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Abstract

This article gives several properties of a new type of submodules, namely weakly (m,n)-semiprime submodules where m and
n are positive integers satisfying m > n. The primary objectives of the present article are to characterize weakly (m,n)-
semiprime submodules and to provide a new characterization of the von Neumann regular modules in terms of weakly
(m,n)-semiprime submodules.
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1. Introduction

In this paper, all the considered rings are commutative and unitary. Also, all the modules studied in this paper are unitary.
Let A be a commutative ring and consider a proper ideal I of A. According to [10], I is said to be weakly semiprime ideal
if the following property holds: whenever 0 6= r2 ∈ I for some r ∈ R then r ∈ I. Also, according to [5], I is the (m,n)-closed
ideal if xm ∈ I implies xn ∈ I for each x ∈ A. A weak version of the (m,n)-closed ideal, namely the weakly (m,n)-closed
ideal, was introduced and studied in [6] by Fahid et al., who generalized the concept of weakly semiprime ideal. The ideal
I is said to be weakly (m,n)-closed ideal for some positive integers m and n, with m > n, if the following property holds: for
each x ∈ A with 0 6= xm ∈ I, it holds that xn ∈ I. Mostafanasab and Darani [21] studied the concept of quasi n-absorbing
ideal; the ideal I is said to be quasi n-absorbing ideal if rnx ∈ I for r, x ∈ R implies rn ∈ I or rn−1x ∈ I, where n is a positive
integer. Notice that a semiprime ideal is exactly a quasi 2-absorbing ideal.

In [24], Saraç studied the properties of semiprime submodules. According to [24], a proper submodule N of an A-
module M is said to be semiprime submodule if whenever a2x ∈ N for some a ∈ A and x ∈ M, then ax ∈ N. The concept
of 2-absorbing (also, weakly 2-absorbing) submodules was introduced and investigated in [13] by Darani and Soheilnia.
According to [13], a submodule N of an A-module M is said to be a 2-absorbing submodule (respectively, weakly 2-absorbing
submodule) of M if whenever a, b ∈ A and m ∈M with abm ∈ N (respectively, 0 6= abm ∈ N ), then ab ∈ (N : M) or am ∈ N

or bm ∈ N. Darani and Soheilnia [14] introduced the concept of n-absorbing submodule where n is a positive integer; a
proper submodule N of M is an n-absorbing submodule if whenever a1 · · · anm ∈ N for a1, . . . , an ∈ A and m ∈ M, then
either a1 · · · an ∈ (N : M) or there are n − 1 of a′is whose product with m is in N. Recently, Issoual et al. [16] studied the
concept of weakly quasi n-absorbing submodule; a proper submodule N of an A-module M is quasi n-absorbing submodule
if whenever a ∈ A and x ∈ M such that anx ∈ N, then either an ∈ (N : M) or an−1x ∈ N. In order to generalize the
notion of semiprime submodules, Pekin et al. [23] introduced the concept of (m,n)-semiprime submodule, where m and
n, with m > n, are positive integers; a proper submodule N of an A-module M is said to be (m,n)-semiprime if amx ∈ N

then anx ∈ N for some a ∈ A and x ∈ M. In the present paper, the concept of weakly (m,n)-semiprime submodules is
introduced, which is a proper generalization of (m,n)-semirpime submodules. A proper submodule N of M is said to be a
weakly (m,n)-semiprime submodule if whenever a ∈ R, x ∈M with 0 6= amx ∈ N , then anx ∈ N.

The remaining part of this paper is organized as follows. The next section gives several properties of weakly (m,n)-
semiprime submodules, including a characterization of weakly (m,n)-semiprime submodules. In Section 3, the modules
in which every proper submodule is weakly (m,n)-semiprime are studied. A new characterization of the von Neumann
regular module in terms of weakly (m,n)-semiprime submodules is also given in Section 3.
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2. Properties of weakly (m,n)–semiprime submodules

Recall the notions of (m,n)-semiprime submodules and weakly (m,n)-semiprime submodules defined in the introduction.
According to [5], a proper ideal P of a commutative ring A is said to be an (m,n)-closed ideal of A if xm ∈ P implies that
xn ∈ P for each x ∈ A, where m and n, with m > n, are positive integers. Also, according to [6], a proper ideal P of a
commutative ring A is said to be a weakly (m,n)-closed ideal of A if 0 6= xm ∈ P implies that 6= xn ∈ P for each x ∈ A,
where m and n, with m > n, are positive integers.

Remark 2.1. If A is an A-module then every (m,n)-semiprime submodule of A is an (m,n)-closed ideal of A.

Example 2.1. Let A be a commutative ring and N be a weakly semiprime submodule of an A-module M ; that is, whenever
0 6= a2x ∈ N, then ax ∈ N for each a ∈ A and x ∈ M. Certainly, N is weakly (m,n)-semiprime submodule of M. Indeed,
assume that 0 6= amx ∈ N for some a ∈ A, x ∈ M. Then note that 0 6= a2(am−2x) ∈ M. Since N is weakly semiprime
submodule of M, we conclude that 0 6= am−2x ∈ N. Continuing with the same reasoning we get anx ∈ N. The converse is
false in general as shown in the following example. Let K be a field and let R denote the ring K[S, T ] of polynomials over K
in the determinates S, T. Let M = RS+RT be a maximal ideal of R. Let P = (S, T 2). Then P is not weakly semiprime ideal
since 0 6= T 2.1 ∈ P , but T /∈ P. Also, note that

√
P = M, thus P is M -primary ideal of R. We will show that P is weakly

(3, 1)-semiprime ideal of R. Let 0 6= h3.k ∈ (P ) ⊆ (S) for some h, k ∈ R. Then h.h2k ∈ P. If h2.k ∈ P we are done. If not, as
P is M -primary ideal, we get h ∈ M. So h2 ∈ M2 = (S2, ST, T 2) ⊆ P. Finally h2.k ∈ P. Thus, P is weakly (3, 1)-semiprime
ideal of R.

Example 2.2. Every (m,n)-semiprime submodule is weakly (m,n)-semiprime submodule. But the converse is not true.
For example, let A = Zpn where p is a prime number and n > 2. Let N = {0, pn−1}. Since anx = 0 for every a, x ∈ A, we
conclude that N is a weakly (n, 1)-semiprime ideal. However, N is not an (n, 1)-semiprime ideal since pn.1 = 0 ∈ N and
p /∈ N. By a similar argument, N is not an (n, k)-semiprime ideal for every n > k > 0.

Example 2.3. We consider in this example the Z-module Zpnq, where p and q are prime numbers and n > 2. It is easy to see
that N = (0) is a weakly (n, n−1)-semiprime submodule of M. Indeed, let anx = 0 for some a, x ∈ Z. Then, we have pnq|anx,
which yields that pn−1q|an−1x. Thus, we have an−1x = 0. Therefore, N = (0) is weakly (n, n − 1)-semiprime submodule.
On the other hand (N : M) = pnqZ which is not an (n, n − 1)-closed ideal of Z, since (pq)n ∈ pnqZ but (pq)n−1 /∈ pnqZ. We
conclude by using Corollary 1 of [23] that (0) is not an (n, n− 1)-semiprime submodule of M.

The following propositions show that the notions of (m,n)-semiprime and weakly (m,n)-semiprime submodule coincide
on certain modules.

Proposition 2.1. Let A be an integral domain and M be a torsion-free A-module. Then every weakly (m,n)-semiprime
submodule is (m,n)-semi prime submodule of M.

Proof. Let N be a weakly (m,n)-semiprime submodule of M. Suppose that amx ∈ N for some a ∈ A, x ∈ M. If 0 6= amx,
then the fact that N is a weakly (m,n)-semiprime submodule of M, gives anx ∈ N. Next, we assume amx = 0 with 0 6= x.

Then am = 0 as T (M) = {0}. We get am = 0 and consequently a = 0 since A is an integral domain. Hence, anx = 0 ∈ N.

Thus, N is (m,n)-semiprime submodule of M.

Proposition 2.2. Let (A,M) be a local ring with the maximal ideal M and let M be an A-module such that MM = 0.

Then, every weakly (m,n)-semiprime submodule is an (m,n)-semiprime submodule of M.

Proof. Let N be a submodule of M which is a weakly (m,n)-semiprime M. Choose a ∈ A and x ∈M such that amx ∈ N. If
a is unit, then x ∈ N and so anx ∈ N. Next, we assume that a is not unit. As (A,M) is a local ring we get a ∈ M. On the
other hand, MM = 0, which implies aM = 0. Thus, anx = 0 ∈ N. consequently, N is an (m,n)-semiprime submodule of
M.

The following theorem gives a characterization of weakly (m,n)-semiprime submodules.

Theorem 2.1. Let M be an A-module and N be a proper submodule of M. Then the following statements are equivalent.

(1). N is weakly (m,n)-semiprime submodule of M.

(2). For every a ∈ A such that 0 6= amN, it holds that (N :M am) = (N :M an).

(3). For every a ∈ A and L submodule of M with 0 6= amL ⊂ N, then anL ⊂ N.
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Proof. (1) ⇒ (2). As m > n, it is clear that (N : an) ⊆ (N : am). Now, let x ∈ (N : am). Then amx ∈ N. If 0 6= amx ∈ N, we
get anx ∈ N and so x ∈ (N : an) (as N is a weakly (m,n)-semiprime submodule). Now, suppose that amx = 0. The fact that
0 6= amN gives 0 6= amy for some y ∈ N, it follows any ∈ N as N is weakly (m,n)-semiprime submodule of M. Set z = x+ y,

so 0 6= amz ∈ N, and by the same argument as above, we get anz ∈ N. Therefore, anx ∈ N. Hence, x ∈ (N : an). Finally, we
conclude that (N : am) ⊆ (N : an) and (N : am) = (N : an).

(2) ⇒ (3). Suppose that 0 6= amL ⊆ N for some a ∈ A and that L is a submodule of M. We have 0 6= amN and
L ⊆ (N : am). Then by (2), we conclude that L ⊆ (N : an), and this implies that anL ⊆ N.

(3)⇒ (1). Assume that anL ⊆ N for every a ∈ A, where L is a submodule of M with 0 6= amL ⊆ N . Let 0 6= amx ∈ N for
some a ∈ A and x ∈M. We take L = Ax. Then 0 6= amL ⊆ N. By our assumption, we get anL ⊆ N and so anx ∈ N. Thus, N
is a weakly (m,n)-semiprime submodule of M.

Remark 2.2. In Corollary 1 of [23] if N is (m,n)-semiprime submodule of M, then (N : M) is an (m,n)-closed ideal. If N
is a weakly (m,n)-semiprime submodule of M, then the residual (N : M) need not to be a weakly (m,n)-closed ideal of A, as
shown in the next example

Example 2.4. Consider the Z-module M := Zpm where p is a prime number and m > n > 2. Set N = {0}. We will show
that N is a weakly (m,n)-semiprime submodule of M. Let amx = 0 for some a, x ∈ Z. Then pm|amx. Necessarily, pn|anx
otherwise p and anx are coprime and this is a contradiction. Thus, we have anx = 0. Hence, N is (m,n)-semiprime and thus
it is weakly (m,n)-semiprime. We remark that (N : M) = pmZ is not weakly (m,n)-closed ideal of Z since pm ∈ (N : M)

but pn /∈ (N : M).

The following corollary gives a characterization of weakly (m,n)-semiprime submodules by using the concept of weakly
(m,n)-closed ideals when M is an A-faithful module. Recall that an A-module M is said to be faithful module if

annA(M) := {a ∈ A; a.m = 0} = {0}.

Corollary 2.1. Let M be a faithful A-module and let N be a proper submodule of M. Then the following statements are
equivalent:

(1). N is a weakly (m,n)-semiprime submodule of M.

(2). For every L submodule of M , the residual (L : M) is a weakly (m,n)-closed ideal of A.

Proof. (1) =⇒ (2). Suppose that N is a weakly (m,n)-semiprime submodule of M. Let 0 6= am ∈ (L : M). Since M is a
faithful A-module, we have 0 6= amL ⊆ N. By Theorem 2.1, we conclude that anL ⊆ N and hence an ∈ (L : N). Therefore,
(L : N) is a weakly (m,n)-closed ideal of A.

(2) =⇒ (1). Assume that (L : N) is a weakly (m,n)-closed ideal of A for each submodule L. Let 0 6= amx ∈ N for a ∈ A

and x ∈ M. Set L = Ax, then 0 6= amL ∈ N , which implies 0 6= am ∈ (L : N). By our assumption, we get an ∈ (L : N), and
hence anx ∈ N. Thus, N is a weakly (m,n)-semiprime submodule of M.

It remarked here that for some submodule L of M if 0 6= amL ⊂ N, then anL ⊂ N is equivalent to say that (L : N) is a
weakly (m,n)-closed ideal of A since A is faithful.

Remark 2.3. In Corollary 2.1, the condition “M is a faithful module” is necessary, as shown in the following example.

Example 2.5. Consider theZ-moduleM = Z×Z, which is not a faithfulZ- module and consider a submoduleN = (0)×16Z.
Then, N is not a weakly (3, 2)-semiprime submodule since 23(0, 2) = (0, 16) ∈ N and 22(0, 2) = (0, 8) /∈ N. On the other
hand, (N : M) = (0) is a weakly (3, 2)-closed ideal of Z since (0) is a prime ideal of Z.

In the next theorem, we show the relationship between a weakly (m,n)-semiprime submodule and the fact that (N : x)

is a weakly (m,n)-closed ideal of A where x ∈M \N. Recall that a ring A is said to be reduced if Nil(A) = {0}.

Theorem 2.2. Let M be an A-module and N be a proper submodule of M.

(1). If (N : x) is a weakly (m,n)-closed ideal of A for every x ∈M\N, then N is a weakly (m,n)-semiprime submodule of M.

(2). If A is a reduced ring, then every submodule of M is a weakly (m,n)-semiprime.

(3). If N is a weakly (m,n)-semiprime submodule of M and ann(x) is a weakly (m,n)-closed ideal of A for every each
x ∈M\N, then (N : x) is a weakly (m,n)-closed ideal of R.
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Proof. (1). Suppose that 0 6= amy ∈ N for some a ∈ A and y ∈ M. If y ∈ N, we are done. Next, we assume that y ∈ M\N.

Since (N : y) is a weakly (m,n)-closed ideal of A, we have an ∈ (N : y), and so any ∈ N. Hence, N is a weakly (m,n)-
semiprime submodule of M.

(2). It follows from Corollary 3.6 of [6]. Indeed, if A is reduced, then every proper ideal of A is weakly (m,n)-closed
ideal, by Corollary 3.6(1) of [6].

(3). Let x ∈ M\N. Suppose that 0 6= am ∈ (N : x) for some a ∈ A. First, we consider the case 0 6= amx ∈ N. Since N

is a weakly (m,n)-semiprime submodule of M, we have anx ∈ N, and hence an ∈ (N : x). Now, consider the case amx = 0.

Then, 0 6= am ∈ ann(x), and so an ∈ ann(x). Consequently, (N : x) is a weakly (m,n)-closed ideal of A.

Example 2.6. Let N be a weakly (m,n)-semiprime submodule of M and take x ∈M\N. We will show that (N : x) need not
to be a weakly (m,n)-closed ideal of A. Indeed, let m and n, with m > n, be positive integers and M = Zpm be a Z-module,
where p is a prime number. Let N = (0). It is clear that N is a weakly (m,n)-semiprime submodule of M. On the other
hand, (N : p) = pm−1Z is not a weakly (m,n)-closed ideal of Z since pm ∈ (N : p) but pn /∈ (N : p).

Let A be an integral domain. An A-module M is said to be torsion-free if ma = 0 for some a ∈ A and m ∈ M , implies
a = 0 or m = 0.

Theorem 2.3. Let A be an integral domain, M be a torsion-free A-module and N be a proper submodule of M. The following
statements are equivalent.

(1). N is weakly (m,n)-semiprime submodule of M.

(2). (N : x) is weakly (m,n)-closed ideal of R for each x ∈M\N.

Proof. (2)⇒ (1). It follows from the Theorem 2.2.
(1) ⇒ (2). Let 0 6= am ∈ (N : x) for some a ∈ A and x ∈ M. If x = 0, then (N : x) = A, and we are done. Next, we

assume that 0 6= x. Since M is a torsion-free A-module, we get 0 6= amx ∈ N. The fact that N is a weakly (m,n)-semiprime
submodule of M, gives anx ∈ N, and thus an ∈ (N : x). Hence, (N : x) is a weakly (m,n)-closed ideal of A.

Our next objective is the study of the stability of the tensor product of weakly (m,n)-semiprime submodules.

Theorem 2.4. Let (A,M) be a local ring and M be an A-module.

(1). If F is a non-zero finitely generated flat A-module and N is a finitely generated weakly (m,n)-semiprime submodule of
M such that F ⊗N 6= F ⊗M, then F ⊗N is a weakly (m,n)-semiprime submodule of F ⊗M.

(2). If F is a finitely generated faithful flat A-module and N is a finitely generated submodule of M, then the following
statements are equivalent:

(a). N is a weakly (m,n)-semiprime submodule of M.

(b). F ⊗N is a weakly (m,n)-semiprime submodule of F ⊗M.

Proof. (1). Let F be a finitely flat module, N be a finitely weakly (m,n)-semiprime submodule of M and take a ∈ R such
that 0 6= am(F ⊗ N). Since 0 6= am(F ⊗ N) = F ⊗ amN and (A,M) is a local ring, we deduce that 0 6= amN (see Exercise
3 of Chapter 2 in [8]). Also, by Theorem 6 of [9], we have (F ⊗N :F⊗M am) = F ⊗ (N :M am), and by Theorem 2.1 we get
(F ⊗N :F⊗M am) = (F ⊗N :F⊗M an). By Theorem 2.1 we deduce that F ⊗N is a weakly (m,n)-semiprime submodule of
F ⊗M.

(2). (a)⇒ (b). Since F is a faithful flat module and N is a proper submodule of M, we have F ⊗N 6= F ⊗M. Now, the result
follows from Part (1).

(b) ⇒ (a). Suppose that F ⊗ N is a weakly (m,n)-semiprime submodule of F ⊗M. Take a ∈ R with 0 6= amN. Since
(A,M) is a local ring and F,N, are finitely generated modules, we get 0 6= am(F ⊗ N). By Theorem 2.1 and Lemma 3.2
of [9], we have

F ⊗ (N :M am) = (F ⊗N :F⊗M an) = F ⊗ (N ;M an).

Thus, F ⊗ (N :M am) = F ⊗ (N :M an). Since the sequence

0→ F ⊗ (N :M an) ↪→ F ⊗ (N :M am)→ 0

is exact and F is a faithful module, we get the exact sequence

0→ (N :M an) ↪→ (N :M am)→ 0,

which implies (N :M an) = (N :M am). Now, the desired result follows from Theorem 2.1.
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Theorem 2.5. Let f : M −→M ′ be a homomorphism of A-modules.

(1). If N is a weakly (m,n)-semiprime submodule of M containing ker(f) and if f is surjective, then f(N) is a weakly
(m,n)-semiprime submodule of M ′.

(2). If N ′ is a weakly (m,n)-semiprime submodule of M ′ and if f is injective, then f−1(N ′) is a weakly (m,n)-semiprime
submodule of M.

Proof. (1). Suppose that f is surjective and ker(f) ⊆ N , where N is a weakly (m,n)-semiprime submodule of M. Take
0 6= amx′ ∈ N ′ for some a ∈ A and x′ ∈ M ′. Then there exists x ∈ M such that x′ = f(x). Since 0 6= f(amx) ∈ f(N) and
ker(f) ⊆ N, we have 0 6= amx ∈ N. Since N is a weakly (m,n)-semiprime submodule of M, we get anx ∈ N. It follows that
anf(x) = anx′ ∈ f(N). Hence, f(N) is a weakly (m,n)-semiprime submodule of M ′, as desired.

(2). Assume that f is a monomorphism of A-modules and N ′ is a weakly (m,n)-semiprime submodule of M ′. Take
0 6= amx ∈ f−1(N ′) for some a ∈ A, x ∈ M. So, 0 6= amf(x) ∈ N.′ The fact that N is a weakly (m,n)-semiprime submodule
of M ′, gives anf(x) ∈ N ′. Therefore, anx ∈ f−1(N ′). Hence, f−1(N ′) is a weakly (m,n)-semiprime submodule of M.

Corollary 2.2. Let N be a proper submodule of M .

(1). If L is a submodule of M with L ⊆ N and if N is a weakly (m,n)-semiprime submodule of M , then N/L is a weakly
(m,n)-semiprime submodule of M/L.

(2). If L is a submodule of M with L ⊆ N and if N/L is a weakly (m,n)-semiprime submodule of M/L, and if L is a weakly
(m,n)-semiprime submodule of M, then N is a weakly (m,n)-semiprime submodule of M.

Proof. (1). It is a direct consequence of Theorem 2.5(1).
(2). Assume that N/L is a weakly (m,n)-semiprime submodule of M/L and L is a weakly (m,n)-semiprime submodule

of M. Take 0 6= amx ∈ N for some a ∈ A, x ∈ M. Then am(x + L) ∈ N/L. If am(x + L) = 0M/L, then 0 6= amx ∈ L, which is
a weakly (m,n)-semiprime submodule of M. Thus, anx ∈ L and so anx ∈ N. Next, we assume that 0 6= am(x+ L). The fact
that N/L is a weakly (m,n)-semiprime submodule of M/L gives that an(x+ L) ∈ N/L. Hence, anx ∈ N and N is a weakly
(m,n)-semiprime submodule of M. Therefore, N is weakly (m,n)-semiprime submodule of M.

Pekin et al. [23] studied the concept of (m,n)-semiprime submodules over the trivial extension ring A(+)M , where A is
a commutative ring and M is an A-module. For more detail on trivial extensions of rings, see [7]. We end this section by
giving another way to construct weakly (m,n)-semiprime submodules that are not (m,n)-semiprime. Let A be a ring, I be
an ideal of A, and M be an A-module, and set

M ./ I := {(x, x′) ∈M ×M |x− x′ ∈ IM},

which is a A ./ I-module with the multiplication given by

(r, r + i)(x, x′) = (rx, (r + i)x′), where r ∈ A, i ∈ I, and (x, x′) ∈M ./ I.

According to [12], M ./ I is known as the duplication of the A-module M along the ideal I. If N is a submodule of M, then
it is clear that

N ./ I := {(x, x′) ∈ N ×M |x− x′ ∈ IM} and N := {(x, x′) ∈M ×N |x− x′ ∈ IM}

are submodules of M ./ I.

Lemma 2.1. Let A be a ring, I be an ideal of A, and M be an A-module. Let N be a submodule of M . Let m and n be
positive integers satisfying m > n.

(1). N ./ I is an (m,n)-semiprime submodule of M ./ I if and only if N is an (m,n)-semiprime submodule of M.

(2). N is an (m,n)-semiprime submodule of M ./ I if and only if N is an (m,n)-semiprime submodule of M.

Proof. (1). Assume that N ./ I is an (m,n)-semiprime submodule of M ./ I. Take amx ∈ N for some a ∈ A, x ∈ M. Then
(a, a)m(x, x) ∈ N ./ I. The fact that N ./ I is an (m,n)-semiprime submodule of M ./ I, gives that (a, a)n(x, x) ∈ N ./ I. So,
anx ∈ N. Hence, N is an (m,n))-semiprime submodule of M. Conversely, assume that N is an (m,n)-semiprime submodule
of M. Take (a, a+ i)m(x, x′) for some (a, a+ i) ∈ A ./ I, (x, x′) ∈ M ./ I. Then (amx, (a+ i)mx′) ∈ N and so amx ∈ N. As N

is an (m,n)-semiprime submodule of M, we conclude that anx ∈ N, which implies (a, a+ i)n(x, x′) ∈ N ./ I and this shows
that N ./ is an (m,n)-semiprime submodule of M ./ I.

(2). The proof is similar to the proof of (1) and so is omitted.
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The following definition is useful for studying weakly (m,n)-semirpime submodules that are not (m,n)-semirpime sub-
modules.

Definition 2.1. Let M be an A-module where A is a commutative ring, m ≥ n > 0 are a positive integers, and N a weakly
(m,n)-semiprime submodule of M. Then a ∈ A is an (m,n)-unbreakable-zero element of N if there exists x ∈ M such that
amx = 0 and anx /∈ N. (Thus, N has an (m,n)-unbreakable-zero element if and only if N is a weakly (m,n)-semiprime
submodule of M that is not (m,n)-semiprime.)

Theorem 2.6. The following statements are equivalents:

(1). N ./ I is a weakly (m,n)-semiprime submodule which is not an (m,n)-semiprime submodule of M ./ I.

(2). N is a weakly (m,n)-semiprime submodule that is not an (m,n)-semiprime submodule of M, and for every (m,n)-
unbreakable-zero element a ∈ A of N, it holds that (a+ i)mM = 0 for every i ∈ I.

Proof. (1) ⇒ (2). Suppose that N ./ I is a weakly (m,n)-semiprime submodule of M ./ I. Take 0 6= amx ∈ N for some
a ∈ A, x ∈ M. Then 0 6= (a, a)m(x, x) ∈ N ./ I. As N ./ I is a weakly (m,n)-semiprime submodule of M ./ I, we obtain
that (a, a)n(x, x) ∈ N ./ I, which implies anx ∈ N and shows that N is a weakly (m,n)-semiprime submodule of M.

By Lemma 2.1, N is not an (m,n)-semiprime submodule of M. Now, let a ∈ A be an (m,n)-unbreakable-zero element
of N ; that is, there exists x ∈ M such that amx = 0 and anx /∈ N. We will show that (a + i)mM = 0 for every i ∈ I.

Since N is a weakly (m,n)-semiprime submodule of M that is not (m,n)-semiprime, N has an (m,n)-unbreakable-zero
a ∈ A. By the way of contradiction, suppose that there exists i ∈ I such that (a + i)my = 0 for some y ∈ M. Then,
0 6= (a, a + i)m = (0, (a + i)my) ∈ N ./ I. As N ./ I is a weakly (m,n)-semiprime submodule of M ./ I, we conclude that
(a, a+ i)n(x, y) ∈ N ./ I and so anx ∈ I, which is a contradiction. Hence, (a+ i)mM = 0 for every i ∈ I.

(2)⇒ (1). Suppose that N is a weakly (m,n)-semiprime submodule which is not (m,n)-semiprime and (a+ i)mM = 0 if
a ∈ A is a (m,n)-unbreakable-zero element of N. Let 0 6= (a, a+i)m(x, x′) ∈ N ./ I. Then amx ∈ N and (a+i)mx′−amx ∈ IM.

Assume that 0 6= amx ∈ N . As N is a weakly (m,n)-semiprime submodule of M we get anx ∈ N. Now, assume that amx = 0,

then necessarily 0 6= (a+ i)mx. If anx /∈ N, then a is an (m,n)-unbreakable-zero element of N. By our assumption, we have
(a+ i)mM = 0. This is a contradiction. Hence, anx ∈ N.

Theorem 2.7. Let M be an A-module, N be a submodule of M , and m,n, are positive integers satisfying m > n. Let

N := {(x, x′) ∈M ×N ;x− x′ ∈ IM}.

The following statements are equivalent:

(1). N is a weakly (m,n)-submodule of M ./ I.

(2). N is a weakly (m,n)-submodule ofM and the equation (a−i)mM = 0 holds for every i ∈ I and for an (m,n)-unbreakable-
zero element a ∈ A of N.

Proof. It is the same as the proof of Theorem 2.6.

3. Modules over which every submodule is weakly (m,n)–semiprime

The following result gives the constraints under which every given proper submodule is a weakly (m,n)-semiprime sub-
module.

Theorem 3.1. Let M be an A-module and m,n, be two positive integers such that m > n. The following statements are
equivalents:

(1). Every proper submodule is a weakly (m,n)-semiprime submodule of M.

(2). For every submodule N of M and for every a ∈ A such that 0 6= amN, the descending chain

aN ⊇ a2N ⊇ · · · ⊇ amN ⊇ · · ·

of submodules of M terminates at the nth step.

(3). For every submodule N of M and for every a ∈ A with 0 6= amN, it holds that anN = amN.
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Proof. (1) ⇒ (2). Take a ∈ A and let N be a submodule of M such that 0 6= amN. If amN = M then we are done.
Next, we assume that amN is a proper submodule of M. Since 0 6= amN ⊆ amN and N is a weakly (m,n)-semiprime
submodule of M, by Theorem 2.1 we have anN ⊆ amN, which implies that anN = amN. Hence, the descending chain
aN ⊇ a2N ⊇ · · · ⊇ amN ⊇ · · · , terminates at the nth step.

(2)⇒ (3). It is trivial.
(3) ⇒ (1). Let N be a proper submodule of M. Take a ∈ A and let K be a submodule of M such that 0 6= amK ⊆ N. By

our assumption anK = amK ⊆ N. Now, by Theorem 2.1, we conclude that N is a weakly (m,n)-semiprime submodule of
M.

According to [11, 15], an A-module M is said to be multiplication module if every submodule N of M has the form
N = IM , where I is an ideal of A. In this case, we have N = (N : M)M. For more detail about multiplication modules,
see [1–4]

Let M be an A-module. According to [20], M is a reduced module if for every a ∈ A, x ∈ M with ax = 0, aM ∩ Ax = 0,

or equivalently a2x = 0 implies ax = 0.

According to [22], a commutative ring A is a von Neumann regular ring if for every a ∈ A, there exist b ∈ A such that
a = a2b. In [17], Jayarm and Tekir studied the concept of von Neumann regular modules (see also [18,19]) by introducing
the concept M -von Neumann regular elements of modules as follows. If M is an A-module, then an element a ∈ A is an
M -von Neumann regular element if aM = a2M . Also, an A-module M is said to be a von Neumann regular module if for
every x ∈M , Ax = aM = a2M for some a ∈ A.

Our next objective is to give a characterization of von Neumann regular modules using the properties of weakly (m,n)-
semi prime submodules.

Theorem 3.2. Let M be a finitely generated A-module. The following statements are equivalents:

(1). M is an von Neumann regular module.

(2). M is a multiplication reduced module in which every submodule is weakly (m,n)-semiprime submodule

Proof. We follow the same reasoning as (1)⇔ (2) in Theorem 8 of [23].
(2) ⇒ (1). Let M be a finitely generated reduced multiplication module in which every proper submodule is a weakly

(m,n)-semiprime. Take a ∈ A. We will show that aM = a2M. If amM = M, then clearly we have aM = a2M. Next, we
assume that amM is a proper submodule of M. First, consider the case amM = 0. Since M is reduced, we have ann(M) is a
semiprime ideal, which implies that a ∈ ann(M). Thus, aM = a2M = 0. Next, we consider the case 0 6= amM. As amM is a
weakly (m,n)-semiprime submodule and 0 6= amM ⊆ amM, we conclude by Theorem 2.1 that anM = amM. We deduce that
an+1M = anM = a(anM). Since anM is a finitely generated module, by Corollary 2.5 of [8] we have x(anM) = 0 for some
x ∈ A such that x ≡ 1((an)). Thus, there exists b ∈ A such that (1− ab)anM = 0. AS M is reduced, we get (1− ab)aM = 0,
Which implies aM = a2bM ⊆ a2M. Consequently, we obtain aM = a2M, as desired.

(1)⇒ (2). Suppose that M is a von Neumann regular module. By the proof of Theorem 8 of [23], M is a multiplication-
reduced module. Now, let N be a proper submodule of M. Take a ∈ A and let L be a submodule of M such that 0 6= amL ⊆ N.

Since M is a multiplication module, we have L = (L : M)M, which then gives 0 6= amL = (L : M)amM = (L : M)anM, and
hence 0 6= amN = anN. Therefore, N is a weakly (m,n)-semiprime submodule.

Corollary 3.1. Let M be a finitely generated A-module. The following statements are equivalent:

(1). M is a von Neumann regular module.

(2). M is a multiplication-reduced module in which every submodule is an (m,n)-semiprime submodule.

(3). M is a multiplication-reduced module in which every submodule is a weakly (m,n)-semiprime submodule.

Proof. (1)⇔ (2). It follows from Theorem 8 of [23].
(2)⇒ (3). It is trivial.
(3)⇒ (1). It follows from Theorem 3.2.
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[24] B. Saraç, On semiprime submodules, Comm. Algebra 37 (2009) 2485–2495.

53


	Introduction
	Properties of weakly (m,n)–semiprime submodules
	Modules over which every submodule is weakly (m,n)–semiprime

