Research Article $\mathbf{Weakly}~(m,n)$ -semiprime submodules

Mohammed Issoual*

Department of Mathematics, CRMEF Rabat-Salé-Kenitra, CRMEF Khmisset, Morocco

(Received: 10 April 2023. Received in revised form: 15 July 2023. Accepted: 20 July 2023. Published online: 31 July 2023.)

© 2023 the author. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

This article gives several properties of a new type of submodules, namely weakly (m, n)-semiprime submodules where m and n are positive integers satisfying m > n. The primary objectives of the present article are to characterize weakly (m, n)-semiprime submodules and to provide a new characterization of the von Neumann regular modules in terms of weakly (m, n)-semiprime submodules.

Keywords: von Neumann regular module; weakly (m, n)-semiprime submodule; duplication modules.

2020 Mathematics Subject Classification: 13A15, 13C12, 13C10, 13C05.

1. Introduction

In this paper, all the considered rings are commutative and unitary. Also, all the modules studied in this paper are unitary. Let A be a commutative ring and consider a proper ideal I of A. According to [10], I is said to be weakly semiprime ideal if the following property holds: whenever $0 \neq r^2 \in I$ for some $r \in R$ then $r \in I$. Also, according to [5], I is the (m, n)-closed ideal if $x^m \in I$ implies $x^n \in I$ for each $x \in A$. A weak version of the (m, n)-closed ideal, namely the weakly (m, n)-closed ideal, was introduced and studied in [6] by Fahid et al., who generalized the concept of weakly semiprime ideal. The ideal I is said to be weakly (m, n)-closed ideal for some positive integers m and n, with m > n, if the following property holds: for each $x \in A$ with $0 \neq x^m \in I$, it holds that $x^n \in I$. Mostafanasab and Darani [21] studied the concept of quasi n-absorbing ideal; the ideal I is said to be quasi n-absorbing ideal if $r^n x \in I$ for $r, x \in R$ implies $r^n \in I$ or $r^{n-1}x \in I$, where n is a positive integer. Notice that a semiprime ideal is exactly a quasi 2-absorbing ideal.

In [24], Saraç studied the properties of semiprime submodules. According to [24], a proper submodule N of an A-module M is said to be semiprime submodule if whenever $a^2x \in N$ for some $a \in A$ and $x \in M$, then $ax \in N$. The concept of 2-absorbing (also, weakly 2-absorbing) submodules was introduced and investigated in [13] by Darani and Soheilnia. According to [13], a submodule N of an A-module M is said to be a 2-absorbing submodule (respectively, weakly 2-absorbing submodule) of M if whenever $a, b \in A$ and $m \in M$ with $abm \in N$ (respectively, $0 \neq abm \in N$), then $ab \in (N : M)$ or $am \in N$ or $bm \in N$. Darani and Soheilnia [14] introduced the concept of n-absorbing submodule where n is a positive integer; a proper submodule N of M is an n-absorbing submodule if whenever $a_1 \cdots a_n m \in N$ for $a_1, \ldots, a_n \in A$ and $m \in M$, then either $a_1 \cdots a_n \in (N : M)$ or there are n - 1 of $a'_i s$ whose product with m is in N. Recently, Issoual et al. [16] studied the concept of weakly quasi n-absorbing submodule; a proper submodule N of an A-module M is quasi n-absorbing submodule; a proper submodule N of an A. In order to generalize the notion of semiprime submodules, Pekin et al. [23] introduced the concept of (m, n)-semiprime submodule, where m and n, with <math>m > n, are positive integers; a proper submodule N of an A-module M is said to be (m, n)-semiprime if $a^m x \in N$ then $a^n x \in N$ for some $a \in A$ and $x \in M$. In the present paper, the concept of weakly (m, n)-semiprime submodules is introduced, which is a proper generalization of (m, n)-semiprime submodule N of M is said to be a weakly (m, n)-semiprime submodule if whenever $a \in R, x \in M$ with $0 \neq a^m x \in N$, then $a^n x \in N$.

The remaining part of this paper is organized as follows. The next section gives several properties of weakly (m, n)-semiprime submodules, including a characterization of weakly (m, n)-semiprime submodules. In Section 3, the modules in which every proper submodule is weakly (m, n)-semiprime are studied. A new characterization of the von Neumann regular module in terms of weakly (m, n)-semiprime submodules is also given in Section 3.

^{*}E-mail address: issoual2@yahoo.fr

2. Properties of weakly (m, n)-semiprime submodules

Recall the notions of (m, n)-semiprime submodules and weakly (m, n)-semiprime submodules defined in the introduction. According to [5], a proper ideal P of a commutative ring A is said to be an (m, n)-closed ideal of A if $x^m \in P$ implies that $x^n \in P$ for each $x \in A$, where m and n, with m > n, are positive integers. Also, according to [6], a proper ideal P of a commutative ring A is said to be a weakly (m, n)-closed ideal of A if $0 \neq x^m \in P$ implies that $\neq x^n \in P$ for each $x \in A$, where m and n, with m > n, are positive integers.

Remark 2.1. If A is an A-module then every (m, n)-semiprime submodule of A is an (m, n)-closed ideal of A.

Example 2.1. Let A be a commutative ring and N be a weakly semiprime submodule of an A-module M; that is, whenever $0 \neq a^2x \in N$, then $ax \in N$ for each $a \in A$ and $x \in M$. Certainly, N is weakly (m, n)-semiprime submodule of M. Indeed, assume that $0 \neq a^m x \in N$ for some $a \in A, x \in M$. Then note that $0 \neq a^2(a^{m-2}x) \in M$. Since N is weakly semiprime submodule of M, we conclude that $0 \neq a^{m-2}x \in N$. Continuing with the same reasoning we get $a^n x \in N$. The converse is false in general as shown in the following example. Let K be a field and let R denote the ring K[S,T] of polynomials over K in the determinates S, T. Let M = RS + RT be a maximal ideal of R. Let $P = (S, T^2)$. Then P is not weakly semiprime ideal since $0 \neq T^2 \cdot 1 \in P$, but $T \notin P$. Also, note that $\sqrt{P} = M$, thus P is M-primary ideal of R. We will show that P is weakly (3, 1)-semiprime ideal of R. Let $0 \neq h^3 \cdot k \in (P) \subseteq (S)$ for some $h, k \in R$. Then $h \cdot h^2 k \in P$. If $h^2 \cdot k \in P$ we are done. If not, as P is M-primary ideal, we get $h \in M$. So $h^2 \in M^2 = (S^2, ST, T^2) \subseteq P$. Finally $h^2 \cdot k \in P$. Thus, P is weakly (3, 1)-semiprime ideal of R.

Example 2.2. Every (m, n)-semiprime submodule is weakly (m, n)-semiprime submodule. But the converse is not true. For example, let $A = \mathbb{Z}_{p^n}$ where p is a prime number and n > 2. Let $N = \{0, p^{n-1}\}$. Since $a^n x = 0$ for every $a, x \in A$, we conclude that N is a weakly (n, 1)-semiprime ideal. However, N is not an (n, 1)-semiprime ideal since $p^n \cdot \overline{1} = 0 \in N$ and $p \notin N$. By a similar argument, N is not an (n, k)-semiprime ideal for every n > k > 0.

Example 2.3. We consider in this example the \mathbb{Z} -module $\mathbb{Z}_{p^n q}$, where p and q are prime numbers and n > 2. It is easy to see that $N = (\overline{0})$ is a weakly (n, n-1)-semiprime submodule of M. Indeed, let $a^n \overline{x} = \overline{0}$ for some $a, x \in \mathbb{Z}$. Then, we have $p^n q | a^n x$, which yields that $p^{n-1}q | a^{n-1}x$. Thus, we have $a^{n-1}\overline{x} = \overline{0}$. Therefore, $N = (\overline{0})$ is weakly (n, n-1)-semiprime submodule. On the other hand $(N : M) = p^n q\mathbb{Z}$ which is not an (n, n-1)-closed ideal of \mathbb{Z} , since $(pq)^n \in p^n q\mathbb{Z}$ but $(pq)^{n-1} \notin p^n q\mathbb{Z}$. We conclude by using Corollary 1 of [23] that $(\overline{0})$ is not an (n, n-1)-semiprime submodule of M.

The following propositions show that the notions of (m, n)-semiprime and weakly (m, n)-semiprime submodule coincide on certain modules.

Proposition 2.1. Let A be an integral domain and M be a torsion-free A-module. Then every weakly (m, n)-semiprime submodule is (m, n)-semi prime submodule of M.

Proof. Let N be a weakly (m, n)-semiprime submodule of M. Suppose that $a^m x \in N$ for some $a \in A, x \in M$. If $0 \neq a^m x$, then the fact that N is a weakly (m, n)-semiprime submodule of M, gives $a^n x \in N$. Next, we assume $a^m x = 0$ with $0 \neq x$. Then $a^m = 0$ as $T(M) = \{0\}$. We get $a^m = 0$ and consequently a = 0 since A is an integral domain. Hence, $a^n x = 0 \in N$. Thus, N is (m, n)-semiprime submodule of M.

Proposition 2.2. Let (A, \mathcal{M}) be a local ring with the maximal ideal \mathcal{M} and let M be an A-module such that $\mathcal{M}M = 0$. Then, every weakly (m, n)-semiprime submodule is an (m, n)-semiprime submodule of M.

Proof. Let N be a submodule of M which is a weakly (m, n)-semiprime M. Choose $a \in A$ and $x \in M$ such that $a^m x \in N$. If a is unit, then $x \in N$ and so $a^n x \in N$. Next, we assume that a is not unit. As (A, \mathcal{M}) is a local ring we get $a \in \mathcal{M}$. On the other hand, $\mathcal{M}M = 0$, which implies aM = 0. Thus, $a^n x = 0 \in N$. consequently, N is an (m, n)-semiprime submodule of M.

The following theorem gives a characterization of weakly (m, n)-semiprime submodules.

Theorem 2.1. Let M be an A-module and N be a proper submodule of M. Then the following statements are equivalent.

(1). N is weakly (m, n)-semiprime submodule of M.

(2). For every $a \in A$ such that $0 \neq a^m N$, it holds that $(N :_M a^m) = (N :_M a^n)$.

(3). For every $a \in A$ and L submodule of M with $0 \neq a^m L \subset N$, then $a^n L \subset N$.

Proof. $(1) \Rightarrow (2)$. As m > n, it is clear that $(N : a^n) \subseteq (N : a^m)$. Now, let $x \in (N : a^m)$. Then $a^m x \in N$. If $0 \neq a^m x \in N$, we get $a^n x \in N$ and so $x \in (N : a^n)$ (as N is a weakly (m, n)-semiprime submodule). Now, suppose that $a^m x = 0$. The fact that $0 \neq a^m N$ gives $0 \neq a^m y$ for some $y \in N$, it follows $a^n y \in N$ as N is weakly (m, n)-semiprime submodule of M. Set z = x + y, so $0 \neq a^m z \in N$, and by the same argument as above, we get $a^n z \in N$. Therefore, $a^n x \in N$. Hence, $x \in (N : a^n)$. Finally, we conclude that $(N : a^m) \subseteq (N : a^n)$ and $(N : a^m) = (N : a^n)$.

 $(2) \Rightarrow (3)$. Suppose that $0 \neq a^m L \subseteq N$ for some $a \in A$ and that L is a submodule of M. We have $0 \neq a^m N$ and $L \subseteq (N : a^m)$. Then by (2), we conclude that $L \subseteq (N : a^n)$, and this implies that $a^n L \subseteq N$.

 $(3) \Rightarrow (1)$. Assume that $a^n L \subseteq N$ for every $a \in A$, where L is a submodule of M with $0 \neq a^m L \subseteq N$. Let $0 \neq a^m x \in N$ for some $a \in A$ and $x \in M$. We take L = Ax. Then $0 \neq a^m L \subseteq N$. By our assumption, we get $a^n L \subseteq N$ and so $a^n x \in N$. Thus, N is a weakly (m, n)-semiprime submodule of M.

Remark 2.2. In Corollary 1 of [23] if N is (m, n)-semiprime submodule of M, then (N : M) is an (m, n)-closed ideal. If N is a weakly (m, n)-semiprime submodule of M, then the residual (N : M) need not to be a weakly (m, n)-closed ideal of A, as shown in the next example

Example 2.4. Consider the \mathbb{Z} -module $M := \mathbb{Z}_{p^m}$ where p is a prime number and m > n > 2. Set $N = \{\overline{0}\}$. We will show that N is a weakly (m, n)-semiprime submodule of M. Let $a^m \overline{x} = \overline{0}$ for some $a, x \in \mathbb{Z}$. Then $p^m | a^m x$. Necessarily, $p^n | a^n x$ otherwise p and $a^n x$ are coprime and this is a contradiction. Thus, we have $a^n \overline{x} = \overline{0}$. Hence, N is (m, n)-semiprime and thus it is weakly (m, n)-semiprime. We remark that $(N : M) = p^m \mathbb{Z}$ is not weakly (m, n)-closed ideal of \mathbb{Z} since $p^m \in (N : M)$ but $p^n \notin (N : M)$.

The following corollary gives a characterization of weakly (m, n)-semiprime submodules by using the concept of weakly (m, n)-closed ideals when M is an A-faithful module. Recall that an A-module M is said to be faithful module if

$$ann_A(M) := \{a \in A; a.m = 0\} = \{0\}.$$

Corollary 2.1. Let M be a faithful A-module and let N be a proper submodule of M. Then the following statements are equivalent:

(1). *N* is a weakly (m, n)-semiprime submodule of *M*.

(2). For every L submodule of M, the residual (L:M) is a weakly (m,n)-closed ideal of A.

Proof. (1) \implies (2). Suppose that N is a weakly (m, n)-semiprime submodule of M. Let $0 \neq a^m \in (L : M)$. Since M is a faithful A-module, we have $0 \neq a^m L \subseteq N$. By Theorem 2.1, we conclude that $a^n L \subseteq N$ and hence $a^n \in (L : N)$. Therefore, (L : N) is a weakly (m, n)-closed ideal of A.

 $(2) \Longrightarrow (1)$. Assume that (L:N) is a weakly (m,n)-closed ideal of A for each submodule L. Let $0 \neq a^m x \in N$ for $a \in A$ and $x \in M$. Set L = Ax, then $0 \neq a^m L \in N$, which implies $0 \neq a^m \in (L:N)$. By our assumption, we get $a^n \in (L:N)$, and hence $a^n x \in N$. Thus, N is a weakly (m, n)-semiprime submodule of M.

It remarked here that for some submodule L of M if $0 \neq a^m L \subset N$, then $a^n L \subset N$ is equivalent to say that (L:N) is a weakly (m, n)-closed ideal of A since A is faithful.

Remark 2.3. In Corollary 2.1, the condition "M is a faithful module" is necessary, as shown in the following example.

Example 2.5. Consider the \mathbb{Z} -module $M = \mathbb{Z} \times \mathbb{Z}$, which is not a faithful \mathbb{Z} -module and consider a submodule $N = (0) \times 16\mathbb{Z}$. Then, N is not a weakly (3, 2)-semiprime submodule since $2^3(0, 2) = (0, 16) \in N$ and $2^2(0, 2) = (0, 8) \notin N$. On the other hand, (N : M) = (0) is a weakly (3, 2)-closed ideal of \mathbb{Z} since (0) is a prime ideal of \mathbb{Z} .

In the next theorem, we show the relationship between a weakly (m, n)-semiprime submodule and the fact that (N : x) is a weakly (m, n)-closed ideal of A where $x \in M \setminus N$. Recall that a ring A is said to be reduced if $Nil(A) = \{0\}$.

Theorem 2.2. Let M be an A-module and N be a proper submodule of M.

(1). If (N:x) is a weakly (m,n)-closed ideal of A for every $x \in M \setminus N$, then N is a weakly (m,n)-semiprime submodule of M.

- (2). If A is a reduced ring, then every submodule of M is a weakly (m, n)-semiprime.
- (3). If N is a weakly (m,n)-semiprime submodule of M and ann(x) is a weakly (m,n)-closed ideal of A for every each $x \in M \setminus N$, then (N : x) is a weakly (m,n)-closed ideal of R.

Proof. (1). Suppose that $0 \neq a^m y \in N$ for some $a \in A$ and $y \in M$. If $y \in N$, we are done. Next, we assume that $y \in M \setminus N$. Since (N : y) is a weakly (m, n)-closed ideal of A, we have $a^n \in (N : y)$, and so $a^n y \in N$. Hence, N is a weakly (m, n)-semiprime submodule of M.

(2). It follows from Corollary 3.6 of [6]. Indeed, if A is reduced, then every proper ideal of A is weakly (m, n)-closed ideal, by Corollary 3.6(1) of [6].

(3). Let $x \in M \setminus N$. Suppose that $0 \neq a^m \in (N : x)$ for some $a \in A$. First, we consider the case $0 \neq a^m x \in N$. Since N is a weakly (m, n)-semiprime submodule of M, we have $a^n x \in N$, and hence $a^n \in (N : x)$. Now, consider the case $a^m x = 0$. Then, $0 \neq a^m \in \operatorname{ann}(x)$, and so $a^n \in \operatorname{ann}(x)$. Consequently, (N : x) is a weakly (m, n)-closed ideal of A.

Example 2.6. Let N be a weakly (m, n)-semiprime submodule of M and take $x \in M \setminus N$. We will show that (N : x) need not to be a weakly (m, n)-closed ideal of A. Indeed, let m and n, with m > n, be positive integers and $M = \mathbb{Z}^{p^m}$ be a \mathbb{Z} -module, where p is a prime number. Let $N = (\overline{0})$. It is clear that N is a weakly (m, n)-semiprime submodule of M. On the other hand, $(N : p) = p^{m-1}\mathbb{Z}$ is not a weakly (m, n)-closed ideal of \mathbb{Z} since $p^m \in (N : p)$ but $p^n \notin (N : p)$.

Let A be an integral domain. An A-module M is said to be torsion-free if ma = 0 for some $a \in A$ and $m \in M$, implies a = 0 or m = 0.

Theorem 2.3. Let A be an integral domain, M be a torsion-free A-module and N be a proper submodule of M. The following statements are equivalent.

(1). N is weakly (m, n)-semiprime submodule of M.

(2). (N:x) is weakly (m, n)-closed ideal of R for each $x \in M \setminus N$.

Proof. $(2) \Rightarrow (1)$. It follows from the Theorem 2.2.

 $(1) \Rightarrow (2)$. Let $0 \neq a^m \in (N : x)$ for some $a \in A$ and $x \in M$. If x = 0, then (N : x) = A, and we are done. Next, we assume that $0 \neq x$. Since M is a torsion-free A-module, we get $0 \neq a^m x \in N$. The fact that N is a weakly (m, n)-semiprime submodule of M, gives $a^n x \in N$, and thus $a^n \in (N : x)$. Hence, (N : x) is a weakly (m, n)-closed ideal of A.

Our next objective is the study of the stability of the tensor product of weakly (m, n)-semiprime submodules.

Theorem 2.4. Let (A, \mathcal{M}) be a local ring and M be an A-module.

- (1). If F is a non-zero finitely generated flat A-module and N is a finitely generated weakly (m, n)-semiprime submodule of M such that $F \otimes N \neq F \otimes M$, then $F \otimes N$ is a weakly (m, n)-semiprime submodule of $F \otimes M$.
- (2). If F is a finitely generated faithful flat A-module and N is a finitely generated submodule of M, then the following statements are equivalent:
 - (a). N is a weakly (m, n)-semiprime submodule of M.
 - **(b).** $F \otimes N$ is a weakly (m, n)-semiprime submodule of $F \otimes M$.

Proof. (1). Let F be a finitely flat module, N be a finitely weakly (m, n)-semiprime submodule of M and take $a \in R$ such that $0 \neq a^m(F \otimes N)$. Since $0 \neq a^m(F \otimes N) = F \otimes a^m N$ and (A, \mathcal{M}) is a local ring, we deduce that $0 \neq a^m N$ (see Exercise 3 of Chapter 2 in [8]). Also, by Theorem 6 of [9], we have $(F \otimes N :_{F \otimes M} a^m) = F \otimes (N :_M a^m)$, and by Theorem 2.1 we get $(F \otimes N :_{F \otimes M} a^m) = (F \otimes N :_{F \otimes M} a^n)$. By Theorem 2.1 we deduce that $F \otimes N$ is a weakly (m, n)-semiprime submodule of $F \otimes M$.

(2). $(a) \Rightarrow (b)$. Since *F* is a faithful flat module and *N* is a proper submodule of *M*, we have $F \otimes N \neq F \otimes M$. Now, the result follows from Part (1).

 $(b) \Rightarrow (a)$. Suppose that $F \otimes N$ is a weakly (m, n)-semiprime submodule of $F \otimes M$. Take $a \in R$ with $0 \neq a^m N$. Since (A, \mathcal{M}) is a local ring and F, N, are finitely generated modules, we get $0 \neq a^m (F \otimes N)$. By Theorem 2.1 and Lemma 3.2 of [9], we have

 $F \otimes (N :_M a^m) = (F \otimes N :_{F \otimes M} a^n) = F \otimes (N;_M a^n).$

Thus, $F \otimes (N :_M a^m) = F \otimes (N :_M a^n)$. Since the sequence

 $0 \to F \otimes (N:_M a^n) \hookrightarrow F \otimes (N:_M a^m) \to 0$

is exact and F is a faithful module, we get the exact sequence

$$0 \to (N:_M a^n) \hookrightarrow (N:_M a^m) \to 0$$

which implies $(N:_M a^n) = (N:_M a^m)$. Now, the desired result follows from Theorem 2.1.

Theorem 2.5. Let $f: M \longrightarrow M'$ be a homomorphism of A-modules.

- (1). If N is a weakly (m,n)-semiprime submodule of M containing ker(f) and if f is surjective, then f(N) is a weakly (m,n)-semiprime submodule of M'.
- (2). If N' is a weakly (m,n)-semiprime submodule of M' and if f is injective, then $f^{-1}(N')$ is a weakly (m,n)-semiprime submodule of M.

Proof. (1). Suppose that f is surjective and $\ker(f) \subseteq N$, where N is a weakly (m, n)-semiprime submodule of M. Take $0 \neq a^m x' \in N'$ for some $a \in A$ and $x' \in M'$. Then there exists $x \in M$ such that x' = f(x). Since $0 \neq f(a^m x) \in f(N)$ and $\ker(f) \subseteq N$, we have $0 \neq a^m x \in N$. Since N is a weakly (m, n)-semiprime submodule of M, we get $a^n x \in N$. It follows that $a^n f(x) = a^n x' \in f(N)$. Hence, f(N) is a weakly (m, n)-semiprime submodule of M', as desired.

(2). Assume that f is a monomorphism of A-modules and N' is a weakly (m, n)-semiprime submodule of M'. Take $0 \neq a^m x \in f^{-1}(N')$ for some $a \in A, x \in M$. So, $0 \neq a^m f(x) \in N$.' The fact that N is a weakly (m, n)-semiprime submodule of M', gives $a^n f(x) \in N'$. Therefore, $a^n x \in f^{-1}(N')$. Hence, $f^{-1}(N')$ is a weakly (m, n)-semiprime submodule of M.

Corollary 2.2. Let N be a proper submodule of M.

- (1). If L is a submodule of M with $L \subseteq N$ and if N is a weakly (m, n)-semiprime submodule of M, then N/L is a weakly (m, n)-semiprime submodule of M/L.
- (2). If L is a submodule of M with $L \subseteq N$ and if N/L is a weakly (m, n)-semiprime submodule of M/L, and if L is a weakly (m, n)-semiprime submodule of M, then N is a weakly (m, n)-semiprime submodule of M.
- *Proof.* (1). It is a direct consequence of Theorem 2.5(1).

(2). Assume that N/L is a weakly (m, n)-semiprime submodule of M/L and L is a weakly (m, n)-semiprime submodule of M. Take $0 \neq a^m x \in N$ for some $a \in A, x \in M$. Then $a^m(x+L) \in N/L$. If $a^m(x+L) = 0_{M/L}$, then $0 \neq a^m x \in L$, which is a weakly (m, n)-semiprime submodule of M. Thus, $a^n x \in L$ and so $a^n x \in N$. Next, we assume that $0 \neq a^m(x+L)$. The fact that N/L is a weakly (m, n)-semiprime submodule of M/L gives that $a^n(x+L) \in N/L$. Hence, $a^n x \in N$ and N is a weakly (m, n)-semiprime submodule of M. Therefore, N is weakly (m, n)-semiprime submodule of M. \Box

Pekin et al. [23] studied the concept of (m, n)-semiprime submodules over the trivial extension ring A(+)M, where A is a commutative ring and M is an A-module. For more detail on trivial extensions of rings, see [7]. We end this section by giving another way to construct weakly (m, n)-semiprime submodules that are not (m, n)-semiprime. Let A be a ring, I be an ideal of A, and M be an A-module, and set

$$M \bowtie I := \{ (x, x') \in M \times M | x - x' \in IM \},\$$

which is a $A \bowtie I$ -module with the multiplication given by

$$(r, r+i)(x, x') = (rx, (r+i)x'), \text{ where } r \in A, i \in I, \text{ and } (x, x') \in M \bowtie I.$$

According to [12], $M \bowtie I$ is known as the *duplication of the A*-module *M* along the ideal *I*. If *N* is a submodule of *M*, then it is clear that

 $N \bowtie I := \{(x, x') \in N \times M | x - x' \in IM\}$ and $\overline{N} := \{(x, x') \in M \times N | x - x' \in IM\}$

are submodules of $M \bowtie I$.

Lemma 2.1. Let A be a ring, I be an ideal of A, and M be an A-module. Let N be a submodule of M. Let m and n be positive integers satisfying m > n.

(1). $N \bowtie I$ is an (m, n)-semiprime submodule of $M \bowtie I$ if and only if N is an (m, n)-semiprime submodule of M.

(2). \overline{N} is an (m,n)-semiprime submodule of $M \bowtie I$ if and only if N is an (m,n)-semiprime submodule of M.

Proof. (1). Assume that $N \bowtie I$ is an (m, n)-semiprime submodule of $M \bowtie I$. Take $a^m x \in N$ for some $a \in A, x \in M$. Then $(a, a)^m(x, x) \in N \bowtie I$. The fact that $N \bowtie I$ is an (m, n)-semiprime submodule of $M \bowtie I$, gives that $(a, a)^n(x, x) \in N \bowtie I$. So, $a^n x \in N$. Hence, N is an (m, n)-semiprime submodule of M. Conversely, assume that N is an (m, n)-semiprime submodule of M. Take $(a, a + i)^m(x, x')$ for some $(a, a + i) \in A \bowtie I$, $(x, x') \in M \bowtie I$. Then $(a^m x, (a + i)^m x') \in N$ and so $a^m x \in N$. As N is an (m, n)-semiprime submodule of M, we conclude that $a^n x \in N$, which implies $(a, a + i)^n(x, x') \in N \bowtie I$ and this shows that $N \bowtie$ is an (m, n)-semiprime submodule of $M \bowtie I$.

(2). The proof is similar to the proof of (1) and so is omitted.

The following definition is useful for studying weakly (m, n)-semirpime submodules that are not (m, n)-semirpime submodules.

Definition 2.1. Let M be an A-module where A is a commutative ring, $m \ge n > 0$ are a positive integers, and N a weakly (m, n)-semiprime submodule of M. Then $a \in A$ is an (m, n)-unbreakable-zero element of N if there exists $x \in M$ such that $a^m x = 0$ and $a^n x \notin N$. (Thus, N has an (m, n)-unbreakable-zero element if and only if N is a weakly (m, n)-semiprime submodule of M that is not (m, n)-semiprime.)

Theorem 2.6. The following statements are equivalents:

- (1). $N \bowtie I$ is a weakly (m, n)-semiprime submodule which is not an (m, n)-semiprime submodule of $M \bowtie I$.
- (2). N is a weakly (m,n)-semiprime submodule that is not an (m,n)-semiprime submodule of M, and for every (m,n)-unbreakable-zero element $a \in A$ of N, it holds that $(a + i)^m M = 0$ for every $i \in I$.

Proof. $(1) \Rightarrow (2)$. Suppose that $N \bowtie I$ is a weakly (m, n)-semiprime submodule of $M \bowtie I$. Take $0 \neq a^m x \in N$ for some $a \in A, x \in M$. Then $0 \neq (a, a)^m (x, x) \in N \bowtie I$. As $N \bowtie I$ is a weakly (m, n)-semiprime submodule of $M \bowtie I$, we obtain that $(a, a)^n (x, x) \in N \bowtie I$, which implies $a^n x \in N$ and shows that N is a weakly (m, n)-semiprime submodule of M. By Lemma 2.1, N is not an (m, n)-semiprime submodule of M. Now, let $a \in A$ be an (m, n)-unbreakable-zero element of N; that is, there exists $x \in M$ such that $a^m x = 0$ and $a^n x \notin N$. We will show that $(a + i)^m M = 0$ for every $i \in I$. Since N is a weakly (m, n)-semiprime submodule of M that is not (m, n)-semiprime, N has an (m, n)-unbreakable-zero $a \in A$. By the way of contradiction, suppose that there exists $i \in I$ such that $(a + i)^m y = 0$ for some $y \in M$. Then, $0 \neq (a, a + i)^m = (0, (a + i)^m y) \in N \bowtie I$. As $N \bowtie I$ is a weakly (m, n)-semiprime submodule of $M \bowtie I$, we conclude that $(a, a + i)^n (x, y) \in N \bowtie I$ and so $a^n x \in I$, which is a contradiction. Hence, $(a + i)^m M = 0$ for every $i \in I$.

 $(2) \Rightarrow (1)$. Suppose that N is a weakly (m, n)-semiprime submodule which is not (m, n)-semiprime and $(a+i)^m M = 0$ if $a \in A$ is a (m, n)-unbreakable-zero element of N. Let $0 \neq (a, a+i)^m (x, x') \in N \bowtie I$. Then $a^m x \in N$ and $(a+i)^m x' - a^m x \in IM$. Assume that $0 \neq a^m x \in N$. As N is a weakly (m, n)-semiprime submodule of M we get $a^n x \in N$. Now, assume that $a^m x = 0$, then necessarily $0 \neq (a+i)^m x$. If $a^n x \notin N$, then a is an (m, n)-unbreakable-zero element of N. By our assumption, we have $(a+i)^m M = 0$. This is a contradiction. Hence, $a^n x \in N$.

Theorem 2.7. Let M be an A-module, N be a submodule of M, and m, n, are positive integers satisfying m > n. Let

$$\overline{N} := \{ (x, x') \in M \times N; x - x' \in IM \}.$$

The following statements are equivalent:

- (1). \overline{N} is a weakly (m, n)-submodule of $M \bowtie I$.
- (2). N is a weakly (m, n)-submodule of M and the equation $(a-i)^m M = 0$ holds for every $i \in I$ and for an (m, n)-unbreakablezero element $a \in A$ of N.

Proof. It is the same as the proof of Theorem 2.6.

3. Modules over which every submodule is weakly (m, n)-semiprime

The following result gives the constraints under which every given proper submodule is a weakly (m, n)-semiprime submodule.

Theorem 3.1. Let M be an A-module and m, n, be two positive integers such that m > n. The following statements are equivalents:

- (1). Every proper submodule is a weakly (m, n)-semiprime submodule of M.
- (2). For every submodule N of M and for every $a \in A$ such that $0 \neq a^m N$, the descending chain

$$aN \supseteq a^2N \supseteq \cdots \supseteq a^mN \supseteq \cdots$$

of submodules of M terminates at the n^{th} step.

(3). For every submodule N of M and for every $a \in A$ with $0 \neq a^m N$, it holds that $a^n N = a^m N$.

Proof. (1) \Rightarrow (2). Take $a \in A$ and let N be a submodule of M such that $0 \neq a^m N$. If $a^m N = M$ then we are done. Next, we assume that $a^m N$ is a proper submodule of M. Since $0 \neq a^m N \subseteq a^m N$ and N is a weakly (m, n)-semiprime submodule of M, by Theorem 2.1 we have $a^n N \subseteq a^m N$, which implies that $a^n N = a^m N$. Hence, the descending chain $aN \supseteq a^2 N \supseteq \cdots \supseteq a^m N \supseteq \cdots$, terminates at the n^{th} step.

 $(2) \Rightarrow (3)$. It is trivial.

 $(3) \Rightarrow (1)$. Let N be a proper submodule of M. Take $a \in A$ and let K be a submodule of M such that $0 \neq a^m K \subseteq N$. By our assumption $a^n K = a^m K \subseteq N$. Now, by Theorem 2.1, we conclude that N is a weakly (m, n)-semiprime submodule of M.

According to [11, 15], an A-module M is said to be *multiplication module* if every submodule N of M has the form N = IM, where I is an ideal of A. In this case, we have N = (N : M)M. For more detail about multiplication modules, see [1–4]

Let *M* be an *A*-module. According to [20], *M* is a *reduced module* if for every $a \in A, x \in M$ with $ax = 0, aM \cap Ax = 0$, or equivalently $a^2x = 0$ implies ax = 0.

According to [22], a commutative ring A is a *von Neumann regular ring* if for every $a \in A$, there exist $b \in A$ such that $a = a^2b$. In [17], Jayarm and Tekir studied the concept of von Neumann regular modules (see also [18, 19]) by introducing the concept M-von Neumann regular elements of modules as follows. If M is an A-module, then an element $a \in A$ is an M-von Neumann regular element if $aM = a^2M$. Also, an A-module M is said to be a von Neumann regular module if for every $x \in M$, $Ax = aM = a^2M$ for some $a \in A$.

Our next objective is to give a characterization of von Neumann regular modules using the properties of weakly (m, n)semi prime submodules.

Theorem 3.2. Let M be a finitely generated A-module. The following statements are equivalents:

(1). *M* is an von Neumann regular module.

(2). M is a multiplication reduced module in which every submodule is weakly (m, n)-semiprime submodule

Proof. We follow the same reasoning as $(1) \Leftrightarrow (2)$ in Theorem 8 of [23].

 $(2) \Rightarrow (1)$. Let M be a finitely generated reduced multiplication module in which every proper submodule is a weakly (m, n)-semiprime. Take $a \in A$. We will show that $aM = a^2M$. If $a^mM = M$, then clearly we have $aM = a^2M$. Next, we assume that a^mM is a proper submodule of M. First, consider the case $a^mM = 0$. Since M is reduced, we have an(M) is a semiprime ideal, which implies that $a \in ann(M)$. Thus, $aM = a^2M = 0$. Next, we consider the case $0 \neq a^mM$. As a^mM is a weakly (m, n)-semiprime submodule and $0 \neq a^mM \subseteq a^mM$, we conclude by Theorem 2.1 that $a^nM = a^mM$. We deduce that $a^{n+1}M = a^nM = a(a^nM)$. Since a^nM is a finitely generated module, by Corollary 2.5 of [8] we have $x(a^nM) = 0$ for some $x \in A$ such that $x \equiv 1((a^n))$. Thus, there exists $b \in A$ such that $(1 - ab)a^nM = 0$. AS M is reduced, we get (1 - ab)aM = 0, Which implies $aM = a^2M$. Consequently, we obtain $aM = a^2M$, as desired.

 $(1) \Rightarrow (2)$. Suppose that M is a von Neumann regular module. By the proof of Theorem 8 of [23], M is a multiplicationreduced module. Now, let N be a proper submodule of M. Take $a \in A$ and let L be a submodule of M such that $0 \neq a^m L \subseteq N$. Since M is a multiplication module, we have L = (L : M)M, which then gives $0 \neq a^m L = (L : M)a^m M = (L : M)a^n M$, and hence $0 \neq a^m N = a^n N$. Therefore, N is a weakly (m, n)-semiprime submodule.

Corollary 3.1. Let M be a finitely generated A-module. The following statements are equivalent:

(1). *M* is a von Neumann regular module.

(2). *M* is a multiplication-reduced module in which every submodule is an (m, n)-semiprime submodule.

(3). *M* is a multiplication-reduced module in which every submodule is a weakly (m, n)-semiprime submodule.

Proof. (1) \Leftrightarrow (2). It follows from Theorem 8 of [23].

 $(2) \Rightarrow (3)$. It is trivial.

 $(3) \Rightarrow (1)$. It follows from Theorem 3.2.

Acknowledgement

The authors would like to thank the referees for their great efforts in proofreading the manuscript.

References

- [1] M. M. Ali, Invertibility of multiplication modules, New Zealand J. Math. 35 (2006) 17-29.
- [2] M. M. Ali, Idempotent and nilpotent submodules of multiplication modules, Comm. Algebra 36 (2008) 4620–4642.
- [3] M. M. Ali, Invertibility of multiplication modules III, New Zealand J. Math. 39 (2009) 193-213.
- [4] R. Ameri, On the prime submodules of multiplication modules, Int. J. Math. Math. Sci. 27 (2003) 1715–1724.
- [5] D. F. Anderson, A. Badawi, On (m, n)-closed ideals of commutative rings, J. Algebra Appl. 16 (2017) #1750013.
- [6] D. F. Anderson, A. Badawi, B. Fahid, Weakly (m, n)-closed ideals and (m, n)-von Neuman regular rings, J. Korean Math. Soc. 55 (2018) 1031–1043.
- [7] D. D. Anderson, M. Winderes, Idealisation of a module, J. Comm. Algebra 1 (2009) 3-56.
- [8] M. F. Atiyah, I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, 1969.
- [9] A. Azizi. Weakly prime submodules and prime submodules, *Glasgow Math. J.* 48 (2006) 343–346.
- [10] A. Badawi, On weakly semi prime ideals of commutative rings, Beitr. Algebra Geom. 57 (2016) 589-597.
- [11] A. Bernard, Multiplication modules. J. Algebra 71 (1981) 174–178.
- [12] E. M. Bouba, N. Mahdou, M. Tamekkante, Duplication of a module along an ideal, Acta Math. Hungar. 154 (2018) 29-42.
- [13] A. Y. Darani, F. Soheilnia, 2-Absorbing and weakly 2-absorbing submodules, Thai J. Math. 9 (2011) 577-584.
- [14] A. Y. Darani, F. Soheilnia, On *n*-absorbing submodules, *Math. Commun.* 17 (2012) 547–557.
- [15] Z. A. El-Bast, P. P. Smith, Multiplication modules, Comm. Algebra 16 (1988) 755–779.
- [16] M. Issoual, N. Mahou, A. Moutui, On weakly quazi n-absorbing submodule, Bull. Korean Math. Soc. 58 (2021) 1507–1520.
- [17] C. Jayaram, Ü. Tekir, von Neumann regular modules, Comm. Algebra 46 (2018) 2205–2217.
- [18] C. Jayaram, Ü. Tekir, S. Koç, Quasi regular modules and trivial extension, Hecettepe J. Math. Stat. 50 (2021) 120-134.
- [19] S. Koç, On strongly π -regular modules, Sakayra Univ. J. Sci. 24 (2020) 675–684.
- [20] T. K. Lee, Y. Zhou, Reduced modules. Rings, modules, algebras and abelian groups, Lect. Notes Pure Appl. Math. 236 (2004) 365-377.
- [21] H. Mostafanasab, A. Y. Darani, On n-absorbing ideals and two generalizations of semiprime ideals, Thai J. Math. 15 (2017) 387-408.
- [22] J. V. Neumann, On regular rings, Proc. Natl. Acad. Sci. USA 22 (1936) 707-713.
- [23] A. Pekin, S. Kuç, A. Ugurlu, On (m, n)-semiprime submodule, Proc. Est. Acad. Sci. 70 (2021) 320–267.
- [24] B. Saraç, On semiprime submodules, Comm. Algebra 37 (2009) 2485-2495.