Electronic Journal of Mathematics Electron. J. Math. 5 (2023) 46-53
www .shahindp.com/locate/ejm DOI: 10.47443/ejm.2023.017

Research Article

Weakly (m,n)-semiprime submodules

Mohammed Issoual*

Department of Mathematics, CRMEF Rabat-Salé-Kenitra, CRMEF Khmisset, Morocco
(Received: 10 April 2023. Received in revised form: 15 July 2023. Accepted: 20 July 2023. Published online: 31 July 2023.)

© 2023 the author. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

This article gives several properties of a new type of submodules, namely weakly (m, n)-semiprime submodules where m and
n are positive integers satisfying m > n. The primary objectives of the present article are to characterize weakly (m,n)-
semiprime submodules and to provide a new characterization of the von Neumann regular modules in terms of weakly
(m,n)-semiprime submodules.
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1. Introduction

In this paper, all the considered rings are commutative and unitary. Also, all the modules studied in this paper are unitary.
Let A be a commutative ring and consider a proper ideal I of A. According to [10], I is said to be weakly semiprime ideal
if the following property holds: whenever 0 # 72 € I for some r € R then r € I. Also, according to [5], I is the (m, n)-closed
ideal if 2™ € I implies 2™ € I for each x € A. A weak version of the (m, n)-closed ideal, namely the weakly (m, n)-closed
ideal, was introduced and studied in [6] by Fahid et al., who generalized the concept of weakly semiprime ideal. The ideal
I is said to be weakly (m, n)-closed ideal for some positive integers m and n, with m > n, if the following property holds: for
each x € A with 0 # 2™ € I, it holds that ™ € I. Mostafanasab and Darani [21] studied the concept of quasi n-absorbing
ideal; the ideal I is said to be quasi n-absorbing ideal if ¥« € I for r,z € R implies ™ € I or v 2 € I, where n is a positive
integer. Notice that a semiprime ideal is exactly a quasi 2-absorbing ideal.

In [24], Sarag¢ studied the properties of semiprime submodules. According to [24], a proper submodule N of an A-
module M is said to be semiprime submodule if whenever a?x € N for some a € A and x € M, then ax € N. The concept
of 2-absorbing (also, weakly 2-absorbing) submodules was introduced and investigated in [13] by Darani and Soheilnia.
According to [13], a submodule N of an A-module M is said to be a 2-absorbing submodule (respectively, weakly 2-absorbing
submodule) of M if whenever a,b € A and m € M with abm € N (respectively, 0 # abm € N), then ab € (N : M) or am € N
or bm € N. Darani and Soheilnia [14] introduced the concept of n-absorbing submodule where n is a positive integer; a
proper submodule N of M is an n-absorbing submodule if whenever a; ---a,m € N for ay,...,a, € A and m € M, then
either a; ---a, € (N : M) or there are n — 1 of a,s whose product with m is in N. Recently, Issoual et al. [16] studied the
concept of weakly quasi n-absorbing submodule; a proper submodule N of an A-module M is quasi n-absorbing submodule
if whenever @ € A and z € M such that a"x € N, then either o™ € (N : M) or a® 'z € N. In order to generalize the
notion of semiprime submodules, Pekin et al. [23] introduced the concept of (m, n)-semiprime submodule, where m and
n, with m > n, are positive integers; a proper submodule N of an A-module M is said to be (m,n)-semiprime if a™x € N
then o"z € N for some a € A and = € M. In the present paper, the concept of weakly (m,n)-semiprime submodules is
introduced, which is a proper generalization of (m,n)-semirpime submodules. A proper submodule N of M is said to be a
weakly (m,n)-semiprime submodule if whenever a € R,x € M with 0 # a™x € N, then a"x € N.

The remaining part of this paper is organized as follows. The next section gives several properties of weakly (m,n)-
semiprime submodules, including a characterization of weakly (m, n)-semiprime submodules. In Section 3, the modules
in which every proper submodule is weakly (m,n)-semiprime are studied. A new characterization of the von Neumann
regular module in terms of weakly (m, n)-semiprime submodules is also given in Section 3.
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2. Properties of weakly (m, n)-semiprime submodules

Recall the notions of (m, n)-semiprime submodules and weakly (m, n)-semiprime submodules defined in the introduction.
According to [5], a proper ideal P of a commutative ring A is said to be an (m, n)-closed ideal of A if +™ € P implies that
xz™ € P for each x € A, where m and n, with m > n, are positive integers. Also, according to [6], a proper ideal P of a
commutative ring A is said to be a weakly (m,n)-closed ideal of A if 0 # 2™ € P implies that # 2™ € P for each x € A,
where m and n, with m > n, are positive integers.

Remark 2.1. If Ais an A-module then every (m,n)-semiprime submodule of A is an (m,n)-closed ideal of A.

Example 2.1. Let A be a commutative ring and /N be a weakly semiprime submodule of an A-module M ; that is, whenever
0 # a’r € N, then ax € N for each a € A and x € M. Certainly, N is weakly (m,n)-semiprime submodule of ). Indeed,
assume that 0 # o™z € N for some a € A,z € M. Then note that 0 # a?(a™ 2x) € M. Since N is weakly semiprime
submodule of M, we conclude that 0 # o™ 22 € N. Continuing with the same reasoning we get «"x € N. The converse is
false in general as shown in the following example. Let K be a field and let R denote the ring K[S, T of polynomials over K
in the determinates S, T. Let M = RS+ RT be a maximal ideal of R. Let P = (S,T?). Then P is not weakly semiprime ideal
since 0 # T2.1 € P, but T ¢ P. Also, note that P = M, thus P is M-primary ideal of R. We will show that P is weakly
(3,1)-semiprime ideal of R. Let 0 # h3.k € (P) C (S) for some h, k € R. Then h.h?k € P. If h?.k € P we are done. If not, as
P is M-primary ideal, we get h € M. So h? € M? = (S%,ST,T?) C P. Finally h?.k € P. Thus, P is weakly (3, 1)-semiprime
ideal of R.

Example 2.2. Every (m,n)-semiprime submodule is weakly (m,n)-semiprime submodule. But the converse is not true.
For example, let A = Z,» where p is a prime number and n > 2. Let N = {0,p"~'}. Since a"x = 0 for every a,z € A, we
conclude that N is a weakly (n, 1)-semiprime ideal. However, N is not an (n, 1)-semiprime ideal since p".1 = 0 € N and
p ¢ N. By a similar argument, N is not an (n, k)-semiprime ideal for every n > k > 0.

Example 2.3. We consider in this example the Z-module Z,~,, where p and ¢ are prime numbers and n > 2. It is easy to see
that N = (0) is a weakly (n,n — 1)-semiprime submodule of M. Indeed, let a"Z = 0 for some a, z € Z. Then, we have p"q|a™x,
which yields that p"~!¢|a" 'z. Thus, we have a"~'Z = 0. Therefore, N = (0) is weakly (n,n — 1)-semiprime submodule.
On the other hand (N : M) = p"¢Z which is not an (n,n — 1)-closed ideal of Z, since (pq)"™ € p™qZ but (pq)"~* ¢ p"qZ. We
conclude by using Corollary 1 of [23] that (0) is not an (n,n — 1)-semiprime submodule of M.

The following propositions show that the notions of (m, n)-semiprime and weakly (m, n)-semiprime submodule coincide
on certain modules.

Proposition 2.1. Let A be an integral domain and M be a torsion-free A-module. Then every weakly (m,n)-semiprime
submodule is (m,n)-semi prime submodule of M.

Proof. Let N be a weakly (m,n)-semiprime submodule of M. Suppose that a™z € N for some a € A,z € M. If 0 # a™x,
then the fact that N is a weakly (m, n)-semiprime submodule of M, gives a"x € N. Next, we assume o™z = 0 with 0 # z.
Then ¢™ = 0 as T (M) = {0}. We get o™ = 0 and consequently a = 0 since A is an integral domain. Hence, a"z =0 € N.
Thus, N is (m,n)-semiprime submodule of M. O

Proposition 2.2. Let (A, M) be a local ring with the maximal ideal M and let M be an A-module such that MM = 0.
Then, every weakly (m,n)-semiprime submodule is an (m,n)-semiprime submodule of M.

Proof. Let N be a submodule of M which is a weakly (m, n)-semiprime M. Choose a € A and © € M such that «™z € N. If
a is unit, then © € N and so a"x € N. Next, we assume that a is not unit. As (A, M) is a local ring we get a € M. On the
other hand, MM = 0, which implies aM = 0. Thus, a"x = 0 € N. consequently, N is an (m,n)-semiprime submodule of
M. O

The following theorem gives a characterization of weakly (m,n)-semiprime submodules.
Theorem 2.1. Let M be an A-module and N be a proper submodule of M. Then the following statements are equivalent.
(1). N is weakly (m,n)-semiprime submodule of M.
(2). For every a € A such that 0 # a™N, it holds that (N :p; a™) = (N :p a™).

(3). For every a € A and L submodule of M with 0 # a™L C N, then a®L C N.
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Proof. (1) = (2). As m > n, it is clear that (N : ") C (N : ™). Now, let x € (N : ™). Then a™x € N.If 0 # o™z € N, we
get a”x € N andsox € (N : a™) (as N is a weakly (m, n)-semiprime submodule). Now, suppose that ¢z = 0. The fact that
0 # a™N gives 0 # a™y for some y € N, it follows a"y € N as N is weakly (m, n)-semiprime submodule of M. Set z = = + y,
so 0 # a™z € N, and by the same argument as above, we get a2z € N. Therefore, o™z € N. Hence, © € (N : ¢"). Finally, we
conclude that (N : ™) C (N : a") and (N : a™) = (N : a").

(2) = (3). Suppose that 0 # a™L C N for some a € A and that L is a submodule of M. We have 0 # «™N and
L C (N :a™). Then by (2), we conclude that L C (N : a™), and this implies that L C N.

(3) = (1). Assume that "L C N for every a € A, where L is a submodule of M with 0 # «™L C N. Let 0 # a™x € N for
some a € A and x € M. We take L = Az. Then 0 # o« L C N. By our assumption, we get «"L C N and so a"z € N. Thus, N
is a weakly (m, n)-semiprime submodule of M. O

Remark 2.2. In Corollary 1 of [23] if N is (m,n)-semiprime submodule of M, then (N : M) is an (m,n)-closed ideal. If N
is a weakly (m,n)-semiprime submodule of M, then the residual (N : M) need not to be a weakly (m,n)-closed ideal of A, as
shown in the next example

Example 2.4. Consider the Z-module M := Z,» where p is a prime number and m > n > 2. Set N = {0}. We will show
that N is a weakly (m,n)-semiprime submodule of M. Let a™z = 0 for some a,z € Z. Then p™|a™z. Necessarily, p"|a"x
otherwise p and a"x are coprime and this is a contradiction. Thus, we have a"Z = 0. Hence, N is (m, n)-semiprime and thus
it is weakly (m,n)-semiprime. We remark that (N : M) = p™Z is not weakly (m,n)-closed ideal of Z since p™ € (N : M)
but p™ ¢ (N : M).

The following corollary gives a characterization of weakly (m, n)-semiprime submodules by using the concept of weakly
(m,n)-closed ideals when M is an A-faithful module. Recall that an A-module M is said to be faithful module if

annyg(M) := {a € A;a.m = 0} = {0}.

Corollary 2.1. Let M be a faithful A-module and let N be a proper submodule of M. Then the following statements are
equivalent:

(1). N is a weakly (m,n)-semiprime submodule of M.
(2). For every L submodule of M, the residual (L : M) is a weakly (m,n)-closed ideal of A.

Proof. (1) = (2). Suppose that N is a weakly (m,n)-semiprime submodule of M. Let 0 # o™ € (L : M). Since M is a
faithful A-module, we have 0 # o™ L C N. By Theorem 2.1, we conclude that «"L C N and hence o™ € (L : N). Therefore,
(L : N) is a weakly (m,n)-closed ideal of A.

(2) = (1). Assume that (L : N) is a weakly (m, n)-closed ideal of A for each submodule L. Let 0 # o™z € N for a € A
and x € M. Set L = Az, then 0 # a™L € N, which implies 0 # o™ € (L : N). By our assumption, we get " € (L : N), and
hence a"x € N. Thus, N is a weakly (m, n)-semiprime submodule of M. O

It remarked here that for some submodule L of M if 0 # «™L C N, then a"L C N is equivalent to say that (L : N)isa
weakly (m,n)-closed ideal of A since A is faithful.

Remark 2.3. In Corollary 2.1, the condition “M is a faithful module” is necessary, as shown in the following example.

Example 2.5. Consider the Z-module M = Z xZ, which is not a faithful Z- module and consider a submodule N = (0) x 16Z.
Then, N is not a weakly (3,2)-semiprime submodule since 23(0,2) = (0,16) € N and 2%(0,2) = (0,8) ¢ N. On the other
hand, (N : M) = (0) is a weakly (3, 2)-closed ideal of Z since (0) is a prime ideal of Z.

In the next theorem, we show the relationship between a weakly (m, n)-semiprime submodule and the fact that (N : x)
is a weakly (m, n)-closed ideal of A where x € M \ N. Recall that a ring A is said to be reduced if Nil(A) = {0}.

Theorem 2.2. Let M be an A-module and N be a proper submodule of M.
(1). If (N : x) is a weakly (m,n)-closed ideal of A for every x € M\N, then N is a weakly (m,n)-semiprime submodule of M.
(2). If Ais a reduced ring, then every submodule of M is a weakly (m,n)-semiprime.

3). If N is a weakly (m,n)-semiprime submodule of M and ann(z) is a weakly (m,n)-closed ideal of A for every each
x € M\N, then (N : z) is a weakly (m,n)-closed ideal of R.
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Proof. (1). Suppose that 0 # o™y € N for some a € Aand y € M. If y € N, we are done. Next, we assume that y € M\N.
Since (N : y) is a weakly (m,n)-closed ideal of A, we have a™ € (N : y), and so a™y € N. Hence, N is a weakly (m,n)-
semiprime submodule of M.

(2). It follows from Corollary 3.6 of [6]. Indeed, if A is reduced, then every proper ideal of A is weakly (m,n)-closed
ideal, by Corollary 3.6(1) of [6].

(3). Let x € M\N. Suppose that 0 # a™ € (N : z) for some a € A. First, we consider the case 0 # a™x € N. Since N
is a weakly (m,n)-semiprime submodule of M, we have a™x € N, and hence a™ € (N : x). Now, consider the case a"z = 0.
Then, 0 # a™ € ann(z), and so a™ € ann(z). Consequently, (N : z) is a weakly (m, n)-closed ideal of A. O

Example 2.6. Let N be a weakly (m,n)-semiprime submodule of M and take x € M\ N. We will show that (N : 2) need not
to be a weakly (1m,n)-closed ideal of A. Indeed, let m and n, with m > n, be positive integers and M = Z?" be a Z-module,
where p is a prime number. Let N = (0). It is clear that N is a weakly (m,n)-semiprime submodule of M. On the other
hand, (N : p) = p™~'Z is not a weakly (m,n)-closed ideal of Z since p™ € (N : p) but p" ¢ (N : p).

Let A be an integral domain. An A-module M is said to be torsion-free if ma = 0 for some a € A and m € M, implies
a=0orm=0.
Theorem 2.3. Let A be an integral domain, M be a torsion-free A-module and N be a proper submodule of M. The following
statements are equivalent.
(1). N is weakly (m,n)-semiprime submodule of M.
(2). (N : x)is weakly (m,n)-closed ideal of R for each x € M\N.

Proof. (2) = (1). It follows from the Theorem 2.2.

(1) = (2). Let 0 #£ o™ € (N : z) for some a € Aand xz € M. If z = 0, then (N : ) = A, and we are done. Next, we
assume that 0 # z. Since M is a torsion-free A-module, we get 0 # o™z € N. The fact that N is a weakly (m,n)-semiprime
submodule of M, gives a"x € N, and thus a" € (N : z). Hence, (N : z) is a weakly (m, n)-closed ideal of A. O

Our next objective is the study of the stability of the tensor product of weakly (m, n)-semiprime submodules.
Theorem 2.4. Let (A, M) be a local ring and M be an A-module.

(1). If F is a non-zero finitely generated flat A-module and N is a finitely generated weakly (m,n)-semiprime submodule of
M such that F @ N # F ® M, then F ® N is a weakly (m,n)-semiprime submodule of F @ M.

(2). If F is a finitely generated faithful flat A-module and N is a finitely generated submodule of M, then the following
statements are equivalent:

(a). N is a weakly (m,n)-semiprime submodule of M.

(b). F® N is a weakly (m,n)-semiprime submodule of F @ M.

Proof. (1). Let F be a finitely flat module, N be a finitely weakly (m,n)-semiprime submodule of M and take a € R such
that 0 # o™ (F ® N). Since 0 # ™ (F ® N) = F ® a™N and (4, M) is a local ring, we deduce that 0 # a™ N (see Exercise
3 of Chapter 2 in [8]). Also, by Theorem 6 of [9], we have (F @ N :pgp ™) = F @ (N :pr o), and by Theorem 2.1 we get
(F®N :pgum a™) = (F®N :pgp a™). By Theorem 2.1 we deduce that F' ® N is a weakly (m, n)-semiprime submodule of
Fe M.

(2). (a) = (b). Since F is a faithful flat module and N is a proper submodule of M, we have F ® N # F ® M. Now, the result
follows from Part (1).

(b) = (a). Suppose that ' ® N is a weakly (m,n)-semiprime submodule of ' ® M. Take a € R with 0 # a™N. Since
(A, M) is a local ring and F, N, are finitely generated modules, we get 0 # o™ (F ® N). By Theorem 2.1 and Lemma 3.2
of [9], we have

F@(N:pya™)=(F®N :pem a™) =F & (N;pa™).

Thus, FF ® (N :pr a™) = F ® (N :pr a™). Since the sequence
0> F®(N:ipyad") > FR(N:pya™) =0
is exact and F' is a faithful module, we get the exact sequence
0—= (N:pa™) = (N:ya™) =0,

which implies (N :p; a™) = (N :pr a™). Now, the desired result follows from Theorem 2.1. O
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Theorem 2.5. Let f : M — M’ be a homomorphism of A-modules.

(1). If N is a weakly (m,n)-semiprime submodule of M containing ker(f) and if f is surjective, then f(N) is a weakly
(m, n)-semiprime submodule of M'.

(2). If N’ is a weakly (m,n)-semiprime submodule of M' and if f is injective, then f~'(N') is a weakly (m,n)-semiprime
submodule of M.

Proof. (1). Suppose that f is surjective and ker(f) C N, where N is a weakly (m,n)-semiprime submodule of M. Take
0 # a™a’ € N’ for some a € A and ' € M'. Then there exists x € M such that 2’ = f(z). Since 0 # f(a™x) € f(N) and
ker(f) € N, we have 0 # o™z € N. Since N is a weakly (m, n)-semiprime submodule of M, we get a"z € N. It follows that
a™f(x) = a"a’ € f(N). Hence, f(N) is a weakly (m, n)-semiprime submodule of M’, as desired.

(2). Assume that f is a monomorphism of A-modules and N’ is a weakly (m,n)-semiprime submodule of M’. Take
0#amx € f~1(N') for some a € A,z € M. So, 0 # a™f(z) € N.! The fact that N is a weakly (m,n)-semiprime submodule
of M', gives a" f(x) € N'. Therefore, a"z € f~1(N’). Hence, f~!(N’) is a weakly (m, n)-semiprime submodule of M. O

Corollary 2.2. Let N be a proper submodule of M.

(1). If L is a submodule of M with L C N and if N is a weakly (m,n)-semiprime submodule of M, then N/L is a weakly
(m,n)-semiprime submodule of M/ L.

(2). If L is a submodule of M with L C N and if N/L is a weakly (m,n)-semiprime submodule of M/L, and if L is a weakly
(m, n)-semiprime submodule of M, then N is a weakly (m,n)-semiprime submodule of M.

Proof. (1). Itis a direct consequence of Theorem 2.5(1).

(2). Assume that N/L is a weakly (m, n)-semiprime submodule of M /L and L is a weakly (m, n)-semiprime submodule
of M. Take 0 # a™x € N for some a € A,z € M. Then a™(x + L) € N/L.If " (x + L) = Opy/r, then 0 # o™z € L, which is
a weakly (m, n)-semiprime submodule of M. Thus, o« € L and so a"z € N. Next, we assume that 0 # o™ (x + L). The fact
that N/L is a weakly (m, n)-semiprime submodule of M /L gives that o"(z + L) € N/L. Hence, "2 € N and N is a weakly
(m, n)-semiprime submodule of M. Therefore, N is weakly (m, n)-semiprime submodule of M. O

Pekin et al. [23] studied the concept of (m, n)-semiprime submodules over the trivial extension ring A(+)M, where A is
a commutative ring and M is an A-module. For more detail on trivial extensions of rings, see [7]. We end this section by
giving another way to construct weakly (m, n)-semiprime submodules that are not (m, n)-semiprime. Let A be a ring, I be
an ideal of A, and M be an A-module, and set

Ml :={(z,2') € M x M|z — 2’ € IM},
which is a A >a I-module with the multiplication given by
(r,r+i)(xz,2) = (ra, (r +i)a’), where re Ajiel, and (x,2')e Mxl.

According to [12], M i I is known as the duplication of the A-module M along the ideal I. If N is a submodule of M, then
it is clear that
Nl :={(z,2’)e Nx M|z —2'’ € IM} and N :={(x,2') € M x N|z —2' € IM}

are submodules of M < 1.

Lemma 2.1. Let A be a ring, I be an ideal of A, and M be an A-module. Let N be a submodule of M. Let m and n be
positive integers satisfying m > n.

(1). NI isan (m,n)-semiprime submodule of M i I if and only if N is an (m,n)-semiprime submodule of M.
(2). N is an (m,n)-semiprime submodule of M > I if and only if N is an (m,n)-semiprime submodule of M.

Proof. (1). Assume that N < I is an (m,n)-semiprime submodule of M i I. Take «z € N for some a € A,z € M. Then
(a,a)™(x,z) € N < I. The fact that N < I is an (m, n)-semiprime submodule of M < I, gives that (a,a)”(z,z) € N < I. So,
a™x € N. Hence, N is an (m, n))-semiprime submodule of M. Conversely, assume that NV is an (m, n)-semiprime submodule
of M. Take (a,a + i)™ (z,z’) for some (a,a +1i) € A< I,(z,2') € M 1. Then (a"z,(a +i)™x') € N and so a™z € N. As N
is an (m,n)-semiprime submodule of M, we conclude that "2z € N, which implies (a,a +i)"(x,2’) € N > I and this shows
that N i is an (m, n)-semiprime submodule of M < I.

(2). The proof is similar to the proof of (1) and so is omitted.
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The following definition is useful for studying weakly (m, n)-semirpime submodules that are not (m, n)-semirpime sub-
modules.

Definition 2.1. Let M be an A-module where A is a commutative ring, m > n > 0 are a positive integers, and N a weakly
(m, n)-semiprime submodule of M. Then a € A is an (m,n)-unbreakable-zero element of N if there exists x € M such that
amx = 0 and a"x ¢ N. (Thus, N has an (m,n)-unbreakable-zero element if and only if N is a weakly (m,n)-semiprime
submodule of M that is not (m,n)-semiprime.)

Theorem 2.6. The following statements are equivalents:

(1). N 1 is a weakly (m,n)-semiprime submodule which is not an (m,n)-semiprime submodule of M 1< I.

(2). N is a weakly (m,n)-semiprime submodule that is not an (m,n)-semiprime submodule of M, and for every (m,n)-
unbreakable-zero element a € A of N, it holds that (a + i)™ M = 0 for every i € I.

Proof. (1) = (2). Suppose that N < I is a weakly (m,n)-semiprime submodule of M < I. Take 0 # o™z € N for some
a € A,z € M. Then 0 # (a,a)™(x,x) € N > I. As N < [ is a weakly (m,n)-semiprime submodule of M > I, we obtain
that (a,a)"(z,z) € N < I, which implies «"z € N and shows that N is a weakly (m,n)-semiprime submodule of M.
By Lemma 2.1, N is not an (m,n)-semiprime submodule of M. Now, let « € A be an (m,n)-unbreakable-zero element
of N; that is, there exists © € M such that a2z = 0 and a"z ¢ N. We will show that (¢ + ¢)™M = 0 for every i € I.
Since N is a weakly (m,n)-semiprime submodule of M that is not (m,n)-semiprime, N has an (m, n)-unbreakable-zero
a € A. By the way of contradiction, suppose that there exists i € I such that (a + i)™y = 0 for some y € M. Then,
0 # (a,a+19)™ = (0,(a+14)™y) € N I. As N I is a weakly (m, n)-semiprime submodule of M < I, we conclude that
(a,a+19)"(x,y) € NI and so oz € I, which is a contradiction. Hence, (¢ + )" M = 0 for every i € I.

(2) = (1). Suppose that N is a weakly (m, n)-semiprime submodule which is not (m, n)-semiprime and (a +¢)™M = 0 if
a € Aisa (m,n)-unbreakable-zero element of N. Let 0 # (a,a+%)"(z,2’) € N > I. Then o™z € N and (a+i)™x' —a™z € IM.
Assume that 0 # o™z € N. As N is a weakly (m, n)-semiprime submodule of M we get a”x € N. Now, assume that ™z = 0,
then necessarily 0 # (a +i)™z. If a”2 ¢ N, then a is an (m, n)-unbreakable-zero element of N. By our assumption, we have
(a +14)™M = 0. This is a contradiction. Hence, a"x € N. O

Theorem 2.7. Let M be an A-module, N be a submodule of M, and m, n, are positive integers satisfying m > n. Let

N :={(z,2') e M x N;z — 2’ € IM}.
The following statements are equivalent:
(1). N is a weakly (m,n)-submodule of M 1= I.

(2). Nisaweakly (m,n)-submodule of M and the equation (a—i)™M = 0 holds for every i € I and for an (m,n)-unbreakable-
zero element a € A of N.

Proof. It is the same as the proof of Theorem 2.6. O

3. Modules over which every submodule is weakly (m, n)-semiprime

The following result gives the constraints under which every given proper submodule is a weakly (m, n)-semiprime sub-
module.

Theorem 3.1. Let M be an A-module and m,n, be two positive integers such that m > n. The following statements are
equivalents:

(1). Every proper submodule is a weakly (m,n)-semiprime submodule of M.
(2). For every submodule N of M and for every a € A such that 0 # o™ N, the descending chain
aNDa?’ND---Dag™ND---
of submodules of M terminates at the n'" step.

(3). For every submodule N of M and for every a € A with 0 # o™ N, it holds that a" N = a™ N.
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Proof. (1) = (2). Take a € A and let N be a submodule of M such that 0 # o«™N. If ™ N = M then we are done.
Next, we assume that ¢™N is a proper submodule of M. Since 0 # «™N C a™N and N is a weakly (m,n)-semiprime
submodule of M, by Theorem 2.1 we have «" N C a™N, which implies that a” N = a™N. Hence, the descending chain
aN Da’?ND---Da™N D ---, terminates at the n'" step.

(2) = (3). It is trivial.

(3) = (1). Let N be a proper submodule of M. Take a € A and let K be a submodule of M such that 0 # «™K C N. By
our assumption a"K = a™K C N. Now, by Theorem 2.1, we conclude that N is a weakly (m, n)-semiprime submodule of
M. L

According to [11, 15], an A-module M is said to be multiplication module if every submodule N of M has the form
N = IM, where I is an ideal of A. In this case, we have N = (N : M)M. For more detail about multiplication modules,
see [1-4]

Let M be an A-module. According to [20], M is a reduced module if for every a € A,z € M with ax = 0,aM N Ax = 0,
or equivalently a?z = 0 implies ax = 0.

According to [22], a commutative ring A is a von Neumann regular ring if for every a € A, there exist b € A such that
a = a®b. In [17], Jayarm and Tekir studied the concept of von Neumann regular modules (see also [18,19]) by introducing
the concept M-von Neumann regular elements of modules as follows. If M is an A-module, then an element o € A is an
M-von Neumann regular element if aM = a?>M. Also, an A-module M is said to be a von Neumann regular module if for
every x € M, Ax = aM = a®>M for some a € A.

Our next objective is to give a characterization of von Neumann regular modules using the properties of weakly (m,n)-
semi prime submodules.

Theorem 3.2. Let M be a finitely generated A-module. The following statements are equivalents:
(1). M is an von Neumann regular module.
(2). M is a multiplication reduced module in which every submodule is weakly (m,n)-semiprime submodule

Proof. We follow the same reasoning as (1) < (2) in Theorem 8 of [23].

(2) = (1). Let M be a finitely generated reduced multiplication module in which every proper submodule is a weakly
(m,n)-semiprime. Take a € A. We will show that aM = a?M. If @™ M = M, then clearly we have aM = a?M. Next, we
assume that ™ M is a proper submodule of M. First, consider the case «™ M = 0. Since M is reduced, we have ann(M) is a
semiprime ideal, which implies that a € ann(M). Thus, aM = a?M = 0. Next, we consider the case 0 # a™M. As a™ M is a
weakly (m, n)-semiprime submodule and 0 # a™ M C o™ M, we conclude by Theorem 2.1 that o« M = a™ M. We deduce that
a"tM = a"M = a(a™M). Since a™ M is a finitely generated module, by Corollary 2.5 of [8] we have x(a" M) = 0 for some
x € A such that x = 1((a™)). Thus, there exists b € A such that (1 — ab)a™M = 0. AS M is reduced, we get (1 — ab)aM = 0,
Which implies aM = a?bM C a?>M. Consequently, we obtain aM = a?>M, as desired.

(1) = (2). Suppose that M is a von Neumann regular module. By the proof of Theorem 8 of [23], M is a multiplication-
reduced module. Now, let N be a proper submodule of M. Take a € A and let L be a submodule of M such that 0 # a™L C N.
Since M is a multiplication module, we have L = (L : M )M, which then gives 0 # a™L = (L : M)a™M = (L : M)a™M, and
hence 0 # a™N = a™N. Therefore, N is a weakly (m, n)-semiprime submodule. O

Corollary 3.1. Let M be a finitely generated A-module. The following statements are equivalent:

(1). M is a von Neumann regular module.

(2). M is a multiplication-reduced module in which every submodule is an (m,n)-semiprime submodule.

(3). M is a multiplication-reduced module in which every submodule is a weakly (m,n)-semiprime submodule.

Proof. (1) & (2). It follows from Theorem 8 of [23].
(2) = (3). It is trivial.
(3) = (1). It follows from Theorem 3.2. O
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