91
[10
[11]

[12]
[13]
[14]

[15]
[16]

[17]
[18]
[19]
[20]

[21]
[22
[23]
[24
[25]

[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]

[36]

A. Djebabla, A. Choucha, D. Ouchenane, K. Zennir, Explicit stability for a porous thermoelastic system with second sound and distributed delay term, Int. J. Appl.
Comput. Math. 7 (2021) #50.

M. J. Dos Santos, C. A. Raposo, L. G. R. Miranda, B. Feng, Exponential stability for a nonlinear porous-elastic system with delay, Commun. Math. 31 (2023) 359-379.
H. Dridi, A. Djebabla, On the stabilization of linear porous elastic materials by microtemperature effect and porous damping, Ann. Univ. Ferrara 66 (2020) 13-25.

A. Fareh and S. Messaoudi, Energy decay for a porous thermoelastic system with thermoelasticity of second sound and with a non-necessary positive definite energy,
Appl. Math. Comput. 293 (2017) 493-507.

B. Feng, Uniform decay of energy for a porous thermoelasticity system with past history, Appl. Anal. 97 (2018) 210-229.
B. Feng, T. A. Apalara, Optimal decay for a porous elasticity system with memory, J. Math. Anal. Appl. 470 (2019) 1108-1128.

B. Feng, M. Yin, Decay of solutions for a one-dimensional porous elasticity system with memory: the case of non-equal wave speeds, Math. Mech. Solids 24 (2019)
2361-2373.

E. B. Filho, M. L. Santos, On porous-elastic system with a time-varying delay term in the internal feedbacks, J. Appl. Math. Mech. 100 (2020) #e201800247.

F. Foughali, S. Zitouni, L. Bouzettouta, H. E. Khochemane, Well-posedness and general decay for a porous-elastic system with microtemperatures effects and time-varying
delay term, Z. Angew. Math. Phys. 73 (2022) #183.

L. Gearhart, Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math. Soc. 236 (1978) 385-394.
M. A. Goodman, S. C. Cowin, A continuum theory for granular materials, Arch. Ration. Mech. Anal. 44 (1972) 249-266.
E. C. Grigoletto, E. C. Oliveira, Fractional versions of the fundamental theorem of calculus, Appl. Math. 4 (2013) 23-33.

F. Hebhoub, L. Bouzettouta, K. Ghennam, K. Kibech, Stabilization of a microtemperature porous-elastic system with distributed delay-time, Mediterr. J. Math. 19 (2022)
#222.

F. L. Huang, Characteristic conditions for exponential stability of linear dynamical system in Hilbert spaces, Ann. Differential Equations 1 (1985) 43-56.
1. Y. Lyubich, Q. P. Vi, Asymptotic stability of linear differential equations in Banach spaces, Stud. Math. 88 (1988) 37-42.

A. Magafia, R. Quintanilla, On the time decay of solutions in one-dimensional theories of porous materials, Int. J. Solids Struct. 43 (2006) 3414-3427.

B. Mbodje, Wave energy decay under fractional derivative controls, IMA J. Math. Control Inf. 23 (2006) 237—-257.

A. Mohammad, Some Problems of Direct and Indirect Stabilization of Wave Equations with Locally Boundary Fractional Damping or with Llocalised Kelvin-Voigh, Ph.D.
Thesis, Université de Limoges, 2017.

J. E. Munoz Rivera, R. Quintanilla, On the time polynomial decay in elastic solids with voids, . Math. Anal. Appl. 338 (2008) 1296-1309.

Z.Nid, A. Fareh, T. A. Apalara, On the decay of a porous thermoelasticity type III with constant delay, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 117 (2023) #67.
J. W. Nunziato, S. C. Cowin, A nonlinear theory of elastic materials with voids, Arch. Ration. Mech. Anal. 72 (1979) 175-201.

P. X. Pamplona, J. E. Munoz Rivera, R Quintanilha, On the decay of solutions for porous-elastic systems with history, . Math. Anal. Appl. 379 (2011) 682-705.

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.

dJ. Priiss, On the Spectrum of Cy-Semigroups, Trans. Amer. Math. Soc. 284 (1984) 847-857.

C. A. Raposo, T. A. Apalara, J. O. Ribeiro, Analyticity to transmission problem with delay in porous-elasticity, J. Math. Anal. Appl. 466 (2018) 819-834.

F. G. Shinskey, Process Control Systems, McGraw-Hill, New York, 1967.

A. Soufyane, Energy decay for porous-thermo-elasticity systems of memory type, Appl. Anal. 87 (2008) 451-464.

A. Soufyane, M. Afilal, T. Aouam, M. Chacha, General decay of solutions of a linear one-dimensional porous-thermoelasticity system with a boundary control of memory
type, Nonlinear Anal. 72 (2010) 3903-3910.

I. H. Suh, Z. Bien, Use of time delay action in the controller design, IEEE Trans. Automat. Control 25 (1980) 600—603.



	Introduction
	Augmented model
	Energy of the system
	Semigroup setup
	Existence and uniqueness of the solution
	Asymptotic stability
	Exponential stability

