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Abstract
The atom-bond sum-connectivity (ABS) index is a recently introduced variant of three earlier much studied graph-based
molecular descriptors: connectivity (Randić), atom-bond connectivity, and sum-connectivity indices. In this paper, the
graphs with minimum, second-minimum, maximum, and second-maximum values of the ABS index are determined over
the class of connected unicyclic graphs with a fixed order. Possible chemical applications of the ABS index are also investi-
gated on particular sets of chemical graphs.

Keywords: connectivity index; atom-bond connectivity index; sum-connectivity index; atom-bond sum-connectivity index;
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1. Introduction

Throughout the present paper, the graphs considered are finite and connected. For graph theoretical terminology and
notation used without being defined, we refer the readers to the books [5,6,27].

The connectivity index of a graph G is defined as (see [22,23])

R(G) =
∑

uv∈E(G)

1√
du dv

,

where E(G) is the set of edges of G, uv represents the edge connecting the vertices u and v, and du denotes the degree of
the vertex u. By the majority of scholars, R(G) is called Randić index [12,15,24].

Estrada et al. [9] introduced a modified version of the connectivity index and referred it to as the atom-bond connectivity
index. It is defined as

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

du dv
.

Another variant of the connectivity index was put forwarded by Zhou and Trinajstić [28] under the name sum-connectivity
index. It is defined as

χ(G) =
∑

uv∈E(G)

1√
du + dv

.

Details concerning the mathematical aspects of the connectivity, atom-bond connectivity, and sum-connectivity indices
together with their applications can be found in [1,3,8,12,14,15,18,23,24] and the references cited therein.

A modified version of the atom-bond connectivity index, utilizing the core idea of the sum-connectivity index and named
atom-bond sum-connectivity (ABS) index, was recently put forward in [2]. The ABS index is defined as

ABS(G) =
∑

uv∈E(G)

√
du + dv − 2

du + dv
=

∑
uv∈E(G)

√
1− 2

du + dv
.

The ABS index is a particular case of the so-called t-index, devised and investigated by Tang et al. [26]. It needs to be
remarked that the t-index was considered in [26] for several choices of the parameters, but none of these pertained to the
ABS index.

In [2] were characterized the graphs having extreme values of the ABS index among (molecular) trees and general
graphs with a fixed order. In the present paper, we report analogous results for unicyclic graphs and give some possible
chemical applications of the ABS index.
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2. Atom-bond sum-connectivity index of unicyclic graphs

For a vertex u in a graph G, denote by N(u) the set of all those vertices of G that are adjacent with u.

Lemma 2.1. Let v1v2 be an edge of the graph G such that it does not lie on a triangle, and dv1 ≥ dv2 ≥ 2. Construct
the graph G? by removing from G all edges of the set {v2u : u ∈ N(v2) \ {v1}}, and adding all the new edges of the set
{v1u : u ∈ N(v2) \ {v1}}. Then ABS(G?) > ABS(G).

Proof. In this proof, by dx we mean the degree of the vertex x ∈ V (G) = V (G?) in G, not in G?. By using the definition of
the ABS index one has

ABS(G)−ABS(G?) =
∑

u∈N(v2)\{v1}

(√
1− 2

dv2 + du
−

√
1− 2

dv1 + dv2 + du − 1

)

+
∑

w∈N(v1)\{v2}

(√
1− 2

dv1 + dw
−

√
1− 2

dv1 + dv2 + dw − 1

)
. (1)

Since dv1 ≥ dv2 ≥ 2 and the function F defined by

F (x1, x2) =

√
1− 2

x1 + x2

is strictly increasing in x1 as well as in x2 for x1 ≥ 1 and x2 ≥ 1, the required inequality follows from (1).

Among the several direct consequences of Lemma 2.1, we mention the following two.

Corollary 2.1 (see [2]). For every fixed integer n greater than 3, the star Sn is the only graph possessing the maximum ABS

index in the class of all trees of order n.

Corollary 2.2. If n is a fixed integer greater than 3, and G is a graph with the maximum ABS index in the class of all
unicyclic graphs of order n, then G has n− 3 vertices of degree 1; see the graph depicted in Figure 1.

n2≥0︷ ︸︸ ︷n1≥0︷ ︸︸ ︷

︸ ︷︷ ︸
n3≥0

Figure 1: The unicyclic graph of order n referred in Corollary 2.2, obtained by attaching vertices of degree 1 to the triangle
C3. Here, n3 ≥ n2 ≥ n1 ≥ 0 and n1 + n2 + n3 = n− 3.

An n-vertex graph is a graph with n vertices. A vertex of degree 1 is known as a pendent vertex. For every fixed integer
n greater than 3, let S+

n be the n-vertex graph obtained by attaching n − 3 pendent vertices to one vertex of the triangle
C3. Note that S+

n is the graph depicted in Figure 1 for which n1 = n2 = 0 and n3 = n− 3.

Proposition 2.1. Among all unicyclic graphs of order n > 3, the graph S+
n has the maximum ABS index, equal to

(n− 3)

√
n− 2

n
+ 2

√
n− 1

n+ 1
+

1√
2
.
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Proof. Let G∗ be the graph with the maximum ABS index among all unicyclic graphs of order n. By Corollary 2.2, G∗ has
n−3 vertices of degree 1. Therefore,G∗ must be a graph shown in Figure 1. Since n3 ≥ n2 ≥ n1 ≥ 0 and n1+n2+n3 = n−3,
it holds that b(n− 3)/3c ≥ n3 ≥ n2 ≥ n1 ≥ 0. By utilizing the definition of the ABS index, we have

ABS(G∗) =

3∑
i=1

ni

√
1− 2

ni + 3
+

∑
1≤i<j≤3

√
1− 2

ni + nj + 4
. (2)

Equation (2) can be written in terms of n, n1, and n2 as

ABS(G∗) = (n− n1 − n2 − 3)

√
1− 2

n− n1 − n2
+ n1

√
1− 2

n1 + 3
+ n2

√
1− 2

n2 + 3

+

√
1− 2

n− n2 + 1
+

√
1− 2

n− n1 + 1
+

√
1− 2

n1 + n2 + 4
. (3)

Let ϕ be the bivariate function defined by

ϕ(x1, x2) = (n− x1 − x2 − 3)

√
1− 2

n− x1 − x2
+ x1

√
1− 2

x1 + 3
+ x2

√
1− 2

x2 + 3

+

√
1− 2

n− x2 + 1
+

√
1− 2

n− x1 + 1
+

√
1− 2

x1 + x2 + 4
,

where x1 and x2 are real numbers satisfying b(n− 3)/3c ≥ x2 ≥ x1 ≥ 0 . We note that

∂ϕ

∂x2
=− n− x1 − x2 − 3√

1− 2
n−x1−x2

(n− x1 − x2) 2
−
√
1− 2

n− x1 − x2
− 1√

1− 2
n−x2+1 (n− x2 + 1) 2

+

√
1− 2

x2 + 3
+

x2

(x2 + 3) 2
√
1− 2

x2+3

+
1

(x1 + x2 + 4) 2
√
1− 2

x1+x2+4

. (4)

Setting y1 = x2 + 3 and y2 = n− x1 − x2 in (4) yields

∂ϕ

∂x2
=

1

(x1 + y1 + 1) 2
√
1− 2

x1+y1+1

− 1

(x1 + y2 + 1) 2
√
1− 2

x1+y2+1

+
y1 − 3

y21

√
1− 2

y1

(5)

+

√
1− 2

y1
−
√
1− 2

y2
− y2 − 3

y22

√
1− 2

y2

= ψ(x1, y1)− ψ(x1, y2) (6)

where
ψ(x1, z) =

1

(x1 + z + 1) 2
√

1− 2
x1+z+1

+
z − 3

z2
√
1− 2

z

+

√
1− 2

z
.

We also have

∂ψ

∂z
=

(−2x1 − 2z + 1)
√
1− 2

x1+z+1(
(x1 + z)2 − 1

)
2

+
6z − 9

(z − 2)3/2z5/2
− 1

(z − 2)3/2z3/2

= f(x1, z) +
6z − 9

(z − 2)3/2z5/2
− 1

(z − 2)3/2z3/2
(7)

where

f(x1, z) =
(−2x1 − 2z + 1)

√
1− 2

x1+z+1(
(x1 + z)2 − 1

)
2

.

If z ≥ y1, then z ≥ 3 (because y1 = x2 + 3 and x2 ≥ x1 ≥ 0) and thence

∂f

∂x1
=

3
(
2x21 + 2x1(2z − 1) + 2z(z − 1) + 1

)√
x1+z−1
x1+z+1 (x1 + z − 1) 2 (x1 + z + 1) 4

> 0 .

3
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This implies f(x1, z) ≥ f(0, z) for z ≥ y1, and hence from (7) it follows that

∂ψ

∂z
≥

(−2z + 1)
√

1− 2
z+1

(z2 − 1) 2
+

6z − 9

(z − 2)3/2z5/2
− 1

(z − 2)3/2z3/2
> 0 (8)

for z ≥ y1 (that is, for z ≥ 3). Since b(n− 3)/3c ≥ x2 ≥ x1 ≥ 0, it holds that

y2 = n− x1 − x2 ≥ x2 + 3 = y1

which gives ψ(x1, y2) ≥ ψ(x1, y1). Thus, from (6) it follows that the function ϕ is decreasing in x2. Similarly, by symmetry,
ϕ is decreasing in x1. Therefore, ϕ(x1, x2) ≤ ϕ(0, 0). Thus, from (3) it follows that

ABS(G∗) ≤ (n− 3)

√
n− 2

n
+ 2

√
n− 1

n+ 1
+

1√
2
= ABS(S+

n ) .

For every fixed integer n greater than 4, let S++
n be the n-vertex graph obtained by attaching n− 4 pendent vertices to

one vertex of the triangle C3, and attaching a pendent vertex to another vertex of C3. Note that S++
n is the graph depicted

in Figure 1 for which n1 = 0, n2 = 1, and n3 = n− 4.
In an analogous manner as Proposition 2.1 we can prove:

Proposition 2.2. Among all unicyclic graphs of order n > 4, the graph S++
n has the second-maximum ABS index, equal

to
(n− 4)

√
n− 3

n− 1
+

√
n− 1

n+ 1
+

√
n− 2

n
+

√
3

5
+

1√
2
.

A path u1 · · ·ur in a graph G is said to be a pendent path if min{du1
, dur
} = 1, max{du1

, dur
} ≥ 3, and dui

= 2 for
2 ≤ i ≤ r − 1. A vertex of a graph with degree at least 3 is called a branching vertex. Certainly, every pendent path has
exactly one branching vertex. We say that two pendent paths in a graph are adjacent if they have a common branching
vertex.

Lemma 2.2 (see [2]). If a graph G has at least one pair of adjacent pendent paths, then there exists at least one graph G′

containing no pair of adjacent pendent paths such that ABS(G) > ABS(G′).

Proposition 2.3. For every fixed integer n ≥ 3, among all unicyclic graphs of order n, the cycle Cn is the only graph
possessing the minimum ABS index, equal to n/

√
2.

Proof. Suppose that G is a unicyclic graph of order n with the minimum ABS index. By Lemma 2.2, G has no pair of
adjacent pendent paths, which means that the maximum degree of G is at most 3 and every vertex of maximum degree
lies on the cycle of G. We claim that G does not have any pendent path. Contrarily, suppose that vv1 · · · vt is a pendent
path of G where the vertex v lies on the cycle of G. Let u, v1, and w be the neighbors of v. If G′ is the graph obtained from
G by deleting the edge vu and inserting a new edge vtu, then

ABS(G)−ABS(G′) =
√
1− 2

du + 3
+

√
1− 2

dw + 3
−
√
1− 2

du + 2
−
√
1− 2

dw + 2

+


1√
2
−
√

3

5
if t = 1,

1√
3
+

√
3

5
−
√
2 if t > 1.

Here, du and dw represent degrees of the vertices u and w (respectively) in G, not in G′. Since the maximum degree of G
is 3, it holds that √

1− 2

dx + 3
−
√
1− 2

dx + 2
≥
√

2

3
−
√

3

5

for x ∈ {u,w} and thus ABS(G)−ABS(G′) > 0, which contradicts the minimality of ABS(G). Therefore, G does not have
any pendent path, which means that G ∼= Cn.

In an analogous manner we can prove the next result.

Proposition 2.4. For every fixed integer n > 4, among all unicyclic graph of order n, every graph having exactly one pendent
path such that the unique pendent path has length at least 2 possesses the second-minimum value of the ABS index, equal
to

n− 4√
2

+ 3

√
3

5
+

1√
3
.

4
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3. Chemical applicability of the ABS index

ABS R χ ABC
ABS 1.0000 0.9975 0.9915 0.9811
R 1.0000 0.9977 0.9700
χ 1.0000 0.9550

ABC 1.0000

Table 1: The absolute values of the correlation coefficients between some indices.

Correlation coefficients among ABS, R, ABC, and χ indices are presented in Table 1, in the case of octane isomers.
From these values we may conclude that the ABS index may predict equally well the properties of molecules that can be
predicted by any of the three indices. To test this, we have correlated our indices with the experimental physico-chemical
properties of octane isomers. Complete experimental data are available at
https://web.archive.org/web/20180912171255if_/http://www.moleculardescriptors.eu/index.htm

for the following thirteen physico-chemical properties: boiling point, heat capacity at P constant, heat capacity at T con-
stant, density, entropy, enthalpy of vaporization, enthalpy of formation, standard enthalpy of vaporization, standard en-
thalpy of formation, total surface area, acentric factor, molar volume, octanol-water partition coefficient. The absolute
value of the correlation coefficient between each of these thirteen properties andABS index is calculated and those greater
than 0.8 are listed in Table 2. The absolute values of the correlation coefficients between these (six) properties and the
three indices R, χ, ABC, are also listed in the same table.

ABS R χ ABC
Boiling point 0.8356 0.8208 0.8023 0.8323
Entropy 0.8847 0.9058 0.9230 0.8146
Enthalpy of vaporization 0.9402 0.9361 0.9318 0.9151
Standard enthalpy of vaporization 0.9545 0.9582 0.9612 0.9170
Enthalpy of formation 0.8602 0.8505 0.8316 0.8497
Acentric factor 0.8801 0.9042 0.9299 0.8076

Table 2: The absolute values of the correlation coefficients between six properties of octane isomers and our indices.

From Table 2, it is observed that the ABS index performs somewhat better than the ABC index for the six listed
properties. Also, the ABS index outperforms all the considered indices for boiling point, enthalpy of vaporization, and
enthalpy of formation.

In Table 3 the percentage of degeneracy ofABS,R, χ, andABC indices for several sets of chemical trees is presented. As
one may see, the ABS index shows degeneracy levels comparable with other indices. Such modest discriminative potential
is in accordance with the degeneracy of other degree-based graph invariants [25].

n # of isomers ABS R χ ABC
10 75 37.33 34.67 37.33 41.33
11 159 50.94 47.17 50.94 54.09
12 355 65.07 61.13 65.07 66.48
13 802 75.94 72.07 75.94 76.43
14 1858 84.61 81.05 84.50 84.28
15 4347 90.20 87.53 90.25 90.11

Table 3: The percentage of degeneracy of ABS, R, χ, and ABC indices in the case of chemical trees.

Another important feature of a topological index is its structure sensitivity [21]. In Figure 2 the percentage of structure
sensitivity of ABS, R, χ, and ABC indices in the case of decane isomers is depicted. As can be seen, the ABS index shows
comparable percentage of structure sensitivity with other investigated indices. This finding indicates that the ABS index
can successfully describe subtle modifications within molecular structure.

4. Concluding remarks

In this paper, we found the graphs extremal with respect to the ABS index over the class of all unicyclic graphs of a fixed
order. We have also investigated the chemical applicability of the ABS index on the set of octane isomers and found that

5
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Figure 2: Structure sensitivity of ABS, R, χ, and ABC indices in the case of decane isomers.

it is strongly correlated with the connectivity, atom-bond connectivity, and sum-connectivity indices. This indicates that
the ABS index can be used to predict properties of molecules equally well (or better than) as by the earlier connectivity
indices. Moreover, the ABS index performs slightly better than the aforementioned indices in predicting certain chemical
properties of octane isomers; when comparing ABS and ABC indices, the ABS index outperforms the ABC index in six
properties.

For a possible future work towards the study of the ABS index, consider its general version:

ABSα(G) =
∑

uv∈E(G)

(
du + dv − 2

du + dv

)α
,

where α is a real number and G does not have any component isomorphic to the path of order 2 when α < 0. Consider
the closed interval [−5, 5] and the set of octane isomers together with the six chemical properties mentioned in Table 2. Is
there any value of α (different from 1/2) in the considered interval for which ABSα predicts at least one of the mentioned
property better than the ordinary ABS index? It is a question similar to the one addressed in [10] for the case of the
general ABC index.

Another direction for a possible future work towards the study of the ABS index is concerned with extremal results.
Such results concerning the minimum values of the ABS index seem to be interesting because similar results involving
the ABC index are not easy to obtain in many cases. For example, the problem of finding trees having the minimum ABC

index over the class of all trees of a fixed order was perhaps one of the much-investigated and hard problems in chemical
graph theory in the last decade (for example, see [1]) and was recently settled in [7, 13]. On the other hand, surprisingly,
the corresponding problem for the ABS index was rather easy [2]. (It was proved in [2] that the star and path graphs are
the only extremal trees with respect to the ABS index among all trees of a given order; this indicates that the ABS index
may also be useful within the theory of branching in molecules and graphs, for example see [4].) Finding trees having the
minimum ABC index over the class of a fixed number of pendent vertices was another challenging problem, which was
addressed in several papers (for example, see [11, 16, 17, 19]) and was finally solved by Mohar in [20]. Thus, it would be
interesting to find a solution to the following problem.

Problem 4.1. Find trees having the minimum ABS index over the class of a fixed number of pendent vertices.
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[21] M. Rakić, B. Furtula, A novel method for measuring the structure sensitivity of molecular descriptors, J. Chemom. 33 (2019) #e3138.
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[25] I. Redžepović, Chemical applicability of Sombor indices, J. Serb. Chem. Soc. 86 (2021) 445–457.
[26] Y. Tang, D. B. West, B. Zhou, Extremal problems for degree-based topological indices, Discrete Appl. Math. 203 (2016) 134–143.
[27] S. Wagner, H. Wang, Introduction to Chemical Graph Theory, CRC Press, Boca Raton, 2018.
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