Weakly \((m, n)\)-semiprime submodules

Mohammed Issoual*

Department of Mathematics, CRMEF Rabat-Salé-Kenitra, CRMEF Khmisset, Morocco

(Received: 10 April 2023. Received in revised form: 15 July 2023. Accepted: 20 July 2023. Published online: 31 July 2023.)

© 2023 the author. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

This article gives several properties of a new type of submodules, namely weakly \((m, n)\)-semiprime submodules where \(m\) and \(n\) are positive integers satisfying \(m > n\). The primary objectives of the present article are to characterize weakly \((m, n)\)-semiprime submodules and to provide a new characterization of the von Neumann regular modules in terms of weakly \((m, n)\)-semiprime submodules.

Keywords: von Neumann regular module; weakly \((m, n)\)-semiprime submodule; duplication modules.

2020 Mathematics Subject Classification: 13A15, 13C12, 13C10, 13C05.

1. Introduction

In this paper, all the considered rings are commutative and unitary. Also, all the modules studied in this paper are unitary. Let \(A\) be a commutative ring and consider a proper ideal \(I\) of \(A\). According to [10], \(I\) is said to be weakly semiprime ideal if the following property holds: whenever \(0 \neq r^2 \in I\) for some \(r \in R\) then \(r \in I\). Also, according to [5], \(I\) is the \((m, n)\)-closed ideal if \(x^m \in I\) implies \(x^n \in I\) for each \(x \in A\). A weak version of the \((m, n)\)-closed ideal, namely the weakly \((m, n)\)-closed ideal, was introduced and studied in [6] by Fahid et al., who generalized the concept of weakly semiprime ideal. The ideal \(I\) is said to be weakly \((m, n)\)-closed ideal for some positive integers \(m\) and \(n\), if the following property holds: for each \(x \in A\) with \(0 \neq x^m \in I\), it holds that \(x^n \in I\). Mostafanasab and Darani [21] studied the concept of quasi \(n\)-absorbing ideal; the ideal \(I\) is said to be quasi \(n\)-absorbing ideal if \(r^n x \in I\) for \(r, x \in R\) implies \(r^n \in I\) or \(r^{n-1} x \in I\), where \(n\) is a positive integer. Notice that a semiprime ideal is exactly a quasi 2-absorbing ideal.

In [24], Sarac studied the properties of semiprime submodules. According to [24], a proper submodule \(N\) of an \(A\)-module \(M\) is said to be semiprime submodule if whenever \(a^2 x \in N\) for some \(a \in A\) and \(x \in M\), then \(ax \in N\). The concept of 2-absorbing (also, weakly 2-absorbing) submodules was introduced and investigated in [13] by Darani and Soheilnia. According to [13], a submodule \(N\) of an \(A\)-module \(M\) is said to be a 2-absorbing submodule (respectively, weakly 2-absorbing submodule) of \(M\) if whenever \(a, b \in A\) and \(m \in M\) with \(abm \in N\) (respectively, \(0 \neq abm \in N\)), then \(ab \in (N : M)\) or \(am \in N\) or \(bm \in N\). Darani and Soheilnia [14] introduced the concept of \(n\)-absorbing submodule where \(n\) is a positive integer; a proper submodule \(N\) of \(M\) is an \(n\)-absorbing submodule if whenever \(a_1 \cdots a_n m \in N\) for \(a_1, \ldots, a_n \in A\) and \(m \in M\), then either \(a_1 \cdots a_n \in (N : M)\) or they are \(n - 1\) of \(a_i\)'s whose product with \(m\) is in \(N\). Recently, Issoual et al. [16] studied the concept of weakly quasi \(n\)-absorbing submodule; a proper submodule \(N\) of an \(A\)-module \(M\) is quasi \(n\)-absorbing submodule if whenever \(a \in A\) and \(x \in M\) such that \(a^n x \in N\), then \(a^n \in (N : M)\) or \(a^{n-1} x \in N\). In order to generalize the notion of semiprime submodules, Pekin et al. [23] introduced the concept of \((m, n)\)-semiprime submodule, where \(m\) and \(n\), with \(m > n\), are positive integers; a proper submodule \(N\) of an \(A\)-module \(M\) is said to be \((m, n)\)-semiprime if \(a^m x \in N\) then \(a^n x \in N\) for some \(a \in A\) and \(x \in M\). In the present paper, the concept of weakly \((m, n)\)-semiprime submodules is introduced, which is a proper generalization of \((m, n)\)-semiprime submodules. A proper submodule \(N\) of \(M\) is said to be a weakly \((m, n)\)-semiprime submodule if whenever \(a \in R, x \in M\) with \(0 \neq a^m x \in N\), then \(a^n x \in N\).

The remaining part of this paper is organized as follows. The next section gives several properties of weakly \((m, n)\)-semiprime submodules, including a characterization of weakly \((m, n)\)-semiprime submodules. In Section 3, the modules in which every proper submodule is weakly \((m, n)\)-semiprime are studied. A new characterization of the von Neumann regular module in terms of weakly \((m, n)\)-semiprime submodules is also given in Section 3.

*E-mail address: issoual2@yahoo.fr
2. Properties of weakly (m, n)–semiprime submodules

Recall the notions of (m, n)-semiprime submodules and weakly (m, n)-semiprime submodules defined in the introduction. According to [5], a proper ideal P of a commutative ring A is said to be an (m, n)-closed ideal of A if $x^m \in P$ implies that $x^n \in P$ for each $x \in A$, where m and n, with $m > n$, are positive integers. Also, according to [6], a proper ideal P of a commutative ring A is said to be a weakly (m, n)-closed ideal of A if $0 \neq x^m \in P$ implies that $x^n \in P$ for each $x \in A$, where m and n, with $m > n$, are positive integers.

Remark 2.1. If A is an A-module then every (m, n)-semiprime submodule of A is an (m, n)-closed ideal of A.

Example 2.1. Let A be a commutative ring and N be a weakly semiprime submodule of an A-module M; that is, whenever $0 \neq a^m x \in N$, then $ax \in N$ for each $a \in A$ and $x \in M$. Certainly, N is weakly (m, n)-semiprime submodule of M. Indeed, assume that $0 \neq a^m x \in N$ for some $a \in A$, $x \in M$. Then note that $0 \neq a^2(a^m x) \in M$. Since N is weakly semiprime submodule of M, we conclude that $0 \neq a^{m+2} x \in N$. Continuing with the same reasoning we get $a^n x \in N$. The converse is false in general as shown in the following example. Let K be a field and let R denote the ring $K[S, T]$ of polynomials over K in the determinates S, T. Let $M = RS + RT$ be a maximal ideal of R. Let $P = (S, T^2)$. Then P is not weakly semiprime ideal since $0 \neq T^2.1 \in P$, but $T \notin P$. Also, note that $\sqrt{P} = M$, thus P is M-primary ideal of R. We will show that P is weakly $(3, 1)$-primary ideal of R. Let $0 \neq h^3.k \in (P) \subseteq (S)$ for some $h, k \in R$. Then $h^3.k \in P$. If $h^2.k \in P$ we are done. If not, as P is M-primary ideal, we get $h \in M$. So $h^2 \in M^2 = (S^2, ST, T^2) \subseteq P$. Finally $h^2.k \in P$. Thus, P is weakly $(3, 1)$-primary ideal of R.

Example 2.2. Every (m, n)-semiprime submodule is weakly (m, n)-semiprime submodule. But the converse is not true. For example, let $A = \mathbb{Z}_{p^n}$ where p is a prime number and $n > 2$. Let $N = \{0, p^{n-1}\}$. Since $a^n x = 0$ for every $a, x \in A$, we conclude that N is a weakly $(n, 1)$-semiprime ideal. However, N is not an $(n, 1)$-semiprime ideal since $p^n.T = 0 \in N$ and $p \notin N$. By a similar argument, N is not an (n, k)-semiprime ideal for every $n > k > 0$.

Example 2.3. We consider in this example the \mathbb{Z}-module $\mathbb{Z}_{p^n.q}$, where p and q are prime numbers and $n > 2$. It is easy to see that $N = \{(0)\}$ is a weakly $(n, n - 1)$-semiprime submodule of M. Indeed, let $a^n x = 0$ for some $a, x \in \mathbb{Z}$. Then, we have $p^n.q | a^n x$, which yields $a^{n-1} x = 0$. Therefore, $N = \{(0)\}$ is weakly $(n, n - 1)$-semiprime submodule. On the other hand $(N : M) = p^n.q\mathbb{Z}$ which is not an $(n, n - 1)$-closed ideal of \mathbb{Z}, since $(pq)^n \in p^n.q\mathbb{Z}$ but $(pq)^{n-1} \notin p^n.q\mathbb{Z}$. We conclude by using Corollary 1 of [23] that N is not an $(n, n - 1)$-semiprime submodule of M.

The following propositions show that the notions of (m, n)-semiprime and weakly (m, n)-semiprime submodule coincide on certain modules.

Proposition 2.1. Let A be an integral domain and M be a torsion-free A-module. Then every weakly (m, n)-semiprime submodule is (m, n)-semi prime submodule of M.

Proof. Let N be a weakly (m, n)-semiprime submodule of M. Suppose that $a^n x \in N$ for some $a \in A, x \in M$. If $0 \neq a^n x$, then the fact that N is a weakly (m, n)-semiprime submodule of M, gives $a^n x \in N$. Next, we assume $a^n x = 0$ with $0 \neq x$. Then $a^n = 0$ as $T(M) = \{0\}$. We get $a^m = 0$ and consequently $a = 0$ since A is an integral domain. Hence, $a^n x = 0 \in N$. Thus, N is (m, n)-semiprime submodule of M.

Proposition 2.2. Let (A, M) be a local ring with the maximal ideal \mathcal{M} and let M be an A-module such that $\mathcal{M}M = 0$. Then, every weakly (m, n)-semiprime submodule is an (m, n)-semiprime submodule of M.

Proof. Let N be a submodule of M which is a weakly (m, n)-semiprime M. Choose $a \in A$ and $x \in M$ such that $a^n x \in N$. If a is unit, then $x \in N$ and so $a^n x \in N$. Next, we assume that a is not unit. As (A, M) is a local ring we get $a \in \mathcal{M}$. On the other hand, $\mathcal{M}M = 0$, which implies $a(M) = 0$. Thus, $a^n x = 0 \in N$. Consequently, N is an (m, n)-semiprime submodule of M.

The following theorem gives a characterization of weakly (m, n)-semiprime submodules.

Theorem 2.1. Let M be an A-module and N be a proper submodule of M. Then the following statements are equivalent.

1. N is weakly (m, n)-semiprime submodule of M.

2. For every $a \in A$ such that $0 \neq a^m N$, it holds that $(N ;_M a^m) = (N ;_M a^n)$.

3. For every $a \in A$ and L submodule of M with $0 \neq a^n L \subset N$, then $a^n L \subset N$.

M. Issoual / Electron. J. Math. 5 (2023) 46–53
Proof: (1) \Rightarrow (2). As $m > n$, it is clear that $(N : a^n) \subseteq (N : a^m)$. Now, let $x \in (N : a^m)$. Then $a^m x \in N$. If $0 \neq a^m x \in N$, we get $a^n x \in N$ and so $x \in (N : a^n)$ (as N is a weakly (m, n)-semiprime submodule). Now, suppose that $a^m x = 0$. The fact that $0 \neq a^m N$ gives $0 \neq a^m y$ for some $y \in N$, it follows $a^m y \in N$ as N is weakly (m, n)-semiprime submodule of M. Set $z = x + y$, so $0 \neq a^m z \in N$, and by the same argument as above, we get $a^m z \in N$. Therefore, $a^m x \in N$. Hence, $x \in (N : a^n)$. Finally, we conclude that $(N : a^n) \subseteq (N : a^m)$ and $(N : a^m) = (N : a^n)$.

(2) \Rightarrow (3). Suppose that $0 \neq a^n L \subseteq N$ for some $a \in A$ and that L is a submodule of M. We have $0 \neq a^m N$ and $L \subseteq (N : a^m)$. Then by (2), we conclude that $L \subseteq (N : a^n)$, and this implies that $a^n L \subseteq N$.

(3) \Rightarrow (1). Assume that $a^n L \subseteq N$ for every $a \in A$, where L is a submodule of M with $0 \neq a^n L \subseteq N$. Let $0 \neq a^m x \in N$ for some $a \in A$ and $x \in M$. We take $L = Ax$. Then $0 \neq a^n L \subseteq N$. By our assumption, we get $a^n L \subseteq N$ and so $a^n x \in N$. Thus, N is a weakly (m, n)-semiprime submodule of M.

Remark 2.2. In Corollary 1 of [23] if N is (m, n)-semiprime submodule of M, then $(N : M)$ is an (m, n)-closed ideal. If N is a weakly (m, n)-semiprime submodule of M, then the residual $(N : M)$ need not to be a weakly (m, n)-closed ideal of A, as shown in the next example.

Example 2.4. Consider the \mathbb{Z}-module $M := \mathbb{Z}_{p^m}$ where p is a prime number and $m > n > 2$. Set $N = \{0\}$. We will show that N is a weakly (m, n)-semiprime submodule of M. Let $a^m x = 0$ for some $a, x \in \mathbb{Z}$. Then $p^m | a^m x$. Necessarily, $p^m | a^x$ otherwise p and a^x are coprime and this is a contradiction. Thus, we have $a^x = 0$. Hence, N is (m, n)-semiprime and thus it is weakly (m, n)-semiprime. We remark that $(N : M) = p^m \mathbb{Z}$ is not weakly (m, n)-closed ideal of \mathbb{Z} since $p^m \in (N : M)$ but $p^n \notin (N : M)$.

The following corollary gives a characterization of weakly (m, n)-semiprime submodules by using the concept of weakly (m, n)-closed ideals when M is an A-faithful module. Recall that an A-module M is said to be faithful module if

$$\text{ann}_A(M) := \{a \in A; a.m = 0\} = \{0\}.$$

Corollary 2.1. Let M be a faithful A-module and let N be a proper submodule of M. Then the following statements are equivalent:

(1). N is a weakly (m, n)-semiprime submodule of M.

(2). For every L submodule of M, the residual $(L : M)$ is a weakly (m, n)-closed ideal of A.

Proof: (1) \Rightarrow (2). Suppose that N is a weakly (m, n)-semiprime submodule of M. Let $0 \neq a^m \in (L : M)$. Since M is a faithful A-module, we have $0 \neq a^m L \subseteq N$. By Theorem 2.1, we conclude that $a^n L \subseteq N$ and hence $a^n \in (L : N)$. Therefore, $(L : N)$ is a weakly (m, n)-closed ideal of A.

(2) \Rightarrow (1). Assume that $(L : N)$ is a weakly (m, n)-closed ideal of A for each submodule L. Let $0 \neq a^m x \in N$ for $a \in A$ and $x \in M$. Set $L = Ax$, then $0 \neq a^n L \subseteq N$, which implies $0 \neq a^m \in (L : N)$. By our assumption, we get $a^n \in (L : N)$, and hence $a^n x \in N$. Thus, N is a weakly (m, n)-semiprime submodule of M.

It remarked here that for some submodule L of M if $0 \neq a^m L \subseteq N$, then $a^n L \subseteq N$ is equivalent to say that $(L : N)$ is a weakly (m, n)-closed ideal of A since A is faithful.

Remark 2.3. In Corollary 2.1, the condition "M is a faithful module" is necessary, as shown in the following example.

Example 2.5. Consider the \mathbb{Z}-module $M = \mathbb{Z} \times \mathbb{Z}$, which is not a faithful \mathbb{Z}-module and consider a submodule $N = \{0\} \times 16\mathbb{Z}$. Then, N is not a weakly $(3, 2)$-semiprime submodule since $2^3(0, 2) = (0, 16) \in N$ and $2^2(0, 2) = (0, 8) \notin N$. On the other hand, $(N : M) = \{0\}$ is a weakly $(3, 2)$-closed ideal of \mathbb{Z} since (0) is a prime ideal of \mathbb{Z}.

In the next theorem, we show the relationship between a weakly (m, n)-semiprime submodule and the fact that $(N : x)$ is a weakly (m, n)-closed ideal of A where $x \in M \setminus N$. Recall that a ring A is said to be reduced if $\text{Nil}(A) = \{0\}$.

Theorem 2.2. Let M be an A-module and N be a proper submodule of M.

(1). If $(N : x)$ is a weakly (m, n)-closed ideal of A for every $x \in M \setminus N$, then N is a weakly (m, n)-semiprime submodule of M.

(2). If A is a reduced ring, then every submodule of M is a weakly (m, n)-semiprime.

(3). If N is a weakly (m, n)-semiprime submodule of M and $\text{ann}(x)$ is a weakly (m, n)-closed ideal of A for every each $x \in M \setminus N$, then $(N : x)$ is a weakly (m, n)-closed ideal of R.

M. Issoual / Electron. J. Math. 5 (2023) 46–53
Proof. (1). Suppose that \(0 \neq a^my \in N \) for some \(a \in A \) and \(y \in M \). If \(y \in N \), we are done. Next, we assume that \(y \notin M \backslash N \). Since \((N : y) \) is a weakly \((m, n)\)-closed ideal of \(A \), we have \(a^n \in (N : y) \), and so \(a^my \in N \). Hence, \(N \) is a weakly \((m, n)\)-semiprime submodule of \(M \).

(2). It follows from Corollary 3.6 of [6]. Indeed, if \(A \) is reduced, then every proper ideal of \(A \) is weakly \((m, n)\)-closed ideal, by Corollary 3.6(1) of [6].

(3). Let \(x \in M \backslash N \). Suppose that \(0 \neq a^n \in (N : x) \) for some \(a \in A \). First, we consider the case \(0 \neq a^nx \in N \). Since \(N \) is a weakly \((m, n)\)-semiprime submodule of \(M \), we have \(a^nx \in N \), and hence \(a^n \in (N : x) \). Now, consider the case \(a^nx = 0 \). Then, \(0 \neq a^n \in \text{ann}(x) \), and so \(a^n \in \text{ann}(x) \). Consequently, \((N : x) \) is a weakly \((m, n)\)-closed ideal of \(A \). \(\square \)

Example 2.6. Let \(N \) be a weakly \((m, n)\)-semiprime submodule of \(M \) and \(x \in M \backslash N \). We will show that \((N : x)\) need not to be a weakly \((m, n)\)-closed ideal of \(A \). Indeed, let \(m \) and \(n \), with \(m > n \), be positive integers and \(M = \mathbb{Z}p^m \) be a \(\mathbb{Z} \)-module, where \(p \) is a prime number. Let \(N = (0) \). It is clear that \(N \) is a weakly \((m, n)\)-semiprime submodule of \(M \). On the other hand, \((N : p) = p^{m-1}\mathbb{Z} \) is not a weakly \((m, n)\)-closed ideal of \(\mathbb{Z} \) since \(p^m \in (N : p) \) but \(p^m \notin (N : p) \).

Let \(A \) be an integral domain. An \(A \)-module \(M \) is said to be torsion-free if \(ma = 0 \) for some \(a \in A \) and \(m \in M \), implies \(a = 0 \) or \(m = 0 \).

Theorem 2.3. Let \(A \) be an integral domain, \(M \) be a torsion-free \(A \)-module and \(N \) be a proper submodule of \(M \). The following statements are equivalent.

(1). \(N \) is weakly \((m, n)\)-semiprime submodule of \(M \).

(2). \((N : x)\) is weakly \((m, n)\)-closed ideal of \(A \) for each \(x \in M \backslash N \).

Proof. (2) \(\Rightarrow \) (1). It follows from the Theorem 2.2.

(1) \(\Rightarrow \) (2). Let \(0 \neq a^m \in (N : x) \) for some \(a \in A \) and \(x \in M \). If \(x = 0 \), then \((N : x) = A \), and we are done. Next, we assume that \(0 \neq x \). Since \(M \) is a torsion-free \(A \)-module, we get \(0 \neq a^nx \in N \). The fact that \(N \) is a weakly \((m, n)\)-semiprime submodule of \(M \), gives \(a^nx \in N \), and thus \(a^n \in (N : x) \). Hence, \((N : x)\) is a weakly \((m, n)\)-closed ideal of \(A \). \(\square \)

Our next objective is the study of the stability of the tensor product of weakly \((m, n)\)-semiprime submodules.

Theorem 2.4. Let \((A, M)\) be a local ring and \(M \) be an \(A \)-module.

(1). If \(F \) is a non-zero finitely generated flat \(A \)-module and \(N \) is a finitely generated weakly \((m, n)\)-semiprime submodule of \(M \) such that \(F \otimes N \neq F \otimes M \), then \(F \otimes N \) is a weakly \((m, n)\)-semiprime submodule of \(F \otimes M \).

(2). If \(F \) is a finitely generated faithful flat \(A \)-module and \(N \) is a finitely generated submodule of \(M \), then the following statements are equivalent:

(a). \(N \) is a weakly \((m, n)\)-semiprime submodule of \(M \).

(b). \(F \otimes N \) is a weakly \((m, n)\)-semiprime submodule of \(F \otimes M \).

Proof. (1). Let \(F \) be a finitely flat module, \(N \) be a finitely \((m, n)\)-semiprime submodule of \(M \) and take \(a \in R \) such that \(0 \neq a^m(F \otimes N) \). Since \(0 \neq a^m(F \otimes N) = F \otimes a^nN \) and \((A, M)\) is a local ring, we deduce that \(0 \neq a^nN \) (see Exercise 3 of Chapter 2 in [8]). Also, by Theorem 6 of [9], we have \((F \otimes N : F\otimes M a^m) = F \otimes (N : M a^m)\), and by Theorem 2.1 we get \((F \otimes N : F\otimes M a^m) = (F \otimes N : F\otimes M a^n)\). By Theorem 2.1 we deduce that \(F \otimes N \) is a weakly \((m, n)\)-semiprime submodule of \(F \otimes M \).

(2). (a) \(\Rightarrow \) (b). Since \(F \) is a faithful flat module and \(N \) is a proper submodule of \(M \), we have \(F \otimes N \neq F \otimes M \). Now, the result follows from Part (1).

(b) \(\Rightarrow \) (a). Suppose that \(F \otimes N \) is a weakly \((m, n)\)-semiprime submodule of \(F \otimes M \). Take \(a \in R \) with \(0 \neq a^nN \). Since \((A, M)\) is a local ring and \(F, N \), are finitely generated modules, we get \(0 \neq a^n(F \otimes N) \). By Theorem 2.1 and Lemma 3.2 of [9], we have

\[
F \otimes (N : M a^m) = (F \otimes N : F\otimes M a^n) = F \otimes (N : M a^n).
\]

Thus, \(F \otimes (N : M a^m) = F \otimes (N : M a^n) \). Since the sequence

\[
0 \rightarrow F \otimes (N : M a^n) \hookrightarrow F \otimes (N : M a^m) \rightarrow 0
\]

is exact and \(F \) is a faithful module, we get the exact sequence

\[
0 \rightarrow (N : M a^n) \hookrightarrow (N : M a^m) \rightarrow 0,
\]

which implies \((N : M a^n) = (N : M a^m)\). Now, the desired result follows from Theorem 2.1. \(\square \)
Theorem 2.5. Let $f : M \rightarrow M'$ be a homomorphism of A-modules.

(1). If N is a weakly (m,n)-semiprime submodule of M containing $\ker(f)$ and if f is surjective, then $f(N)$ is a weakly (m,n)-semiprime submodule of M'.

(2). If N' is a weakly (m,n)-semiprime submodule of M' and if f is injective, then $f^{-1}(N')$ is a weakly (m,n)-semiprime submodule of M.

Proof. (1). Suppose that f is surjective and $\ker(f) \subseteq N$, where N is a weakly (m,n)-semiprime submodule of M. Take $0 \neq a^m x' \in N'$ for some $a \in A$ and $x' \in M'$. Then there exists $x \in M$ such that $x' = f(x)$. Since $0 \neq f(a^m x) \in f(N)$ and $\ker(f) \subseteq N$, we have $0 \neq a^m x \in N$. Since N is a weakly (m,n)-semiprime submodule of M, we get $a^n x \in N$. It follows that $a^n f(x) = a^n x' \in f(N)$. Hence, $f(N)$ is a weakly (m,n)-semiprime submodule of M', as desired.

(2). Assume that f is a monomorphism of A-modules and N' is a weakly (m,n)-semiprime submodule of M'. Take $0 \neq a^m x \in f^{-1}(N')$ for some $a \in A, x \in M$. So, $0 \neq a^m f(x) \in N'$. The fact that N is a weakly (m,n)-semiprime submodule of M', gives $a^n f(x) \in N'$. Therefore, $a^n x \in f^{-1}(N')$. Hence, $f^{-1}(N')$ is a weakly (m,n)-semiprime submodule of M. □

Corollary 2.2. Let N be a proper submodule of M.

(1). If L is a submodule of M with $L \subseteq N$ and if N is a weakly (m,n)-semiprime submodule of M, then N/L is a weakly (m,n)-semiprime submodule of M/L.

(2). If L is a submodule of M with $L \subseteq N$ and if N/L is a weakly (m,n)-semiprime submodule of M/L, and if L is a weakly (m,n)-semiprime submodule of M, then N is a weakly (m,n)-semiprime submodule of M.

Proof. (1). It is a direct consequence of Theorem 2.5(1).

(2). Assume that N/L is a weakly (m,n)-semiprime submodule of M/L and L is a weakly (m,n)-semiprime submodule of M. Take $0 \neq a^m x \in N$ for some $a \in A, x \in M$. Then $a^m(x + L) \in N/L$. If $a^m(x + L) = 0_{M/L}$, then $0 \neq a^m x \in L$, which is a weakly (m,n)-semiprime submodule of M. Thus, $a^m x \in L$ and so $a^n x \in N$. Next, we assume that $0 \neq a^m(x + L)$. The fact that N/L is a weakly (m,n)-semiprime submodule of M/L gives that $a^m(x + L) \in N/L$. Hence, $a^n x \in N$ and N is a weakly (m,n)-semiprime submodule of M. Therefore, N is weakly (m,n)-semiprime submodule of M. □

Pekin et al. [23] studied the concept of (m,n)-semiprime submodules over the trivial extension ring $A(+1)M$, where A is a commutative ring and M is an A-module. For more detail on trivial extensions of rings, see [7]. We end this section by giving another way to construct weakly (m,n)-semiprime submodules that are not (m,n)-semiprime. Let A be a ring, I be an ideal of A, and M be an A-module, and set

$$M \bowtie I := \{(x,x') \in M \times M | x - x' \in IM\},$$

which is a $A \bowtie I$-module with the multiplication given by

$$(r,r+i)(x,x') = (rx, (r+i)x') \quad \text{where} \quad r \in A, i \in I, \quad \text{and} \quad (x,x') \in M \bowtie I.$$

According to [12], $M \bowtie I$ is known as the duplication of the A-module M along the ideal I. If N is a submodule of M, then it is clear that

$$N \bowtie I := \{(x,x') \in N \times M | x - x' \in IM\} \quad \text{and} \quad \overline{N} := \{(x,x') \in M \times N | x - x' \in IM\}$$

are submodules of $M \bowtie I$.

Lemma 2.1. Let A be a ring, I be an ideal of A, and M be an A-module. Let N be a submodule of M. Let m and n be positive integers satisfying $m > n$.

(1). $N \bowtie I$ is an (m,n)-semiprime submodule of $M \bowtie I$ if and only if N is an (m,n)-semiprime submodule of M.

(2). $N \bowtie I$ is an (m,n)-semiprime submodule of $M \bowtie I$ if and only if N is an (m,n)-semiprime submodule of M.

Proof. (1). Assume that $N \bowtie I$ is an (m,n)-semiprime submodule of $M \bowtie I$. Take $a^m x \in N$ for some $a \in A, x \in M$. Then $(a, a)^m (x,x) \in N \bowtie I$. The fact that $N \bowtie I$ is an (m,n)-semiprime submodule of $M \bowtie I$, gives that $(a,a)^m (x,x) \in N \bowtie I$. So, $a^m x \in N$. Hence, N is an (m,n)-semiprime submodule of M. Conversely, assume that N is an (m,n)-semiprime submodule of M. Take $(a, a+i)^m(x,x')$ for some $(a, a+i) \in A \bowtie I, (x,x') \in M \bowtie I$. Then $(a^m x, (a+i)^m x') \in N$ and so $a^m x \in N$. As N is an (m,n)-semiprime submodule of M, we conclude that $a^n x \in N$, which implies $(a, a+i)^m(x,x') \in N \bowtie I$ and this shows that $N \bowtie I$ is an (m,n)-semiprime submodule of $M \bowtie I$.

(2). The proof is similar to the proof of (1) and so is omitted. □
The following definition is useful for studying weakly \((m, n)\)-semiprime submodules that are not \((m, n)\)-semiprime submodules.

Definition 2.1. Let \(M\) be an \(A\)-module where \(A\) is a commutative ring, \(m \geq n > 0\) are positive integers, and \(N\) a weakly \((m, n)\)-semiprime submodule of \(M\). Then \(a \in A\) is an \((m, n)\)-unbreakable-zero element of \(N\) if there exists \(x \in M\) such that \(a^m x = 0\) and \(a^n x \notin N\). (Thus, \(N\) has an \((m, n)\)-unbreakable-zero element if and only if \(N\) is a weakly \((m, n)\)-semiprime submodule of \(M\) that is not \((m, n)\)-semiprime.)

Theorem 2.6. The following statements are equivalent:

1. \(N \triangleleft I\) is a weakly \((m, n)\)-semiprime submodule which is not an \((m, n)\)-semiprime submodule of \(M \triangleright I\).
2. \(N\) is a weakly \((m, n)\)-semiprime submodule that is not an \((m, n)\)-semiprime submodule of \(M\), and for every \((m, n)\)-unbreakable-zero element \(a \in A\) of \(N\), it holds that \((a + i)^m M = 0\) for every \(i \in I\).

Proof: (1) \(\Rightarrow\) (2). Suppose that \(N \triangleleft I\) is a weakly \((m, n)\)-semiprime submodule of \(M \triangleright I\). Take \(0 \neq a^m x \in N\) for some \(a \in A, x \in M\). Then \(0 \neq (a, a)^m (x, x) \in N \triangleleft I\). As \(N \triangleleft I\) is a weakly \((m, n)\)-semiprime submodule of \(M \triangleright I\), we obtain that \((a, a)^m (x, x) \in N \triangleleft I\), which implies \(a^m x \in N\) and shows that \(N\) is a weakly \((m, n)\)-semiprime submodule of \(M\). By Lemma 2.1, \(N\) is not an \((m, n)\)-semiprime submodule of \(M\). Now, let \(a \in A\) be an \((m, n)\)-unbreakable-zero element of \(N\); that is, there exists \(x \in M\) such that \(a^m x = 0\) and \(a^n x \notin N\). We will show that \((a + i)^m M = 0\) for every \(i \in I\).

Since \(N\) is a weakly \((m, n)\)-semiprime submodule of \(M\) that is not \((m, n)\)-semiprime, \(N\) has an \((m, n)\)-unbreakable-zero \(a \in A\). By the way of contradiction, suppose that there exists \(i \in I\) such that \((a + i)^m y = 0\) for some \(y \in M\). Then, \(0 \neq (a, a + i)^m = (0, (a + i)^m y) \in N \triangleleft I\). As \(N \triangleleft I\) is a weakly \((m, n)\)-semiprime submodule of \(M \triangleright I\), we conclude that \((a + i)^m (x, y) \in N \triangleright I\) and so \(a^n x \in I\), which is a contradiction. Hence, \((a + i)^m M = 0\) for every \(i \in I\).

(2) \(\Rightarrow\) (1). Suppose that \(N\) is a weakly \((m, n)\)-semiprime submodule which is not \((m, n)\)-semiprime and \((a + i)^m M = 0\) if \(a \in A\) is an \((m, n)\)-unbreakable-zero element of \(N\). Let \(0 \neq (a, a + i)^m (x, x^\prime) \in N \triangleright I\). Then \(a^n x \in N\) and \((a + i)^m x^\prime - a^m x \in IM\). Assume that \(0 \neq a^m x \in N\). As \(N\) is a weakly \((m, n)\)-semiprime submodule of \(M\) we get \(a^n x \in N\). Now, assume that \(a^m x = 0\), then necessarily \(0 \neq (a + i)^m x^\prime\). If \(a^n x \notin N\), then \(a\) is an \((m, n)\)-unbreakable-zero element of \(N\). By our assumption, we have \((a + i)^m M = 0\). This is a contradiction. Hence, \(a^n x \in N\).

Theorem 2.7. Let \(M\) be an \(A\)-module, \(N\) be a submodule of \(M\), and \(m, n\) are positive integers satisfying \(m > n\). Let

\[N := \{(x, x') \in M \times N; x - x' \in IM\}. \]

The following statements are equivalent:

1. \(N\) is a weakly \((m, n)\)-submodule of \(M \triangleright I\).
2. \(N\) is a weakly \((m, n)\)-submodule of \(M\) and the equation \((a - i)^m M = 0\) holds for every \(i \in I\) and for an \((m, n)\)-unbreakable-zero element \(a \in A\) of \(N\).

Proof. It is the same as the proof of Theorem 2.6.

3. Modules over which every submodule is weakly \((m, n)\)-semiprime

The following result gives the constraints under which every given proper submodule is a weakly \((m, n)\)-semiprime submodule.

Theorem 3.1. Let \(M\) be an \(A\)-module and \(m, n\), be two positive integers such that \(m > n\). The following statements are equivalents:

1. Every proper submodule is a weakly \((m, n)\)-semiprime submodule of \(M\).
2. For every submodule \(N\) of \(M\) and for every \(a \in A\) such that \(0 \neq a^m N\), the descending chain

\[aN \supseteq a^2 N \supseteq \cdots \supseteq a^n N \supseteq \cdots \]

of submodules of \(M\) terminates at the \(n\)th step.
3. For every submodule \(N\) of \(M\) and for every \(a \in A\) with \(0 \neq a^m N\), it holds that \(a^n N = a^m N\).
Proof. (1) ⇒ (2). Take \(a \in A \) and let \(N \) be a submodule of \(M \) such that \(0 \neq a^nN \). If \(a^nN = M \) then we are done. Next, we assume that \(a^nN \) is a proper submodule of \(M \). Since \(0 \neq a^nN \subseteq a^nN \) and \(N \) is a weakly \((m,n)\)-semiprime submodule of \(M \), by Theorem 2.1 we have \(a^nN \subseteq a^nN \), which implies that \(a^nN = a^nN \). Hence, the descending chain
\[aN \supseteq a^2N \supseteq \cdots \supseteq a^nN \supseteq \cdots, \]
terminates at the \(n^{th} \) step.

(2) ⇒ (3). It is trivial.

(3) ⇒ (1). Let \(N \) be a proper submodule of \(M \). Take \(a \in A \) and let \(K \) be a submodule of \(M \) such that \(0 \neq a^nK \subseteq N \). By our assumption \(a^nK = a^nK \subseteq N \). Now, by Theorem 2.1, we conclude that \(N \) is a weakly \((m,n)\)-semiprime submodule of \(M \).

According to [11, 15], an \(A \)-module \(M \) is said to be *multiplication module* if every submodule \(N \) of \(M \) has the form \(N = IM \), where \(I \) is an ideal of \(A \). In this case, we have \(N = (N : M)M \). For more detail about multiplication modules, see [1–4].

Let \(M \) be an \(A \)-module. According to [20], \(M \) is a *reduced module* if for every \(a \in A \), \(x \in M \) with \(ax = 0 \), \(aM \cap Ax = 0 \), or equivalently \(a^2x = 0 \) implies \(ax = 0 \).

According to [22], a commutative ring \(A \) is a *von Neumann regular ring* if for every \(a \in A \), there exist \(b \in A \) such that \(a = a^2b \). In [17], Jayarm and Tekir studied the concept of von Neumann regular modules (see also [18, 19]) by introducing the concept \(M \)-von Neumann regular elements of modules as follows. If \(M \) is an \(A \)-module, then an element \(a \in A \) is an \(M \)-von Neumann regular element if \(aM = a^2M \). Also, an \(A \)-module \(M \) is said to be a *von Neumann regular module* if for every \(x \in M \), \(Ax = aM = a^2M \) for some \(a \in A \).

Our next objective is to give a characterization of von Neumann regular modules using the properties of weakly \((m,n)\)-semi prime submodules.

Theorem 3.2. Let \(M \) be a finitely generated \(A \)-module. The following statements are equivalents:

1. \(M \) is an von Neumann regular module.
2. \(M \) is a multiplication reduced module in which every submodule is weakly \((m,n)\)-semiprime submodule

Proof. We follow the same reasoning as (1) ⇔ (2) in Theorem 8 of [23].

(2) ⇒ (1). Let \(M \) be a finitely generated reduced multiplication module in which every proper submodule is a weakly \((m,n)\)-semiprime. Take \(a \in A \). We will show that \(aM = a^2M \). If \(a^nM = M \), then clearly we have \(aM = a^2M \). Next, we assume that \(a^nM \) is a proper submodule of \(M \). First, consider the case \(a^nM = 0 \). Since \(M \) is reduced, we have \(\text{ann}(M) \) is a semiprime ideal, which implies that \(a \in \text{ann}(M) \). Thus, \(aM = a^2M = 0 \). Next, we consider the case \(0 \neq a^nM \). As \(a^nM \) is a weakly \((m,n)\)-semiprime submodule and \(0 \neq a^nM \subseteq a^nM \), we conclude by Theorem 2.1 that \(a^nM = a^2M \). We deduce that \(a^{n+1}M = a^nM = a(a^nM) \). Since \(a^nM \) is a finitely generated module, by Corollary 2.5 of [8] we have \(x(a^nM) = 0 \) for some \(x \in A \) such that \(x \equiv 1 \mod(a^n) \). Thus, there exists \(b \in A \) such that \((1-ab)a^nM = 0 \). AS \(M \) is reduced, we get \((1-ab)aM = 0 \), Which implies \(aM = a^2bM \subseteq a^2M \). Consequently, we obtain \(aM = a^2M \), as desired.

(1) ⇒ (2). Suppose that \(M \) is a von Neumann regular module. By the proof of Theorem 8 of [23], \(M \) is a multiplication-reduced module. Now, let \(N \) be a proper submodule of \(M \). Take \(a \in A \) and let \(L \) be a submodule of \(M \) such that \(0 \neq a^nL \subseteq N \). Since \(M \) is a multiplication module, we have \(L = (L : M)M \), which then gives \(0 \neq a^nL = (L : M)a^nM = (L : M)a^nM \), and hence \(0 \neq a^nN = a^nN \). Therefore, \(N \) is a weakly \((m,n)\)-semiprime submodule.

Corollary 3.1. Let \(M \) be a finitely generated \(A \)-module. The following statements are equivalent:

1. \(M \) is a von Neumann regular module.
2. \(M \) is a multiplication-reduced module in which every submodule is an \((m,n)\)-semiprime submodule.
3. \(M \) is a multiplication-reduced module in which every submodule is a weakly \((m,n)\)-semiprime submodule.

Proof. (1) ⇔ (2). It follows from Theorem 8 of [23].

(2) ⇒ (3). It is trivial.

(3) ⇒ (1). It follows from Theorem 3.2.

Acknowledgement

The authors would like to thank the referees for their great efforts in proofreading the manuscript.
References