Research Article
Weakly (m, n)-semiprime submodules

Mohammed Issoual*

Department of Mathematics, CRMEF Rabat-Salé-Kenitra, CRMEF Khmisset, Morocco
(Received: 10 April 2023. Received in revised form: 15 July 2023. Accepted: 20 July 2023. Published online: 31 July 2023.)
© 2023 the author. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

This article gives several properties of a new type of submodules, namely weakly (m, n)-semiprime submodules where m and n are positive integers satisfying $m>n$. The primary objectives of the present article are to characterize weakly (m, n)semiprime submodules and to provide a new characterization of the von Neumann regular modules in terms of weakly (m, n)-semiprime submodules.

Keywords: von Neumann regular module; weakly (m, n)-semiprime submodule; duplication modules.
2020 Mathematics Subject Classification: 13A15, 13C12, 13C10, 13C05.

1. Introduction

In this paper, all the considered rings are commutative and unitary. Also, all the modules studied in this paper are unitary. Let A be a commutative ring and consider a proper ideal I of A. According to [10], I is said to be weakly semiprime ideal if the following property holds: whenever $0 \neq r^{2} \in I$ for some $r \in R$ then $r \in I$. Also, according to [5], I is the (m, n)-closed ideal if $x^{m} \in I$ implies $x^{n} \in I$ for each $x \in A$. A weak version of the (m, n)-closed ideal, namely the weakly (m, n)-closed ideal, was introduced and studied in [6] by Fahid et al., who generalized the concept of weakly semiprime ideal. The ideal I is said to be weakly (m, n)-closed ideal for some positive integers m and n, with $m>n$, if the following property holds: for each $x \in A$ with $0 \neq x^{m} \in I$, it holds that $x^{n} \in I$. Mostafanasab and Darani [21] studied the concept of quasi n-absorbing ideal; the ideal I is said to be quasi n-absorbing ideal if $r^{n} x \in I$ for $r, x \in R$ implies $r^{n} \in I$ or $r^{n-1} x \in I$, where n is a positive integer. Notice that a semiprime ideal is exactly a quasi 2 -absorbing ideal.

In [24], Saraç studied the properties of semiprime submodules. According to [24], a proper submodule N of an A module M is said to be semiprime submodule if whenever $a^{2} x \in N$ for some $a \in A$ and $x \in M$, then $a x \in N$. The concept of 2 -absorbing (also, weakly 2 -absorbing) submodules was introduced and investigated in [13] by Darani and Soheilnia. According to [13], a submodule N of an A-module M is said to be a 2-absorbing submodule (respectively, weakly 2 -absorbing submodule) of M if whenever $a, b \in A$ and $m \in M$ with $a b m \in N$ (respectively, $0 \neq a b m \in N$), then $a b \in(N: M)$ or $a m \in N$ or $b m \in N$. Darani and Soheilnia [14] introduced the concept of n-absorbing submodule where n is a positive integer; a proper submodule N of M is an n-absorbing submodule if whenever $a_{1} \cdots a_{n} m \in N$ for $a_{1}, \ldots, a_{n} \in A$ and $m \in M$, then either $a_{1} \cdots a_{n} \in(N: M)$ or there are $n-1$ of $a_{i}^{\prime} s$ whose product with m is in N. Recently, Issoual et al. [16] studied the concept of weakly quasi n-absorbing submodule; a proper submodule N of an A-module M is quasi n-absorbing submodule if whenever $a \in A$ and $x \in M$ such that $a^{n} x \in N$, then either $a^{n} \in(N: M)$ or $a^{n-1} x \in N$. In order to generalize the notion of semiprime submodules, Pekin et al. [23] introduced the concept of (m, n)-semiprime submodule, where m and n, with $m>n$, are positive integers; a proper submodule N of an A-module M is said to be (m, n)-semiprime if $a^{m} x \in N$ then $a^{n} x \in N$ for some $a \in A$ and $x \in M$. In the present paper, the concept of weakly (m, n)-semiprime submodules is introduced, which is a proper generalization of (m, n)-semirpime submodules. A proper submodule N of M is said to be a weakly (m, n)-semiprime submodule if whenever $a \in R, x \in M$ with $0 \neq a^{m} x \in N$, then $a^{n} x \in N$.

The remaining part of this paper is organized as follows. The next section gives several properties of weakly (m, n) semiprime submodules, including a characterization of weakly (m, n)-semiprime submodules. In Section 3, the modules in which every proper submodule is weakly (m, n)-semiprime are studied. A new characterization of the von Neumann regular module in terms of weakly (m, n)-semiprime submodules is also given in Section 3.
*E-mail address: issoual2@yahoo.fr

2. Properties of weakly (m, n)-semiprime submodules

Recall the notions of (m, n)-semiprime submodules and weakly (m, n)-semiprime submodules defined in the introduction. According to [5], a proper ideal P of a commutative ring A is said to be an (m, n)-closed ideal of A if $x^{m} \in P$ implies that $x^{n} \in P$ for each $x \in A$, where m and n, with $m>n$, are positive integers. Also, according to [6], a proper ideal P of a commutative ring A is said to be a weakly (m, n)-closed ideal of A if $0 \neq x^{m} \in P$ implies that $\neq x^{n} \in P$ for each $x \in A$, where m and n, with $m>n$, are positive integers.

Remark 2.1. If A is an A-module then every (m, n)-semiprime submodule of A is an (m, n)-closed ideal of A.
Example 2.1. Let A be a commutative ring and N be a weakly semiprime submodule of an A-module M; that is, whenever $0 \neq a^{2} x \in N$, then $a x \in N$ for each $a \in A$ and $x \in M$. Certainly, N is weakly (m, n)-semiprime submodule of M. Indeed, assume that $0 \neq a^{m} x \in N$ for some $a \in A, x \in M$. Then note that $0 \neq a^{2}\left(a^{m-2} x\right) \in M$. Since N is weakly semiprime submodule of M, we conclude that $0 \neq a^{m-2} x \in N$. Continuing with the same reasoning we get $a^{n} x \in N$. The converse is false in general as shown in the following example. Let K be a field and let R denote the ring $K[S, T]$ of polynomials over K in the determinates S, T. Let $M=R S+R T$ be a maximal ideal of R. Let $P=\left(S, T^{2}\right)$. Then P is not weakly semiprime ideal since $0 \neq T^{2} .1 \in P$, but $T \notin P$. Also, note that $\sqrt{P}=M$, thus P is M-primary ideal of R. We will show that P is weakly $(3,1)$-semiprime ideal of R. Let $0 \neq h^{3} . k \in(P) \subseteq(S)$ for some $h, k \in R$. Then $h . h^{2} k \in P$. If $h^{2} . k \in P$ we are done. If not, as P is M-primary ideal, we get $h \in M$. So $h^{2} \in M^{2}=\left(S^{2}, S T, T^{2}\right) \subseteq P$. Finally $h^{2} . k \in P$. Thus, P is weakly (3,1)-semiprime ideal of R.

Example 2.2. Every (m, n)-semiprime submodule is weakly (m, n)-semiprime submodule. But the converse is not true. For example, let $A=\mathbb{Z}_{p^{n}}$ where p is a prime number and $n>2$. Let $N=\left\{0, p^{n-1}\right\}$. Since $a^{n} x=0$ for every a, $x \in A$, we conclude that N is a weakly ($n, 1$)-semiprime ideal. However, N is not an ($n, 1$)-semiprime ideal since $p^{n} . \overline{1}=0 \in N$ and $p \notin N$. By a similar argument, N is not an (n, k)-semiprime ideal for every $n>k>0$.

Example 2.3. We consider in this example the \mathbb{Z}-module $\mathbb{Z}_{p^{n} q}$, where p and q are prime numbers and $n>2$. It is easy to see that $N=(\overline{0})$ is a weakly $(n, n-1)$-semiprime submodule of M. Indeed, let $a^{n} \bar{x}=\overline{0}$ for some $a, x \in \mathbb{Z}$. Then, we have $p^{n} q \mid a^{n} x$, which yields that $p^{n-1} q \mid a^{n-1} x$. Thus, we have $a^{n-1} \bar{x}=\overline{0}$. Therefore, $N=(\overline{0})$ is weakly $(n, n-1)$-semiprime submodule. On the other hand $(N: M)=p^{n} q \mathbb{Z}$ which is not an $(n, n-1)$-closed ideal of \mathbb{Z}, since $(p q)^{n} \in p^{n} q \mathbb{Z}$ but $(p q)^{n-1} \notin p^{n} q \mathbb{Z}$. We conclude by using Corollary 1 of [23] that ($\overline{0}$) is not an ($n, n-1$)-semiprime submodule of M.

The following propositions show that the notions of (m, n)-semiprime and weakly (m, n)-semiprime submodule coincide on certain modules.

Proposition 2.1. Let A be an integral domain and M be a torsion-free A-module. Then every weakly (m, n)-semiprime submodule is (m, n)-semi prime submodule of M.

Proof. Let N be a weakly (m, n)-semiprime submodule of M. Suppose that $a^{m} x \in N$ for some $a \in A, x \in M$. If $0 \neq a^{m} x$, then the fact that N is a weakly (m, n)-semiprime submodule of M, gives $a^{n} x \in N$. Next, we assume $a^{m} x=0$ with $0 \neq x$. Then $a^{m}=0$ as $T(M)=\{0\}$. We get $a^{m}=0$ and consequently $a=0$ since A is an integral domain. Hence, $a^{n} x=0 \in N$. Thus, N is (m, n)-semiprime submodule of M.

Proposition 2.2. Let (A, \mathcal{M}) be a local ring with the maximal ideal \mathcal{M} and let M be an A-module such that $\mathcal{M} M=0$. Then, every weakly (m, n)-semiprime submodule is an (m, n)-semiprime submodule of M.

Proof. Let N be a submodule of M which is a weakly (m, n)-semiprime M. Choose $a \in A$ and $x \in M$ such that $a^{m} x \in N$. If a is unit, then $x \in N$ and so $a^{n} x \in N$. Next, we assume that a is not unit. As (A, \mathcal{M}) is a local ring we get $a \in \mathcal{M}$. On the other hand, $\mathcal{M} M=0$, which implies $a M=0$. Thus, $a^{n} x=0 \in N$. consequently, N is an (m, n)-semiprime submodule of M.

The following theorem gives a characterization of weakly (m, n)-semiprime submodules.
Theorem 2.1. Let M be an A-module and N be a proper submodule of M. Then the following statements are equivalent.
(1). N is weakly (m, n)-semiprime submodule of M.
(2). For every $a \in A$ such that $0 \neq a^{m} N$, it holds that $\left(N:_{M} a^{m}\right)=\left(N:_{M} a^{n}\right)$.
(3). For every $a \in A$ and L submodule of M with $0 \neq a^{m} L \subset N$, then $a^{n} L \subset N$.

Proof. (1) $\Rightarrow(2)$. As $m>n$, it is clear that $\left(N: a^{n}\right) \subseteq\left(N: a^{m}\right)$. Now, let $x \in\left(N: a^{m}\right)$. Then $a^{m} x \in N$. If $0 \neq a^{m} x \in N$, we get $a^{n} x \in N$ and so $x \in\left(N: a^{n}\right)$ (as N is a weakly (m, n)-semiprime submodule). Now, suppose that $a^{m} x=0$. The fact that $0 \neq a^{m} N$ gives $0 \neq a^{m} y$ for some $y \in N$, it follows $a^{n} y \in N$ as N is weakly (m, n)-semiprime submodule of M. Set $z=x+y$, so $0 \neq a^{m} z \in N$, and by the same argument as above, we get $a^{n} z \in N$. Therefore, $a^{n} x \in N$. Hence, $x \in\left(N: a^{n}\right)$. Finally, we conclude that $\left(N: a^{m}\right) \subseteq\left(N: a^{n}\right)$ and $\left(N: a^{m}\right)=\left(N: a^{n}\right)$.
(2) \Rightarrow (3). Suppose that $0 \neq a^{m} L \subseteq N$ for some $a \in A$ and that L is a submodule of M. We have $0 \neq a^{m} N$ and $L \subseteq\left(N: a^{m}\right)$. Then by (2), we conclude that $L \subseteq\left(N: a^{n}\right)$, and this implies that $a^{n} L \subseteq N$.
$(3) \Rightarrow(1)$. Assume that $a^{n} L \subseteq N$ for every $a \in A$, where L is a submodule of M with $0 \neq a^{m} L \subseteq N$. Let $0 \neq a^{m} x \in N$ for some $a \in A$ and $x \in M$. We take $L=A x$. Then $0 \neq a^{m} L \subseteq N$. By our assumption, we get $a^{n} L \subseteq N$ and so $a^{n} x \in N$. Thus, N is a weakly (m, n)-semiprime submodule of M.

Remark 2.2. In Corollary 1 of [23] if N is (m, n)-semiprime submodule of M, then $(N: M)$ is an (m, n)-closed ideal. If N is a weakly (m, n)-semiprime submodule of M, then the residual $(N: M)$ need not to be a weakly (m, n)-closed ideal of A, as shown in the next example

Example 2.4. Consider the \mathbb{Z}-module $M:=\mathbb{Z}_{p^{m}}$ where p is a prime number and $m>n>2$. Set $N=\{\overline{0}\}$. We will show that N is a weakly (m, n)-semiprime submodule of M. Let $a^{m} \bar{x}=\overline{0}$ for some $a, x \in \mathbb{Z}$. Then $p^{m} \mid a^{m} x$. Necessarily, $p^{n} \mid a^{n} x$ otherwise p and $a^{n} x$ are coprime and this is a contradiction. Thus, we have $a^{n} \bar{x}=\overline{0}$. Hence, N is (m, n)-semiprime and thus it is weakly (m, n)-semiprime. We remark that $(N: M)=p^{m} \mathbb{Z}$ is not weakly (m, n)-closed ideal of \mathbb{Z} since $p^{m} \in(N: M)$ but $p^{n} \notin(N: M)$.

The following corollary gives a characterization of weakly (m, n) -semiprime submodules by using the concept of weakly (m, n)-closed ideals when M is an A-faithful module. Recall that an A-module M is said to be faithful module if

$$
a n n_{A}(M):=\{a \in A ; a \cdot m=0\}=\{0\} .
$$

Corollary 2.1. Let M be a faithful A-module and let N be a proper submodule of M. Then the following statements are equivalent:
(1). N is a weakly (m, n)-semiprime submodule of M.
(2). For every L submodule of M, the residual $(L: M)$ is a weakly (m, n)-closed ideal of A.

Proof. (1) $\Longrightarrow(2)$. Suppose that N is a weakly (m, n)-semiprime submodule of M. Let $0 \neq a^{m} \in(L: M)$. Since M is a faithful A-module, we have $0 \neq a^{m} L \subseteq N$. By Theorem 2.1, we conclude that $a^{n} L \subseteq N$ and hence $a^{n} \in(L: N)$. Therefore, ($L: N$) is a weakly (m, n)-closed ideal of A.
$(2) \Longrightarrow(1)$. Assume that $(L: N)$ is a weakly (m, n)-closed ideal of A for each submodule L. Let $0 \neq a^{m} x \in N$ for $a \in A$ and $x \in M$. Set $L=A x$, then $0 \neq a^{m} L \in N$, which implies $0 \neq a^{m} \in(L: N)$. By our assumption, we get $a^{n} \in(L: N)$, and hence $a^{n} x \in N$. Thus, N is a weakly (m, n)-semiprime submodule of M.

It remarked here that for some submodule L of M if $0 \neq a^{m} L \subset N$, then $a^{n} L \subset N$ is equivalent to say that $(L: N)$ is a weakly (m, n)-closed ideal of A since A is faithful.

Remark 2.3. In Corollary 2.1, the condition " M is a faithful module" is necessary, as shown in the following example.
Example 2.5. Consider the \mathbb{Z}-module $M=\mathbb{Z} \times \mathbb{Z}$, which is not a faithful \mathbb{Z}-module and consider a submodule $N=(0) \times 16 \mathbb{Z}$. Then, N is not a weakly (3,2)-semiprime submodule since $2^{3}(0,2)=(0,16) \in N$ and $2^{2}(0,2)=(0,8) \notin N$. On the other hand, $(N: M)=(0)$ is a weakly $(3,2)$-closed ideal of \mathbb{Z} since (0) is a prime ideal of \mathbb{Z}.

In the next theorem, we show the relationship between a weakly (m, n)-semiprime submodule and the fact that $(N: x)$ is a weakly (m, n)-closed ideal of A where $x \in M \backslash N$. Recall that a ring A is said to be reduced if $N i l(A)=\{0\}$.

Theorem 2.2. Let M be an A-module and N be a proper submodule of M.
(1). If $(N: x)$ is a weakly (m, n)-closed ideal of A for every $x \in M \backslash N$, then N is a weakly (m, n)-semiprime submodule of M.
(2). If A is a reduced ring, then every submodule of M is a weakly (m, n)-semiprime.
(3). If N is a weakly (m, n)-semiprime submodule of M and ann (x) is a weakly (m, n)-closed ideal of A for every each $x \in M \backslash N$, then $(N: x)$ is a weakly (m, n)-closed ideal of R.

Proof. (1). Suppose that $0 \neq a^{m} y \in N$ for some $a \in A$ and $y \in M$. If $y \in N$, we are done. Next, we assume that $y \in M \backslash N$. Since $(N: y)$ is a weakly (m, n)-closed ideal of A, we have $a^{n} \in(N: y)$, and so $a^{n} y \in N$. Hence, N is a weakly (m, n) semiprime submodule of M.
(2). It follows from Corollary 3.6 of [6]. Indeed, if A is reduced, then every proper ideal of A is weakly (m, n)-closed ideal, by Corollary 3.6(1) of [6].
(3). Let $x \in M \backslash N$. Suppose that $0 \neq a^{m} \in(N: x)$ for some $a \in A$. First, we consider the case $0 \neq a^{m} x \in N$. Since N is a weakly (m, n)-semiprime submodule of M, we have $a^{n} x \in N$, and hence $a^{n} \in(N: x)$. Now, consider the case $a^{m} x=0$. Then, $0 \neq a^{m} \in \operatorname{ann}(x)$, and so $a^{n} \in \operatorname{ann}(x)$. Consequently, $(N: x)$ is a weakly (m, n)-closed ideal of A.

Example 2.6. Let N be a weakly (m, n)-semiprime submodule of M and take $x \in M \backslash N$. We will show that ($N: x$) need not to be a weakly (m, n)-closed ideal of A. Indeed, let m and n, with $m>n$, be positive integers and $M=\mathbb{Z}^{p^{m}}$ be a \mathbb{Z}-module, where p is a prime number. Let $N=(\overline{0})$. It is clear that N is a weakly (m, n)-semiprime submodule of M. On the other hand, $(N: p)=p^{m-1} \mathbb{Z}$ is not a weakly (m, n)-closed ideal of \mathbb{Z} since $p^{m} \in(N: p)$ but $p^{n} \notin(N: p)$.

Let A be an integral domain. An A-module M is said to be torsion-free if $m a=0$ for some $a \in A$ and $m \in M$, implies $a=0$ or $m=0$.

Theorem 2.3. Let A be an integral domain, M be a torsion-free A-module and N be a proper submodule of M. The following statements are equivalent.
(1). N is weakly (m, n)-semiprime submodule of M.
(2). $(N: x)$ is weakly (m, n)-closed ideal of R for each $x \in M \backslash N$.

Proof. (2) $\Rightarrow(1)$. It follows from the Theorem 2.2.
$(1) \Rightarrow(2)$. Let $0 \neq a^{m} \in(N: x)$ for some $a \in A$ and $x \in M$. If $x=0$, then $(N: x)=A$, and we are done. Next, we assume that $0 \neq x$. Since M is a torsion-free A-module, we get $0 \neq a^{m} x \in N$. The fact that N is a weakly (m, n)-semiprime submodule of M, gives $a^{n} x \in N$, and thus $a^{n} \in(N: x)$. Hence, $(N: x)$ is a weakly (m, n)-closed ideal of A.

Our next objective is the study of the stability of the tensor product of weakly (m, n)-semiprime submodules.
Theorem 2.4. Let (A, \mathcal{M}) be a local ring and M be an A-module.
(1). If F is a non-zero finitely generated flat A-module and N is a finitely generated weakly (m, n)-semiprime submodule of M such that $F \otimes N \neq F \otimes M$, then $F \otimes N$ is a weakly (m, n)-semiprime submodule of $F \otimes M$.
(2). If F is a finitely generated faithful flat A-module and N is a finitely generated submodule of M, then the following statements are equivalent:
(a). N is a weakly (m, n)-semiprime submodule of M.
(b). $F \otimes N$ is a weakly (m, n)-semiprime submodule of $F \otimes M$.

Proof. (1). Let F be a finitely flat module, N be a finitely weakly (m, n)-semiprime submodule of M and take $a \in R$ such that $0 \neq a^{m}(F \otimes N)$. Since $0 \neq a^{m}(F \otimes N)=F \otimes a^{m} N$ and (A, \mathcal{M}) is a local ring, we deduce that $0 \neq a^{m} N$ (see Exercise 3 of Chapter 2 in [8]). Also, by Theorem 6 of [9], we have $\left(F \otimes N:_{F \otimes M} a^{m}\right)=F \otimes\left(N:_{M} a^{m}\right)$, and by Theorem 2.1 we get $\left(F \otimes N:_{F \otimes M} a^{m}\right)=\left(F \otimes N:_{F \otimes M} a^{n}\right)$. By Theorem 2.1 we deduce that $F \otimes N$ is a weakly (m, n)-semiprime submodule of $F \otimes M$.
(2). $(a) \Rightarrow(b)$. Since F is a faithful flat module and N is a proper submodule of M, we have $F \otimes N \neq F \otimes M$. Now, the result follows from Part (1).
$(b) \Rightarrow(a)$. Suppose that $F \otimes N$ is a weakly (m, n)-semiprime submodule of $F \otimes M$. Take $a \in R$ with $0 \neq a^{m} N$. Since (A, \mathcal{M}) is a local ring and F, N, are finitely generated modules, we get $0 \neq a^{m}(F \otimes N)$. By Theorem 2.1 and Lemma 3.2 of [9], we have

$$
F \otimes\left(N:_{M} a^{m}\right)=\left(F \otimes N:_{F \otimes M} a^{n}\right)=F \otimes\left(N ;_{M} a^{n}\right) .
$$

Thus, $F \otimes\left(N:_{M} a^{m}\right)=F \otimes\left(N:_{M} a^{n}\right)$. Since the sequence

$$
0 \rightarrow F \otimes\left(N:_{M} a^{n}\right) \hookrightarrow F \otimes\left(N:_{M} a^{m}\right) \rightarrow 0
$$

is exact and F is a faithful module, we get the exact sequence

$$
0 \rightarrow\left(N:_{M} a^{n}\right) \hookrightarrow\left(N:_{M} a^{m}\right) \rightarrow 0
$$

which implies $\left(N:_{M} a^{n}\right)=\left(N:_{M} a^{m}\right)$. Now, the desired result follows from Theorem 2.1.

Theorem 2.5. Let $f: M \longrightarrow M^{\prime}$ be a homomorphism of A-modules.
(1). If N is a weakly (m, n)-semiprime submodule of M containing $\operatorname{ker}(f)$ and if f is surjective, then $f(N)$ is a weakly (m, n)-semiprime submodule of M^{\prime}.
(2). If N^{\prime} is a weakly (m, n)-semiprime submodule of M^{\prime} and if f is injective, then $f^{-1}\left(N^{\prime}\right)$ is a weakly (m, n)-semiprime submodule of M.

Proof. (1). Suppose that f is surjective and $\operatorname{ker}(f) \subseteq N$, where N is a weakly (m, n)-semiprime submodule of M. Take $0 \neq a^{m} x^{\prime} \in N^{\prime}$ for some $a \in A$ and $x^{\prime} \in M^{\prime}$. Then there exists $x \in M$ such that $x^{\prime}=f(x)$. Since $0 \neq f\left(a^{m} x\right) \in f(N)$ and $\operatorname{ker}(f) \subseteq N$, we have $0 \neq a^{m} x \in N$. Since N is a weakly (m, n)-semiprime submodule of M, we get $a^{n} x \in N$. It follows that $a^{n} f(x)=a^{n} x^{\prime} \in f(N)$. Hence, $f(N)$ is a weakly (m, n)-semiprime submodule of M^{\prime}, as desired.
(2). Assume that f is a monomorphism of A-modules and N^{\prime} is a weakly (m, n)-semiprime submodule of M^{\prime}. Take $0 \neq a^{m} x \in f^{-1}\left(N^{\prime}\right)$ for some $a \in A, x \in M$. So, $0 \neq a^{m} f(x) \in N .^{\prime}$ The fact that N is a weakly (m, n)-semiprime submodule of M^{\prime}, gives $a^{n} f(x) \in N^{\prime}$. Therefore, $a^{n} x \in f^{-1}\left(N^{\prime}\right)$. Hence, $f^{-1}\left(N^{\prime}\right)$ is a weakly (m, n)-semiprime submodule of M.

Corollary 2.2. Let N be a proper submodule of M.
(1). If L is a submodule of M with $L \subseteq N$ and if N is a weakly (m, n)-semiprime submodule of M, then N / L is a weakly (m, n)-semiprime submodule of M / L.
(2). If L is a submodule of M with $L \subseteq N$ and if N / L is a weakly (m, n)-semiprime submodule of M / L, and if L is a weakly (m, n)-semiprime submodule of M, then N is a weakly (m, n)-semiprime submodule of M.

Proof. (1). It is a direct consequence of Theorem 2.5(1).
(2). Assume that N / L is a weakly (m, n)-semiprime submodule of M / L and L is a weakly (m, n)-semiprime submodule of M. Take $0 \neq a^{m} x \in N$ for some $a \in A, x \in M$. Then $a^{m}(x+L) \in N / L$. If $a^{m}(x+L)=0_{M / L}$, then $0 \neq a^{m} x \in L$, which is a weakly (m, n)-semiprime submodule of M. Thus, $a^{n} x \in L$ and so $a^{n} x \in N$. Next, we assume that $0 \neq a^{m}(x+L)$. The fact that N / L is a weakly (m, n)-semiprime submodule of M / L gives that $a^{n}(x+L) \in N / L$. Hence, $a^{n} x \in N$ and N is a weakly (m, n)-semiprime submodule of M. Therefore, N is weakly (m, n)-semiprime submodule of M.

Pekin et al. [23] studied the concept of (m, n)-semiprime submodules over the trivial extension ring $A(+) M$, where A is a commutative ring and M is an A-module. For more detail on trivial extensions of rings, see [7]. We end this section by giving another way to construct weakly (m, n)-semiprime submodules that are not (m, n)-semiprime. Let A be a ring, I be an ideal of A, and M be an A-module, and set

$$
M \bowtie I:=\left\{\left(x, x^{\prime}\right) \in M \times M \mid x-x^{\prime} \in I M\right\}
$$

which is a $A \bowtie I$-module with the multiplication given by

$$
(r, r+i)\left(x, x^{\prime}\right)=\left(r x,(r+i) x^{\prime}\right), \quad \text { where } \quad r \in A, i \in I, \quad \text { and } \quad\left(x, x^{\prime}\right) \in M \bowtie I .
$$

According to [12], $M \bowtie I$ is known as the duplication of the A-module M along the ideal I. If N is a submodule of M, then it is clear that

$$
N \bowtie I:=\left\{\left(x, x^{\prime}\right) \in N \times M \mid x-x^{\prime} \in I M\right\} \quad \text { and } \quad \bar{N}:=\left\{\left(x, x^{\prime}\right) \in M \times N \mid x-x^{\prime} \in I M\right\}
$$

are submodules of $M \bowtie I$.
Lemma 2.1. Let A be a ring, I be an ideal of A, and M be an A-module. Let N be a submodule of M. Let m and n be positive integers satisfying $m>n$.
(1). $N \bowtie I$ is an (m, n)-semiprime submodule of $M \bowtie I$ if and only if N is an (m, n)-semiprime submodule of M.
(2). \bar{N} is an (m, n)-semiprime submodule of $M \bowtie I$ if and only if N is an (m, n)-semiprime submodule of M.

Proof. (1). Assume that $N \bowtie I$ is an (m, n)-semiprime submodule of $M \bowtie I$. Take $a^{m} x \in N$ for some $a \in A, x \in M$. Then $(a, a)^{m}(x, x) \in N \bowtie I$. The fact that $N \bowtie I$ is an (m, n)-semiprime submodule of $M \bowtie I$, gives that $(a, a)^{n}(x, x) \in N \bowtie I$. So, $a^{n} x \in N$. Hence, N is an (m, n)-semiprime submodule of M. Conversely, assume that N is an (m, n)-semiprime submodule of M. Take $(a, a+i)^{m}\left(x, x^{\prime}\right)$ for some $(a, a+i) \in A \bowtie I,\left(x, x^{\prime}\right) \in M \bowtie I$. Then $\left(a^{m} x,(a+i)^{m} x^{\prime}\right) \in N$ and so $a^{m} x \in N$. As N is an (m, n)-semiprime submodule of M, we conclude that $a^{n} x \in N$, which implies $(a, a+i)^{n}\left(x, x^{\prime}\right) \in N \bowtie I$ and this shows that $N \bowtie$ is an (m, n)-semiprime submodule of $M \bowtie I$.
(2). The proof is similar to the proof of (1) and so is omitted.

The following definition is useful for studying weakly (m, n)-semirpime submodules that are not (m, n)-semirpime submodules.

Definition 2.1. Let M be an A-module where A is a commutative ring, $m \geq n>0$ are a positive integers, and N a weakly (m, n)-semiprime submodule of M. Then $a \in A$ is an (m, n)-unbreakable-zero element of N if there exists $x \in M$ such that $a^{m} x=0$ and $a^{n} x \notin N$. (Thus, N has an (m, n)-unbreakable-zero element if and only if N is a weakly (m, n)-semiprime submodule of M that is not (m, n)-semiprime.)

Theorem 2.6. The following statements are equivalents:
(1). $N \bowtie I$ is a weakly (m, n)-semiprime submodule which is not an (m, n)-semiprime submodule of $M \bowtie I$.
(2). N is a weakly (m, n)-semiprime submodule that is not an (m, n)-semiprime submodule of M, and for every (m, n) -unbreakable-zero element $a \in A$ of N, it holds that $(a+i)^{m} M=0$ for every $i \in I$.

Proof. (1) \Rightarrow (2). Suppose that $N \bowtie I$ is a weakly (m, n)-semiprime submodule of $M \bowtie I$. Take $0 \neq a^{m} x \in N$ for some $a \in A, x \in M$. Then $0 \neq(a, a)^{m}(x, x) \in N \bowtie I$. As $N \bowtie I$ is a weakly (m, n)-semiprime submodule of $M \bowtie I$, we obtain that $(a, a)^{n}(x, x) \in N \bowtie I$, which implies $a^{n} x \in N$ and shows that N is a weakly (m, n)-semiprime submodule of M. By Lemma 2.1, N is not an (m, n)-semiprime submodule of M. Now, let $a \in A$ be an (m, n)-unbreakable-zero element of N; that is, there exists $x \in M$ such that $a^{m} x=0$ and $a^{n} x \notin N$. We will show that $(a+i)^{m} M=0$ for every $i \in I$. Since N is a weakly (m, n)-semiprime submodule of M that is not (m, n)-semiprime, N has an (m, n)-unbreakable-zero $a \in A$. By the way of contradiction, suppose that there exists $i \in I$ such that $(a+i)^{m} y=0$ for some $y \in M$. Then, $0 \neq(a, a+i)^{m}=\left(0,(a+i)^{m} y\right) \in N \bowtie I$. As $N \bowtie I$ is a weakly (m, n)-semiprime submodule of $M \bowtie I$, we conclude that $(a, a+i)^{n}(x, y) \in N \bowtie I$ and so $a^{n} x \in I$, which is a contradiction. Hence, $(a+i)^{m} M=0$ for every $i \in I$.
$(2) \Rightarrow(1)$. Suppose that N is a weakly (m, n)-semiprime submodule which is not (m, n)-semiprime and $(a+i)^{m} M=0$ if $a \in A$ is a (m, n)-unbreakable-zero element of N. Let $0 \neq(a, a+i)^{m}\left(x, x^{\prime}\right) \in N \bowtie I$. Then $a^{m} x \in N$ and $(a+i)^{m} x^{\prime}-a^{m} x \in I M$. Assume that $0 \neq a^{m} x \in N$. As N is a weakly (m, n)-semiprime submodule of M we get $a^{n} x \in N$. Now, assume that $a^{m} x=0$, then necessarily $0 \neq(a+i)^{m} x$. If $a^{n} x \notin N$, then a is an (m, n)-unbreakable-zero element of N. By our assumption, we have $(a+i)^{m} M=0$. This is a contradiction. Hence, $a^{n} x \in N$.

Theorem 2.7. Let M be an A-module, N be a submodule of M, and m, n, are positive integers satisfying $m>n$. Let

$$
\bar{N}:=\left\{\left(x, x^{\prime}\right) \in M \times N ; x-x^{\prime} \in I M\right\} .
$$

The following statements are equivalent:
(1). \bar{N} is a weakly (m, n)-submodule of $M \bowtie I$.
(2). N is a weakly (m, n)-submodule of M and the equation $(a-i)^{m} M=0$ holds for every $i \in I$ and for an (m, n)-unbreakablezero element $a \in A$ of N.

Proof. It is the same as the proof of Theorem 2.6.

3. Modules over which every submodule is weakly (m, n)-semiprime

The following result gives the constraints under which every given proper submodule is a weakly (m, n)-semiprime submodule.

Theorem 3.1. Let M be an A-module and m, n, be two positive integers such that $m>n$. The following statements are equivalents:
(1). Every proper submodule is a weakly (m, n)-semiprime submodule of M.
(2). For every submodule N of M and for every $a \in A$ such that $0 \neq a^{m} N$, the descending chain

$$
a N \supseteq a^{2} N \supseteq \cdots \supseteq a^{m} N \supseteq \cdots
$$

of submodules of M terminates at the $n^{\text {th }}$ step.
(3). For every submodule N of M and for every $a \in A$ with $0 \neq a^{m} N$, it holds that $a^{n} N=a^{m} N$.

Proof. (1) \Rightarrow (2). Take $a \in A$ and let N be a submodule of M such that $0 \neq a^{m} N$. If $a^{m} N=M$ then we are done. Next, we assume that $a^{m} N$ is a proper submodule of M. Since $0 \neq a^{m} N \subseteq a^{m} N$ and N is a weakly (m, n)-semiprime submodule of M, by Theorem 2.1 we have $a^{n} N \subseteq a^{m} N$, which implies that $a^{n} N=a^{m} N$. Hence, the descending chain $a N \supseteq a^{2} N \supseteq \cdots \supseteq a^{m} N \supseteq \cdots$, terminates at the $n^{\text {th }}$ step.
$(2) \Rightarrow(3)$. It is trivial.
$(3) \Rightarrow(1)$. Let N be a proper submodule of M. Take $a \in A$ and let K be a submodule of M such that $0 \neq a^{m} K \subseteq N$. By our assumption $a^{n} K=a^{m} K \subseteq N$. Now, by Theorem 2.1, we conclude that N is a weakly (m, n)-semiprime submodule of M.

According to $[11,15]$, an A-module M is said to be multiplication module if every submodule N of M has the form $N=I M$, where I is an ideal of A. In this case, we have $N=(N: M) M$. For more detail about multiplication modules, see [1-4]

Let M be an A-module. According to [20], M is a reduced module if for every $a \in A, x \in M$ with $a x=0, a M \cap A x=0$, or equivalently $a^{2} x=0$ implies $a x=0$.

According to [22], a commutative ring A is a von Neumann regular ring if for every $a \in A$, there exist $b \in A$ such that $a=a^{2} b$. In [17], Jayarm and Tekir studied the concept of von Neumann regular modules (see also [18, 19]) by introducing the concept M-von Neumann regular elements of modules as follows. If M is an A-module, then an element $a \in A$ is an M-von Neumann regular element if $a M=a^{2} M$. Also, an A-module M is said to be a von Neumann regular module if for every $x \in M, A x=a M=a^{2} M$ for some $a \in A$.

Our next objective is to give a characterization of von Neumann regular modules using the properties of weakly (m, n) semi prime submodules.

Theorem 3.2. Let M be a finitely generated A-module. The following statements are equivalents:
(1). M is an von Neumann regular module.
(2). M is a multiplication reduced module in which every submodule is weakly (m, n)-semiprime submodule

Proof. We follow the same reasoning as $(1) \Leftrightarrow(2)$ in Theorem 8 of [23].
$(2) \Rightarrow(1)$. Let M be a finitely generated reduced multiplication module in which every proper submodule is a weakly (m, n)-semiprime. Take $a \in A$. We will show that $a M=a^{2} M$. If $a^{m} M=M$, then clearly we have $a M=a^{2} M$. Next, we assume that $a^{m} M$ is a proper submodule of M. First, consider the case $a^{m} M=0$. Since M is reduced, we have ann (M) is a semiprime ideal, which implies that $a \in \operatorname{ann}(M)$. Thus, $a M=a^{2} M=0$. Next, we consider the case $0 \neq a^{m} M$. As $a^{m} M$ is a weakly (m, n)-semiprime submodule and $0 \neq a^{m} M \subseteq a^{m} M$, we conclude by Theorem 2.1 that $a^{n} M=a^{m} M$. We deduce that $a^{n+1} M=a^{n} M=a\left(a^{n} M\right)$. Since $a^{n} M$ is a finitely generated module, by Corollary 2.5 of [8] we have $x\left(a^{n} M\right)=0$ for some $x \in A$ such that $x \equiv 1\left(\left(a^{n}\right)\right)$. Thus, there exists $b \in A$ such that $(1-a b) a^{n} M=0$. AS M is reduced, we get $(1-a b) a M=0$, Which implies $a M=a^{2} b M \subseteq a^{2} M$. Consequently, we obtain $a M=a^{2} M$, as desired.
$(1) \Rightarrow(2)$. Suppose that M is a von Neumann regular module. By the proof of Theorem 8 of [23], M is a multiplicationreduced module. Now, let N be a proper submodule of M. Take $a \in A$ and let L be a submodule of M such that $0 \neq a^{m} L \subseteq N$. Since M is a multiplication module, we have $L=(L: M) M$, which then gives $0 \neq a^{m} L=(L: M) a^{m} M=(L: M) a^{n} M$, and hence $0 \neq a^{m} N=a^{n} N$. Therefore, N is a weakly (m, n)-semiprime submodule.

Corollary 3.1. Let M be a finitely generated A-module. The following statements are equivalent:
(1). M is a von Neumann regular module.
(2). M is a multiplication-reduced module in which every submodule is an (m, n)-semiprime submodule.
(3). M is a multiplication-reduced module in which every submodule is a weakly (m, n)-semiprime submodule.

Proof. (1) $\Leftrightarrow(2)$. It follows from Theorem 8 of [23].
$(2) \Rightarrow(3)$. It is trivial.
$(3) \Rightarrow(1)$. It follows from Theorem 3.2.

Acknowledgement

The authors would like to thank the referees for their great efforts in proofreading the manuscript.

References

[1] M. M. Ali, Invertibility of multiplication modules, New Zealand J. Math. 35 (2006) 17-29.
[2] M. M. Ali, Idempotent and nilpotent submodules of multiplication modules, Comm. Algebra 36 (2008) 4620-4642.
[3] M. M. Ali, Invertibility of multiplication modules III, New Zealand J. Math. 39 (2009) 193-213.
[4] R. Ameri, On the prime submodules of multiplication modules, Int. J. Math. Math. Sci. 27 (2003) 1715-1724.
[5] D. F. Anderson, A. Badawi, On (m, n)-closed ideals of commutative rings, J. Algebra Appl. 16 (2017) \#1750013.
[6] D. F. Anderson, A. Badawi, B. Fahid, Weakly (m, n)-closed ideals and (m, n)-von Neuman regular rings, J. Korean Math. Soc. 55 (2018) $1031-1043$.
[7] D. D. Anderson, M. Winderes, Idealisation of a module, J. Comm. Algebra 1 (2009) 3-56.
[8] M. F. Atiyah, I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, 1969.
[9] A. Azizi. Weakly prime submodules and prime submodules, Glasgow Math. J. 48 (2006) 343-346.
[10] A. Badawi, On weakly semi prime ideals of commutative rings, Beitr. Algebra Geom. 57 (2016) 589-597.
[11] A. Bernard, Multiplication modules. J. Algebra 71 (1981) 174-178.
[12] E. M. Bouba, N. Mahdou, M. Tamekkante, Duplication of a module along an ideal, Acta Math. Hungar. 154 (2018) 29-42.
[13] A. Y. Darani, F. Soheilnia, 2-Absorbing and weakly 2-absorbing submodules, Thai J. Math. 9 (2011) 577-584.
[14] A. Y. Darani, F. Soheilnia, On n-absorbing submodules, Math. Commun. 17 (2012) 547-557.
[15] Z. A. El-Bast, P. P. Smith, Multiplication modules, Comm. Algebra 16 (1988) 755-779.
[16] M. Issoual, N. Mahou, A. Moutui, On weakly quazi n-absorbing submodule, Bull. Korean Math. Soc. 58 (2021) 1507-1520.
[17] C. Jayaram, Ü. Tekir, von Neumann regular modules, Comm. Algebra 46 (2018) 2205-2217.
[18] C. Jayaram, Ü. Tekir, S. Koç, Quasi regular modules and trivial extension, Hecettepe J. Math. Stat. 50 (2021) 120-134.
[19] S. Koç, On strongly π-regular modules, Sakayra Univ. J. Sci. 24 (2020) 675-684.
[20] T. K. Lee, Y. Zhou, Reduced modules.Rings, modules, algebras and abelian groups, Lect. Notes Pure Appl. Math. 236 (2004) 365-377.
[21] H. Mostafanasab, A. Y. Darani, On n-absorbing ideals and two generalizations of semiprime ideals, Thai J. Math. 15 (2017) 387-408.
[22] J. V. Neumann, On regular rings, Proc. Natl. Acad. Sci. USA 22 (1936) 707-713.
[23] A. Pekin, S. Kuç, A. Ugurlu, On (m, n)-semiprime submodule, Proc. Est. Acad. Sci. 70 (2021) 320-267.
[24] B. Saraç, On semiprime submodules, Comm. Algebra 37 (2009) 2485-2495.

