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Abstract

In this article, fundamental Lp-estimates and the large-time behavior for higher derivatives of solutions to a generalized
class of higher-order nonlinear parabolic systems are studied.
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1. Statements of the main results

This paper is devoted to the study of solutions to the nonlinear parabolic system

∂u

∂t
+ Lmu = a.∇θ

(
f(|∇κv|)u

)
,

∂v

∂t
+ Lmv = b(t).∇σ(u− v),

u0 , v0 ∈ L1(Rn),

(1)

where t > 0, κ+ σ ≤ 2m− 1 and ∇k denotes the vector
(
Dγ
)
|γ|=k with γ = (γ1, · · · , γn) ∈ Nn. The constant vector a is in Rn

and the vectorial function b : t 7→ b(t) satisfies the inequality

|b(t)| ≤ C t−
4m+ε−σ

4m

for a small enough ε > 0. The nonlinear function f is such that f ∈ Cθ(R) and f(0) = 0. The class of homogeneous operators
Lm = 4mχ4m is of order 4m and the function χ is bounded, measurable, positive, and independent of time.

The particular case, when Lm = 4, a = b = 1, θ = κ = 1, σ = 0 and f is the identity function, corresponds to the
parabolic system, modeling the well-known chemotaxis biological phenomenon dealing with the movement of an organism
in response to a chemical stimulus. The function (x, t) 7−→ u(x, t) stands for the population density of the organism at
position x and time t, and the function (x, t) 7−→ v(x, t) represents the concentration of the chemical [9]. Also, we cite the
Keller-Segel model describing the movement of amoebae with density u, in the presence of a chemoattractant with the
concentration v [13].

The literature concerning the existence, uniqueness, large-time behavior of solutions and the blow-up problem is abun-
dant, see [4,6,8–10,13,15]. For example, Nagai et al. in [9] studied the existence and the uniqueness of bounded solutions
to the parabolic system in Rn when n ≥ 2. Also, the large time behavior was discussed under the condition

sup
t>0

(
‖u(t)‖p + ‖v(t)‖p

)
<∞

for p = 1, ∞. In fact, it was shown that for every 1 < p ≤ ∞,

sup
t>0

(
(1 + t)

n
2 (1−1/p)(‖u(t)‖p + ‖v(t)‖p

))
<∞ ,

lim
t→∞

(
t
n
2 (1−1/p)∥∥w(t)−M0K(t)

∥∥
p

)
= 0,
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where K : (x, t) 7−→ K(x, t) is the heat kernel, w = u or v and

M0 =

∫
Rn
u0dy.

Under the same condition as mentioned before and n ≥ 2, Nagai and Yamada established in [10] the following decay:

lim
t→∞

(
t
n
2 (1−1/p)+1/2

∥∥w(t)−
(
M0K(t)− (E0 + V ).∇K(t)

)∥∥
p

)
= 0,

where
E0 =

∫
Rn
yu0dy and V =

∫ ∞
0

∫
Rn
u∇vdyds.

Also, it is important to mention the reference [15], where sharp asymptotic expansions are obtained under the conditions
(|x|nu0) ∈ L1(Rn) and

sup
x∈Rn , t>0 , 0≤µ≤n

(
(1 + |x|)n−µ(1 + t)µ/2

(
|u(x, t)|+ |v(x, t)|

))
<∞.

Now, let us turn to the core of our work, which is an extension of the work reported in the article [12]. The class of higher-
order operators Lm = 4mχ4m, used in the system (1), is homogeneous and of order 4m. It was shown in [1] that a more
general class of operators with non-smooth coefficients of type T0 = L∗0aL0, where L0 =

∑
|α|=|β|=m aαβD

α+β with constant
coefficients aαβ and a ∈ L∞(Rn,C) with Re(a) ≥ δ > 0, verifies an elliptic condition of De Giorgi type which is equivalent
to Gaussian estimates of the kernel and its derivatives. More precisely, the distributional kernel K : (x, t) 7−→ K(x, t) of
the semi-group e−tT0 (i.e. the heat kernel associated with T0) satisfies the following Gaussian estimates:

(i) There are constants c0 > 0, c1 > 0 such that for all x = (x1, · · · , xn) ∈ Rn, all t > 0 and all multi-index γ =

(γ1, · · · , γn) ∈ Nn such that |γ| ≤ 2m− 1, one has

|Dγ
xK(x, t)| ≤ c0 t−

n+|γ|
4m exp

(
−c1

(
|x|
t1/4m

) 4m
4m−1

)
, (2)

where |γ| = γ1 + · · ·+ γn and Dγ
x = ∂γ1

∂x
γ1
1

· · · ∂
γn

∂xγnn
.

(ii) The Gaussian estimates (2) hold for the kernel of
(
t ddt
(
e−tT0

))
and as a consequence, the following Lp-estimates are

obtained on the heat kernel K and its time derivatives:

‖Dγ
xK(t)‖p ≤ C(p,m) t−

n+q|γ|
4mq , (3)

‖Dγ
xK(t+ 1)−Dγ

xK(t)‖p ≤ C(p,m) t−
n+q|γ|
4mq −1, (4)

for all p ∈ [1,∞]
(
with 1/p+ 1/q = 1

)
and all γ ∈ Nn such that |γ| ≤ 2m− 1.

On the other hand, by using the estimates (3), among others, it was shown in [7] that the solution w of the heat equation
∂w
∂t + Lmw = 0, with w(0) = w0, satisfies

lim
t→∞

(
t
n+q|γ|
4mq ‖Dγ

xw(t)−W0D
γ
xK(t)‖p

)
= 0, (5)

where
W0 =

∫
Rn
w0(x)dx

while p and γ are the same as defined before.
The main objective of this article is to establish Lp-estimates for the higher-order gradient of solutions to the system

(1) and then to derive an asymptotic behavior for these solutions under some conditions on the nonlinearity f . The so-
lutions of our interest are mild solutions. More precisely, by a solution (u, v) to the system (1), we mean functions u,
v ∈ C

(
[0,∞) , L1(Rn)

)
satisfying the Duhamel integral formula

u(t) = e−tLmu0 +

∫ t

0

e−(t−s)Lm
(
a.∇θ

(
u(s) f

(
|∇µv(s)|

))
ds

v(t) = e−tLmv0 +

∫ t

0

e−(t−s)Lm
(
b(s).∇σ

(
u− v)(s)

)
ds ,

(6)

9
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or by using the heat kernel K : (x, t) 7−→ K(x, t) associated with Lm,
u(t) = K(t) ∗ u0 +

∫ t

0

K(t− s) ∗
(
a.∇θ

(
u(s) f

(
|∇µv(s)|

))
ds

v(t) = K(t) ∗ v0 +

∫ t

0

K(t− s) ∗
(
b(s).∇σ

(
u− v)(s)

)
ds ,

(7)

where the symbol ∗ stands for the Laplace convolution operator.
We prove that the solutions and their derivatives decay to 0 when t→∞ and behave like those of the heat kernel. More

precisely, we show that for all multi-index λ ∈ Nn such that |λ|+ θ ≤ 2m− 1, we have

||Dλ
xφ(t)||p ≤ C t−

n
4m (1− 1

p )−
|λ|
4m = C t−

n+q|λ|
4mq ,

when the function f is dominated by power functions depending on m, n, θ and κ. Alternatively,

lim
t→∞

(
t
n+q|λ|
4mq ||Dλ

xφ(t)− Φ0D
λ
xK(t)||p

)
= 0,

where φ stands for u or v, Φ0 =

∫
Rn
φ0(x) dx and φ0 ∈ L1(Rn).

To obtain these estimates, we rely, in particular, on the following useful result giving Lp-estimates of φ:

||φ(t)||p ≤ C t−
n

4mq ,

which holds for all p ∈ [1,∞] and all t > 0. The constant C depends on n, m and p, and p+ q = pq.
Also, we mention that by using the arguments employed in the forthcoming analysis and the Lp-contraction property,

||φ(t)||p ≤ ||φ0||p , (8)

valid for all p ∈ [1,∞], it is possible to handle a more general system of the form:

∂u

∂t
+ Lmu = a.∇θ

(
u f
(
|∇κv|

))
∂v

∂t
+ Lmv = b(t).∇σ

(
g(u− v)

)
u0 , v0 ∈ L1(Rn),

with |g(t)| ≤ C tN . The adaptation and details will be left to the reader.
The present work is organized as follows. Section 2 is dedicated to fundamental Lp-estimates of higher derivatives

of solutions to (1). For the reader’s comfort, the computations are divided into three steps. We start by establishing the
classical conservation of mass and Lp-contraction properties, which are very useful for the sequel. The second step focuses
on the estimates of the concentration function v, which are essential for the derivation of estimates on the density function
u in the last step. The first part of Section 3 is concerned with the asymptotic behavior of higher-order derivatives using
the heat kernel as a regulator factor. The second part of of Section 3 deals with the rapid decay when the initial data φ0
belongs to L1(Rn) ∩ L∞(Rn). More precisely, we prove that for λ ∈ Nn such that |λ|+ θ < 2m− 1, we have

||Dλ
xφ(t)− Φ0D

λ
xK(t)||p ≤ C


t−

n+q|(λ|+1)
4mq or

t−
n+q|(λ|+1)

4mq ln(1 + t) or

tµ/4m(1 + t)−n/4m

depending on the power of the dominant function associated with f while µ depends on n, m, θ and κ.

2. Fundamental Lp-estimates

The objective of this section is to prove that, for 1 ≤ p ≤ ∞ and under conditions on f and the parameters of the system
(1), there exists a constant C > 0 such that the coupled solution (u, v) verifies

||Dλ
xu(t)||p + ||Dλ

xv(t)||p ≤ C t−
1

4m

(
n(1−1/p)+|λ|

)
, (9)

for all t > 0 and all λ ∈ Nn such that max
(
|λ|+ θ, |λ|+ σ, κ+ σ

)
≤ 2m− 1. The first step to prove the estimates (9) concerns

essentially some well-known conservation and L1-contraction properties.

10
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Conservation and contraction properties
Proposition 2.1. Let u0 ∈ L1(Rn) and v0 ∈ L1(Rn). Then the couple (u, v) satisfies, for all t ≥ 0,

(i)
∫
Rn
u(x, t)dx =

∫
Rn
u0(x)dx and

∫
Rn
v(x, t)dx =

∫
Rn
v0(x)dx.

(ii) ||u(t)||1 ≤ ||u0||1 and ||v(t)||1 ≤ ||v0||1.

Proof. To obtain the conservation property, we integrate equations in (1) with respect to the space variable x. Firstly, we
have ∫

Rn
a.∇θ

(
u f
(
|∇κv|

))
dx =

∫
Rn

b(t).∇σ
(
u− v)dx = 0

and by using the Fourier transform ∫
Rn
Lmφ(x, t)dx = L̂mφ(0, t) = 0 ,

where φ stands for u or v. This leads to
d

dt

∫
Rn
φ(x, t)dx = 0

and the conservation property (i).
For the proof of the contraction property, a straightforward adaptation of the classical arguments used (for example) in [3]
(Theorem 3.1) and [5] (Proposition 1), allows to derive (ii).

It is worth mentioning that we can use the arguments mentioned in Proposition 2.1 to derive theLp-contraction property
(8) valid for all p ∈ [1,∞]. Now, let us state the main results of this section concerning higher-order derivatives estimates
for the couple (u, v) solution to the system (1). We derive the estimates of Dλ

xv, u, and Dλ
xu.

Higher Gradient estimates of the concentration function
We start with the Lp-estimates of Dλ

xv(t).

Proposition 2.2. Let 1 ≤ p , q ≤ ∞ be such that p + q = pq. Then there is a constant C = C
(
p, n,m, ‖u0‖1, ‖v0‖1

)
> 0 such

that the function v of (1) satisfies
||Dλ

xv(t)||p ≤ C t−
n+q|λ|
4mq , (10)

for all t > 0 and all λ ∈ Nn, provided that
|λ|+ σ ≤ 2m− 1.

Proof. Let λ ∈ Nn be such that |λ|+ σ ≤ 2m− 1. In all the sequel, Dλ stands for Dλ
x and the constant C may change from

line to line.
The second integral equation of (6) involves

Dλv(t) = Dλe−tLmv0 +

∫ t

0

Dλe−(t−s)Lm
(
b(s).∇σ

(
(u− v)(s)

))
ds . (11)

Then, by using successively Young’s inequality
(
||e−tLmϕ||r ≤ ||e−tLm ||τ ||ϕ||τ ′ with 1 + 1/r = 1/τ + 1/τ ′, and r, τ, τ ′ ≥ 1

)
,

the estimates (3) on the heat kernel and the contraction property (ii) of Proposition 2.1, we obtain

||Dλv(t)||1 ≤ ||Dλe−tLmv0||1 +

∫ t

0

∥∥b(s).∇σ
(
Dλe−(t−s)Lm

)(
u− v

)
(s)
∥∥
1
ds

≤ C ||DλK(t)||1 ||v0||1 +

∫ t

0

||b(s).∇σ(DλK(t− s))||1||(u− v)(s)||1 ds

≤ C
(
t−
|λ|
4m ||v0||1 +

(
||u0||1 + ||v0||1

) ∫ t

0

(t− s)−
|λ|+σ
4m s−(1+(ε−σ)/4m) ds

)
≤ C max

(
t−
|λ|
4m , t−

|λ|+ε
4m

)
.

11
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Similarly, we have

||Dλv(t)||∞ ≤ ||Dλe−tLmv0||∞ +

∫ t

0

∥∥b(s).∇σ
(
Dλe−(t−s)Lm

)(
u− v

)
(s)
∥∥
∞ ds

≤ C ||DλK(t)||∞ ||v0||1 +

∫ t

0

||b(s).∇σ(DλK(t− s))||∞||(u− v)(s)||1 ds

≤ C
(
t−

n
4m−

|λ|
4m ||v0||1 +

(
||u0||1 + ||v0||1

) ∫ t

0

(t− s)− n
4m−

σ+|λ|
4m s−(1+(ε−σ)/4m) ds

)
≤ C max

(
t−

n+|λ|
4m , t−

n+|λ|+ε
4m

)
.

Eventually, by interpolation we obtain

||Dλv(t)||p ≤ ||Dλv(t)||1/p1 ||Dλv(t)||1−1/p∞ ≤ C t−
|λ|
4mp t−

n+|λ|
4m (1−1/p) .

That is, for all λ ∈ Nn such that |λ|+ σ ≤ 2m− 1, we have the estimates

||Dλv(t)||p ≤ C t−
n

4m (1− 1
p )−

|λ|
4m ,

which corresponds to (10).

Higher Gradient estimates related to the population density function
Now, we move towards the Lp-estimates related to the density function u.

Proposition 2.3. Let 1 ≤ p , q ≤ ∞ be such that p+ q = pq, M = 4m−θ
n+κ and suppose that for all t ∈ {s ∈ R/|s| ≤ 1},

|f(t)| ≤ C|t|M .

Then there is a constant C > 0 such that the function u of (1) verifies the following estimates

||u(t)||p ≤ C t−
n

4mq , (12)

for all t > 0 and all λ ∈ Nn such that max(θ , κ+ σ) ≤ 2m− 1.

Proof. The arguments used in more detail above and the inequality (10) lead to the following estimates

||u(t)||∞ ≤ ||e−tLmu0||∞ +

∫ t

0

∥∥∥e−(t−s)Lm(a.∇θ(u(s) f
(
|∇κv(s)|

)))∥∥∥
∞
ds

≤ C
(
t−

n
4m ||u0||1 +

∫ t

0

∥∥∥∇θK(t− s)
∥∥∥
∞

∥∥∥u(s) f
(
|∇κv(s)|

)∥∥∥
1
ds
)

≤ C
(
t−

n
4m ||u0||1 +

∫ t

0

(t− s)−
n+θ
4m ||u(s)||1 ||f

(
|∇κv(s)|

)
||∞ ds

)
≤ C (t/2)−

n
4m .

As before, it follows by using the contraction property and the interpolation inequality that

||u(t)||p ≤ ||u(t)||1/p1 ||u(t)||1−1/p∞ ≤ C||u0||1/p1 t−
n

4m (1− 1
p ),

which corresponds to the estimates (12).

Finally, in order to complete the proof of the estimates (9), we extend the above estimates to the higher derivatives
Dλ
xu(t).

Proposition 2.4. Let p , q and f be as in Proposition 2.3. Then there is a constant C = C
(
p, n,m, ‖u0‖1, ‖v0‖1

)
> 0 such

that the function u of (1) satisfies
||Dλ

xu(t)||p ≤ C t−
n+q|λ|
4mq , (13)

for all t > 0 and all λ ∈ Nn, provided max
(
|λ|+ θ , κ+ σ

)
≤ 2m− 1.

12
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Proof. Let λ ∈ Nn be such that max
(
|λ|+ θ , κ+ σ

)
≤ 2m− 1. According to (7), we have

Dλu(t) =
(
DλK(t) ∗ u0

)
+

∫ t

0

DλK(t− s) ∗
(
a.∇θ

(
u(s)f

(
|∇κv(s)|

)))
ds . (14)

Using successively Young’s inequality and the estimates (3) on the kernel K, we obtain

||Dλu(t)||p ≤ ||DλK(t) ∗ u0||p +

∫ t

0

||a.∇θ(DλK(t− s)) ∗
(
u(s) f

(
|∇κv(s)|

))
||pds

≤ ||DλK(t)||p||u0||1 + |a|
∫ t

0

||∇θ(DλK(t− s)) ∗
(
u(s) f

(
|∇κv(s)|

))
||pds︸ ︷︷ ︸

I

≤ C t−
n

4m (1− 1
p )−

|λ|
4m + |a| I.

Now, write

I =

∫ t/2

0

· · ·+
∫ t

t/2

· · · := I1 + I2.

By applying Young’s inequality and the estimates (3), (10), (12) to I1 and I2, we derive the following estimates.

I1 ≤
∫ t/2

0

∥∥∇θ(DλK(t− s))
∥∥
p

∥∥u(s) f
(
|∇κv(s)|

)∥∥
1
ds

≤ C
∫ t/2

0

(t− s)−
n

4m (1− 1
p )−

|λ|+θ
4m

∥∥u(s)
∥∥
∞

∥∥f(|∇κv(s)|
)∥∥

1
ds

≤ C
∫ t/2

0

(t− s)−
n

4m (1− 1
p )−

|λ|+θ
4m s−

n
4m ||∇κv(s)||MM ds ≤ C(t/2)−

n
4m (1− 1

p )−
|λ|
4m .

Similar computations on I2 yield

I2 ≤
∫ t

t/2

∥∥∇θ(DλK(t− s))
∥∥
1

∥∥u(s) f
(
|∇κv(s)|

)∥∥
p
ds ≤ C(t/2)−

n
4m (1− 1

p )−
|λ|
4m .

Finally, for all p ∈ [1,∞] and all λ such that max
(
θ + |λ| , κ+ σ

)
≤ 2m− 1,

||Dλu(t)||p ≤ C t−
n

4m (1− 1
p )−

|λ|
4m .

With all the above estimates, the main estimates (9) are completely now proven.

3. Large time behavior

Asymptotic behavior for higher derivatives of solutions
Under some conditions on θ, κ, σ, and the nonlinearity of f , we show that the higher derivatives of u and v behave like
those of the heat kernel. More precisely, we have the following result.

Theorem 3.1. Suppose that lim
t→0

(
|t|−Mf(t)

)
= 0 for M = 4m−θ

n+κ . Then the solution (u, v) of (1) verifies for all p ∈ [1,∞] and
all λ ∈ Nn such that max

(
|λ|+ θ , |λ|+ σ , κ+ σ

)
≤ 2m− 1,

(i) lim
t→∞

(
t
n+q|λ|
4mq ||Dλ

xu(x, t)− U0Dλ
xK(x, t)||p

)
= 0 ,

(ii) lim
t→∞

(
t
n+q|λ|
4mq ||Dλ

xv(x, t)− V0Dλ
xK(x, t)||p

)
= 0 ,

(15)

where 1/p+ 1/q = 1,
U0 =

∫
Rn
u0(x) dx

and
V0 =

∫
Rn
v0(x) dx.

13
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Proof. Let λ ∈ Nn with |λ|+ θ ≤ 2m− 1 and p , q ∈ [1,∞] be such that p+ q = pq.

(i) Behavior of higher derivatives of u. According to (14), write

Dλu(t+ 1)− U0DλK(t+ 1) =
(
Dλu(t+ 1)− U0DλK(t)

)
− U0

(
DλK(t+ 1)−DλK(t)

)
and

Dλu(t+ 1)− U0DλK(t+ 1) =(
DλK(t) ∗ u(1)− U0DλK(t)

)
− U0

(
DλK(t+ 1)−DλK(t)

)
+

∫ t

0

DλK(t− s) ∗
(
a.∇θ

(
u(s+ 1) f(|∇κv(s+ 1)|)

))
ds .

Using
∫
Rn
u(x, 1)dx =

∫
Rn
u0(x)dx = U0 (Proposition 2.1) and (5) leads to

lim
t→∞

(
t
n+q|λ|
4mq ||DλK(t) ∗ u(1)− U0DλK(t)||p

)
= 0.

According to (4) , we have
||DλK(t+ 1)−DλK(t)||p ≤ Ct−

n+q|λ|
4mq −1

and then
lim
t→∞

(
t
n+q|λ|
4mq ||DλK(t+ 1)−DλK(t)||p

)
= 0.

To complete our estimates, we need to show that

lim
t→∞

(
t
n+q|λ|
4mq

∥∥∥∫ t

0

DλK(t− s) ∗
(
a.∇θ

(
u(s+ 1) f(|∇κv(s+ 1)|)

))
ds
∥∥∥
p︸ ︷︷ ︸

I

)
= 0 . (16)

Observe that
I ≤

∫ t/2

0

|| · · · ||p ds+

∫ t

t/2

|| · · · ||p ds := I1 + I2 .

On the other hand, if we put h(s) := |s|−Mf(s) then

||f(|∇κv(s)|)||p ≤ ||h(|∇κv(s)|)||∞ ||∇κv(s)||MpM . (17)

It follows from (3), (10), (12) and (17) that

I1 ≤ C
∫ t/2

0

||∇θ(DλK(t− s))||p ||u(s+ 1) f(|∇κv(s+ 1)|)||1 ds

≤ C
∫ t/2

0

(t− s)−
n+q(|λ|+θ)

4mq (s+ 1)−
n

4m ||h(|∇κv(s+ 1)|)||∞ ||∇κv(s+ 1)||MM ds

≤ C
∫ t/2

0

(t− s)−
n+q(|λ|+θ)

4mq (s+ 1)−(1−
θ

4m ) ||h(|∇κv(s+ 1)|)||∞ ds

≤ Ct−
n+q|λ|
4mq

(
t−

θ
4m

∫ t/2

0

(s+ 1)−(1−
θ

4m ) ||h(|∇κv(s+ 1)|)||∞ ds︸ ︷︷ ︸
τ(t)

)
.

Since lim
t→∞

||h(|∇κv(t)|)||∞ = 0 then for all ε > 0, there exists δ > 0 such that

||h(|∇κv(s+ 1)|)||∞ ≤ ε

for all s ≥ δ and then

t−
θ

4m

∫ t/2

δ

(s+ 1)−(1−
θ

4m ) ||h(|∇κv(s+ 1)|)||∞ ds ≤ Cε ,

where C is a constant depending on m and θ. Also, as

lim
t→∞

(
t−

θ
4m

∫ δ

0

(s+ 1)−(1−
θ

4m ) ||h(|∇κv(s+ 1)|)||∞ ds
)

= 0,

14
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then we obtain lim
t→∞

(
τ(t)

)
= 0. Similar computations on I2 provide

I2 ≤ C
∫ t

t/2

||∇θ(DλK(t− s))||1 ||u(s+ 1) f(|∇κv(s+ 1)|)||p ds

≤ C
∫ t

t/2

(t− s)−
|λ|+θ
4m (s+ 1)−

n
4m (1− 1

p )−(1−
θ

4m ) ||h(|∇κv(s+ 1)|)||∞ ds

≤ C sup
s≥t/2+1

||h(|∇κv(s)|)||∞ t−
n+q|λ|
4mq .

Since
lim
t→∞

(
sup

s≥t/2+1

||h(|∇κv(s)|)||∞
)

= 0,

we have
lim
t→∞

(
t
n+q|λ|
4mq I2

)
= 0

and this ends the proof of (i) of (15).

(ii) Behavior of higher derivatives of v. According to (11), the same decomposition and the estimates used above for Dλu(t),
it is sufficient to show that

lim
t→∞

(
t
n+q|λ|
4mq

∥∥∥ ∫ t

0

b(s+ 1).∇σ
(
DλK(t− s)

)
∗ (u− v)(s+ 1) ds

∥∥∥
p︸ ︷︷ ︸

J

)
= 0 . (18)

Observe that the decomposition J ≤ J1 + J2 as above, gives

J1 ≤
∫ t/2

0

||b(s+ 1).∇σ(DλK(t− s))||p ||(u− v)(s+ 1)||1 ds

≤ C
(
||u0||1 + ||v0||1

)
(t/2)−

n+q|λ|
4mq −

ε
4m

and

J2 ≤ C
∫ t

t/2

||b(s+ 1).∇σ(DλK(t− s))||1
(
||u(s+ 1)||p + ||v(s+ 1)||p

)
ds

≤ C (t/2)−
n

4mq

∫ t

t/2

(t− s)−
|λ|+σ
4m (s+ 1)−(1+(ε−σ)/4m) ds ≤ C (t/2)−

n+q|λ|
4mq −

ε
4m .

This implies
lim
t→∞

(
t
n+q|λ|
4mq J

)
= 0,

which completes the proof of (ii) of (15) and hence the proof of Theorem 3.1 is completed.

Sharp large time behavior
Suppose that for all p ∈ [1,∞], there is a constant C > 0 such that the solution (u, v) of (1) satisfies for all t > 0,

||u(t)||p + ||v(t)||p ≤ C (1 + t)−
n

4mq , (19)

where 1/p+ 1/q = 1. This condition seems to be valid when u0 and v0 are in L1(Rn) ∩ L∞(Rn) (see for example, Corollary
3.2 and its extension in [3]).

Theorem 3.2. Suppose that |f(t)| ≤ C|t|α for all t ∈ {s ∈ R / |s| ≤ 1}, with α < n+4m
n+κ . Then the solution (u, v) of the system

(1) verifies for all t > 0, p ∈ [1,∞] and all λ such that max
{
|λ|+ θ , |λ|+ σ , κ+ σ

}
< 2m− 1,

||Dλ
xu(x, t)− U0Dλ

xK(x, t)||p ≤ C t−
n+q|λ|
4mq ×


max

(
t−

1
4m , t−

θ
4m

)
if 4m

n+κ < α < n+4m
n+κ ,

max
(
t−

1
4m , t−

θ
4m

)
ln(1 + t) if α = 4m

n+κ ,

t
µ

4m (1 + t)−
n

4m if α < 4m
n+κ ,

||Dλ
xv(x, t)− V0Dλ

xK(x, t)||p ≤ C t−
n+q|λ|
4mq max

(
t−

1
4m , t−

ε
4m

)
,

where µ = 4m+ n− (n+ κ)α− θ and with 1/p+ 1/q = 1, U0 =

∫
Rn
u0(x) dx and V0 =

∫
Rn
v0(x) dx.

15
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Proof. It suffices to prove the results for u0 and v0 in A = L1
(
Rn; 1 + |x|

)
knowing that the weighted space

A =

{
ϕ ∈ L1(Rn),

∫
Rn
|ϕ(x)|(1 + |x|)dx <∞

}
,

with the norm
||ϕ||L1(Rn,|x|) =

∫
Rn
|ϕ(x)||x|dx,

is dense into L1(Rn). Before proceeding for the estimates on Dλu, let us recall the following technical result (see, for
example, Lemma 2.3. in [2]) which is useful for the sequel.

Lemma 3.1. Let λ < 1, ν > 0 and ζ < 1. Then, there is a constant C > 0 such that

∫ t

0

(t− s)−λ (1 + s)−ν s−ζ ds ≤ C


t−λ if ν + ζ > 1 ,

t−λ ln(1 + t) if ν + ζ = 1 ,

t1−λ−ζ (1 + t)−ν if ν + ζ < 1 .

(i) Behavior of derivatives of u. By (7), we have for all λ ∈ Nn,

Dλu(t)− U0DλK(t) =
(
DλK(t) ∗ u0 − U0DλK(t)

)
+

∫ t

0

DλK(t− s) ∗
(
a.∇θ

(
u(s) f(|∇κv(s)|

))
ds︸ ︷︷ ︸

P(t)

.

Recall that it was shown in [7] (Theorem 7) that for all t > 0, all p ∈ [1,∞] and all λ ∈ Nn such that |λ| < 2m− 1,

||DλK(t) ∗ u0 − U0DλK(t)||p ≤ Ct−
n+q(|λ|+1)

4mq ||u0||L1(Rn;|x|),

when u0 ∈ L1(Rn; 1 + |x|) and p+ q = pq.
Applying the same arguments used in Section 2 and (10)-(19), we obtain

||P(t)||p ≤
∫ t/2

0

||∇θ(DλK(t− s))||p ||u(s) f(|∇κv(s)|)||1 ds +

∫ t

t/2

||∇θ(DλK(t− s))||1 ||u(s) f(|∇κv(s)|)||p ds

:= P1(t) + P2(t)

with the following estimates

P1(t) ≤ C
∫ t/2

0

(t− s)−
n

4mq−
|λ|+θ
4m ||u(s)||∞ ||∇κv(s)||αα ds

≤ C (t/2)−
n

4mq−
|λ|+θ
4m

∫ t/2

0

(1 + s)−
n

4m s−
1

4m ((n+κ)α−n) ds

P2(t) ≤ C (t/2)−
n

4mq

∫ t

t/2

(t− s)−
|λ|+θ
4m (1 + s)−

n
4m s−

1
4m ((n+κ)α−n) ds .

It then follows, from Lemma 3.1, that

max
{
P1(t) , P2(t)

}
≤ C t−

n+q(|λ|+θ)
4mq ξ(t),

where ξ(t) =


1 if 4m

n+κ < α < n+4m
n+κ ,

ln(1 + t) if α = 4m
n+κ ,

t
1

4m

(
n+4m−(n+κ)α

)
(1 + t)−

n
4m if α < 4m

n+κ .

(ii) Behavior of derivatives of v. As for the function u, we have

Dλv(t)− V0DλK(t) =
(
DλK(t) ∗ v0 − V0DλK(t)

)
+

∫ t

0

b(s).∇θ
(
DλK(t− s)

)
∗ (u− v)(s) ds︸ ︷︷ ︸

Q(t)

.

First, for v0 ∈ L1(Rn; 1 + |x|) and p+ q = pq, we have

||DλK(t) ∗ v0 − V0DλK(t)||p ≤ Ct−
n+q(|λ|+1)

4mq ||u0||L1(Rn;|x|).

16
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For Q, as for P, write ||Q(t)||p ≤ Q1(t) +Q2(t) and derive the following estimates,

. Q1(t) ≤ C
∫ t/2

0

||b(s).∇σ(DλK(t− s))||p ||(u− v)(s)||1 ds

≤ C
(
||u0||1 + ||v0||1

) ∫ t/2

0

(t− s)−
n

4mq−
|λ|+σ
4m s−(1+(ε−σ)/4m)ds ≤ C(t/2)−

n+q(|λ|+ε)
4mq .

. Q2(t) ≤ C
∫ t

t/2

||b(s).∇σ(DλK(t− s))||1||(u− v)(s)||p ds

≤ C
∫ t

t/2

(t− s)−
|λ|+σ
4m (1 + s)−

n
4mq s−(1+(ε−σ)/4m)ds ≤ C(1 + t/2)−

n
4mq (t/2)−

|λ|+ε
4m .

This ends the proof of Theorem 3.2.
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