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Abstract

We evaluate in closed form a number of power series where the coefficients are products of Stirling numbers of the second kind
and other special numbers or polynomials. The results include harmonic, hyperharmonic, derangement, Cauchy, Catalan
numbers, zeta values, and also Bernoulli, Euler, and Laguerre polynomials.
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1. Introduction

Let an and bn, n = 0, 1, 2, . . . , be the coefficients of two given power series f(t) and g(t), respectively. Then the power series
of the form

∑
n≥0 anbnz

n is known as the Hadamard product of the two series and gives the generating function for the
product sequence anbn, n ≥ 0. It has the integral representation

∞∑
n=0

anbnz
n =

1

2πi

∮
L

g
( z
λ

) f(λ)

λ
dλ,

where L is a small positively oriented circle centered at the origin. In some cases this integral can be manipulated to find
interesting series transformation formulas or even to evaluate the Hadamard product in closed form - see [2] for details.
In [3], by using a certain binomial series transformation the first author evaluated in closed form the series

∑
n≥0 CnHnz

n,
where Cn are the Catalan numbers and Hn are the harmonic numbers. In [7], for p ≥ 0 an integer, several series of the
form

∑
n≥0

(
n+p
n

)
f(n)zn were evaluated, where f(n) is some function that involves values of the Riemann zeta function.

In [6] the authors considered series where the coefficients are products of Hermite polynomials and harmonic numbers.
This paper is a continuation of our research started in [8]. We present a simple method for evaluating in closed form

power series like ∑
n≥0

S(n,m) an z
n,

where S(n,m) are the Stirling numbers of the second kind and an are the coefficients of any power series (an can be special
numbers or polynomials). Using the theorem we derive ten corollaries where we evaluate a number of power series. Our
examples include series with zeta values ζ(n), harmonic, hyperharmonic, derangement, Cauchy, and Catalan numbers,
and also Bernoulli, Euler, and Laguerre polynomials. In particular, the following series are evaluated

∞∑
n=m

S(n,m)2
zn

n!
,

∞∑
n=m

S(n,m)ζ(n+ 1)zn,

∞∑
n=m

S(n,m)Hnz
n,

∞∑
n=m

S(n,m)Hn
zn

n!
.

2. Power series with Stirling numbers and other special numbers

The Stirling numbers of the second kind S(n,m) originated in the works of James Stirling (see [4] and [22]). They have
numerous important applications in analysis and combinatorics (for example, see [1,5,9,10,15,19,20]). In combinatorics
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S(n,m) stands for the number of ways a set of n elements can be partitioned into m nonempty subsets. The numbers obey
the recurrence relation

S(n+ 1,m) = mS(n,m) + S(n,m− 1), m > 0, (1)

with initial conditions S(0, 0) = 1, S(n, 0) = 0 for n > 0, S(n, n) = 1 and for n ≥ 1, S(n, 1) = 1.
The exponential generating function for these numbers is

∞∑
n=0

S(n,m)
zn

n!
=

1

m!
(ez − 1)m, (2)

where m ≥ 0 and the series converges everywhere. The summation on the left hand side starts, in fact, from n = m, as
S(n,m) = 0 for n < m. The ordinary generating function is

∞∑
n=m

S(n,m)zn =
zm

(1− z)(1− 2z) · · · (1−mz)
(3)

with convergence for |z| < 1/m. For large n the Stirling numbers of the second kind have the asymptotic behavior S(n,m) ∼
mn

m! .
Our results are based on the following theorem.

Theorem 2.1. Let f(z) = a0 + a1z + a2z
2 + · · · be a function analytic on the disk |z| ≤ R. Then for every integer m > 0 we

have
∞∑
n=m

S(n,m) anz
n =

(−1)m

m!

m∑
k=0

(
m

k

)
(−1)kf(kz), (4)

with convergence in the disk |z| < R/m.

Proof. Let L be the circle |λ| = R. For every n ≥ 0 we have

an =
1

2πi

∮
L

f(λ)dλ

λn+1

and from here (with |z| < R/m), by changing the order of summation and integration

∞∑
n=0

S(n,m) anz
n =

1

2πi

∮
L

( ∞∑
n=0

S(n,m)
( z
λ

)n) f(λ)dλ

λ

=
zm

2πi

∮
L

((
1− z

λ

)(
1− 2z

λ

)
· · ·
(

1− mz

λ

))−1 f(λ)dλ

λm+1

=
zm

2πi

∮
L

((λ− z) (λ− 2z) · · · (λ−mz))−1 f(λ)dλ

λ

=
1

2πi

∮
L

((
λ

z
− 1

)(
λ

z
− 2

)
· · ·
(
λ

z
−m

))−1
f(λ)dλ

λ
.

With the substitution λ = µz this becomes
∞∑
n=0

S(n,m) anz
n =

1

2πi

∮
M

f(µz)dµ

µ(µ− 1)(µ− 2) · · · (µ−m)
,

where M is now a circle centered at the origin and containing the numbers 1, 2, . . . ,m. Note that for |z| < R/m we have
|µ| = |λ/z| = R/|z| > m. By the Nørlund-Rice formula (for details see [16]) we have

1

2πi

∮
M

f(µz)dµ

µ(µ− 1)(µ− 2) · · · (µ−m)
=

(−1)m

m!

m∑
k=0

(
m

k

)
(−1)kf(kz).

The proof is completed.

Remark 2.1. The above theorem can also be proved as follows: We use the well-known representation of the Stirling numbers
(see [4] for instance)

S(n,m) =
(−1)m

m!

m∑
k=0

(
m

k

)
(−1)kkn. (5)
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Let p be a positive integer. We multiply both sides in the above equation by anzn and sum for n = 0, 1, 2, . . . , p to get
p∑

n=0

S(n,m)anz
n =

(−1)m

m!

m∑
k=0

(
m

k

)
(−1)k

(
p∑

n=0

an(kz)n

)
.

When |z| < R/m and p→∞ the right hand side will converge to the right hand side in (4). Therefore, the partial sums on
the left hand side will also converge and passing to limits we come to equation (4).

For the function f(z) = 1 + z + z2 + . . . = 1
1−z , equation (4) becomes

∞∑
n=m

S(n,m)zn =
(−1)m

m!

m∑
k=0

(
m

k

)
(−1)k

1− kz
, (6)

which shows the decomposition in partial fractions of the ordinary generating function

zm

(1− z)(1− 2z) · · · (1−mz)
=

(−1)m

m!

m∑
k=0

(
m

k

)
(−1)k

1− kz
. (7)

3. Applications of the theorem

In our first application, we present a “Stirling double series” by applying Theorem 2.1 to the generating function (2).

Corollary 3.1. For any two integers m, p ≥ 0 and every z we have
∞∑

n=max{m,p}

S(n,m)S(n, p)
zn

n!
=

(−1)m

p!m!

m∑
k=0

(
m

k

)
(−1)k(ekz − 1)p. (8)

When m = p the series takes the form
∞∑
n=0

S2(n, p)
zn

n!
=

(−1)p

(p!)2

p∑
k=0

(
p

k

)
(−1)k(ekz − 1)p. (9)

Next, we consider the Stirling numbers of the first kind s(n, p) with exponential generating function
∞∑
n=0

s(n, p)
zn

n!
=

1

p!
lnp(1 + z), (10)

where the radius of convergence is R = 1 (see [9,10,15,20,22]). These numbers are dual to S(n,m) in the sense that

n∑
k=0

S(n, k)s(k, j) =

{
1 n = j

0 n 6= j
and

n∑
k=0

s(n, k)S(k, j) =

{
1 n = j

0 n 6= j
.

With the help of Theorem 2.1 we construct a series involving the Stirling numbers of both kinds and evaluate it in closed
form.

Corollary 3.2. For any two integers m > 0, p ≥ 0we have
∞∑
n=0

S(n,m)s(n, p)
zn

n!
=

(−1)m

p!m!

m∑
k=0

(
m

k

)
(−1)k lnp(1 + kz), (11)

true for |z| < 1/m. Again, the summation on the left hand side starts actually from n = max{m, p}, as s(n, p) = 0 when
n < p.

Our next example involves zeta values. Consider the Hurwitz zeta function

ζ(s, a) =

∞∑
k=0

1

(k + a)s
, Re(s) > 1, a > 0,

where ζ(s, 1) = ζ(s) is Riemann zeta function. The sequence ζ(n, a)/n, n = 1, 2, . . . , has the generating function (see [20])
∞∑
n=1

ζ(n, a)
zn

n
= ln Γ(a− z)− ln Γ(a) + zψ(a), |z| < a,
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where Γ(z) is the Gamma function and ψ(z) = d
dz ln Γ(z) is the digamma function. Differentiating this representation we

also have
∞∑
n=1

ζ(n+ 1, a)zn = −ψ(a− z) + ψ(a), |z| < a

and in particular, for a = 1
∞∑
n=1

ζ(n+ 1)zn = −ψ(1− z) + ψ(1), |z| < 1.

This leads to the next result which generalizes the above series representations.

Corollary 3.3. For every integer m > 1 and every a > 0 we have the representations
∞∑
n=m

S(n,m) ζ(n, a)
zn

n
=

(−1)m

m!

m∑
k=0

(
m

k

)
(−1)k (ln Γ(a− kz)− ln Γ(a) + kzψ(a))

=
(−1)m

m!

m∑
k=0

(
m

k

)
(−1)k ln Γ(a− kz)

∞∑
n=m

S(n,m) ζ(n+ 1, a)zn =
(−1)m−1

m!

m∑
k=0

(
m

k

)
(−1)kψ(a− kz) (12)

with convergence for |z| < a/m. Also, with a = 1

∞∑
n=m

S(n,m) ζ(n+ 1)zn =
(−1)m−1

m!

m∑
k=0

(
m

k

)
(−1)kψ(1− kz) (13)

with convergence for |z| < 1/m.

Note that the first sum in the corollary was simplified because for m > 1 by the binomial theorem
m∑
k=0

(
m

k

)
(−1)k = 0,

m∑
k=0

(
m

k

)
(−1)kk = 0.

If we set a = m in (12) we obtain an interesting power series converging in the disk |z| < 1

∞∑
n=m

S(n,m) ζ(n+ 1,m)zn =
(−1)m−1

m!

m∑
k=0

(
m

k

)
(−1)kψ(m− kz). (14)

For example, we have the curious identity
∞∑
n=m

1

2n
S(n,m) ζ(n+ 1,m) =

(−1)m−1

m!

m∑
k=0

(
m

k

)
(−1)kψ

(
m− k

2

)
.

Now we consider the hyperharmonic numbers h(p)n (also denoted by Hn,p). These numbers first appeared in the book of
Conway and Guy [11] and generalize the harmonic numbers Hn. They were studied recently in [12–14]. Hyperharmonic
numbers can be defined by the formula

h(p+1)
n =

n∑
k=0

(
n+ p

n

)
(Hn+p −Hp)

for n, p = 0, 1, 2, . . ., where Hn = 1 + 1
2 + · · · + 1

n , H0 = 0, are the harmonic numbers. For p = 0, we have h(1)n = Hn. The
ordinary generating functions for the hyperharmonic numbers and the harmonic numbers are given by

∞∑
n=0

h(p)n zn =
− ln(1− z)

(1− z)p
,

∞∑
n=0

Hnz
n =
− ln(1− z)

1− z
,

convergent for |z| < 1. We will also use the exponential generating function for the harmonic numbers (entry (5.13.13) in
Hansen’s table [17])

∞∑
n=0

Hn
zn

n!
= ezEin(z),

where Ein(z) is the exponential integral function (an entire function)

Ein(z) =

∫ z

0

1− e−t

t
dt =

∞∑
n=1

(−1)n−1zn

n!n
.

Theorem 2.1 implies the following representations.
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Corollary 3.4. For all integers m, p > 0 and for all |z| < 1/m we have
∞∑
n=0

S(n,m)h(p)n zn =
(−1)m−1

m!

m∑
k=0

(
m

k

)
(−1)k

ln(1− kz)
(1− kz)p

, (15)

∞∑
n=0

S(n,m)Hnz
n =

(−1)m−1

m!

m∑
k=0

(
m

k

)
(−1)k

ln(1− kz)
1− kz

, (16)

and for all z
∞∑
n=0

S(n,m)Hn
zn

n!
=

(−1)m−1

m!

m∑
k=0

(
m

k

)
(−1)kekzEin(kz). (17)

Integrating identity (16) we find also
∞∑
n=0

S(n,m)
Hn

n+ 1
zn+1 =

(−1)m

m!

1

2

m∑
k=1

(
m

k

)
(−1)k

k
ln2(1− kz). (18)

Remark 3.1. The identity (18) contains a special case of identity (11), namely the series with s(n, 2) via

s(n, 2) = (−1)n(n− 1)!Hn−1

(see [20]) and the recurrence (1):
∞∑
n=0

S(n+ 1,m)
Hn

n+ 1
(−z)n+1 =

∞∑
n=0

(
mS(n,m) + S(n,m− 1)

) Hn

n+ 1
(−z)n+1

= m
(−1)m

m!

1

2

m∑
k=1

(
m

k

)
(−1)k

k
ln2(1 + kz) +

(−1)m−1

(m− 1)!

1

2

m−1∑
k=1

(
m− 1

k

)
(−1)k

k
ln2(1 + kz)

=
(−1)m

m!

1

2

m−1∑
k=1

((m
k

)
−
(
m− 1

k

))m
k

(−1)k ln2(1 + kz) +
1

m!

1

2
ln2(1 +mz)

=
(−1)m

m!

1

2

m−1∑
k=1

(
m− 1

k − 1

)
m

k
(−1)k ln2(1 + kz) +

1

m!

1

2
ln2(1 +mz)

=
(−1)m

m!

1

2

m∑
k=1

(
m

k

)
(−1)k ln2(1 + kz)

=

∞∑
n=0

S(n,m)s(n, 2)
zn

n!
.

Next, we apply Theorem 2.1 to the case when an = Bn(x), the Bernoulli polynomials. The Bernoulli polynomials have
the exponential generating function

∞∑
n=0

Bn(x)
zn

n!
=

zexz

ez − 1
, |z| < 2π,

Here, Bn(0) = Bn are the Bernoulli numbers (see [10,20]).

Corollary 3.5. For every integer m > 0 and every |z| < 2π/m

∞∑
n=0

S(n,m)Bn(x)
zn

n!
=

(−1)m

m!

m∑
k=0

(
m

k

)
(−1)kkzekxz

ekz − 1
, (19)

∞∑
n=0

S(n,m)Bn
zn

n!
=

(−1)m

m!

m∑
k=0

(
m

k

)
(−1)kkz

ekz − 1
. (20)

We also list the similar result for the Euler polynomialsEn(x) and the Euler numbersEn = 2nEn(1/2). They are defined
correspondingly by the exponential generating functions

∞∑
n=0

En(x)
zn

n!
=

2exz

ez + 1
,

∞∑
n=0

En
zn

n!
=

1

cosh(z)
,

convergent in |z| < π (see [10,20]). Theorem 2.1 implies the following corollary.
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Corollary 3.6. For every integer m > 0 and every |z| < π/m we have
∞∑
n=0

S(n,m)En(x)
zn

n!
=

(−1)m

m!

m∑
k=0

(
m

k

)
(−1)kekxz

ekz + 1
(21)

and
∞∑
n=0

S(n,m)En
zn

n!
=

(−1)m

m!

m∑
k=0

(
m

k

)
(−1)k

cosh(kz)
. (22)

Next, in the line are the derangement numbers Dn, n = 0, 1, . . . , defined by

Dn = n!

(
1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n

n!

)
.

They give the number of permutations of {1, 2, . . . , n} with no fixed points (see [15, 21]). The generating function of the
derangement numbers is given by

∞∑
n=0

Dn
zn

n!
=

e−z

1− z
, |z| < 1.

According to our theorem we have the series identity

Corollary 3.7. For every integer m > 0 and every |z| < 1/m

∞∑
n=0

S(n,m)Dn
zn

n!
=

(−1)m

m!

m∑
k=0

(
m

k

)
(−1)ke−kz

1− kz
. (23)

The Cauchy numbers of the first kind cn and second kind dn have exponential generating functions
∞∑
n=0

cn
zn

n!
=

z

ln(1 + z)
,

∞∑
n=0

dn
zn

n!
=

−z
(1− z) ln(1− z)

,

convergent for |z| < 1 (see [10]). Therefore the main theorem immediately gives the next series expressions.

Corollary 3.8. For every integer m > 0 and every |z| < 1/m

∞∑
n=0

S(n,m)cn
zn

n!
=

(−1)m

m!

m∑
k=0

(
m

k

)
(−1)kkz

ln(1 + kz)
, (24)

and
∞∑
n=0

S(n,m)dn
zn

n!
=

(−1)m−1

m!

m∑
k=0

(
m

k

)
(−1)kkz

(1− kz) ln(1− kz)
. (25)

Consider now the binomial series. For any real number α and |z| < 1

(1 + z)α =

∞∑
n=0

(
α

n

)
zn.

For α = −1/2 we have
(−1/2

n

)
= 1

4n

(
2n
n

)
and therefore, the central binomial numbers

(
2n
n

)
have the generating function

∞∑
n=0

(
2n

n

)
zn =

1√
1− 4z

.

By integration, the Catalan numbers Cn = 1
n+1

(
2n
n

)
have generating function (see [3])

∞∑
n=0

Cnz
n =

1−
√

1− 4z

2z
=

2

1 +
√

1− 4z
.

Theorem 2.1 leads to the next corollary.

Corollary 3.9. For every integer m > 0, every real number α and every |z| < 1/m

∞∑
n=0

S(n,m)

(
α

n

)
zn =

(−1)m

m!

m∑
k=0

(
m

k

)
(−1)k(1 + kz)α (26)

and for every |z| < 1/4m
∞∑
n=0

S(n,m)

(
2n

n

)
zn =

(−1)m

m!

m∑
k=0

(
m

k

)
(−1)k√
1− 4kz

, (27)

∞∑
n=0

S(n,m)Cnz
n =

2(−1)m

m!

m∑
k=0

(
m

k

)
(−1)k

1 +
√

1− 4kz
. (28)
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As our last example, and one involving classical orthogonal polynomials, we consider the generalized Laguerre polyno-
mials Lαn(x). The generalized Laguerre polynomials are defined for all α with Re(α) ≥ −1 by

Lαn(x) =

n∑
k=0

(
n+ α

n− k

)
(−x)k

k!
=

(
n+ α

n

)
1F1(−n;α+ 1;x),

with 1F1(a; b;x) being the confluent hypergeometric function [20]. When α = 0, these polynomials reduce to the classical
Laguerre polynomials given by

Ln(x) =
ex

n!

(
d

dx

)n
(xne−x), n ≥ 0, (29)

or by the explicit binomial representation

Ln(x) =

n∑
k=0

(
n

k

)
(−x)k

k!
. (30)

Generalized Laguerre polynomials Lαn(x) have the generating function [18]
∞∑
n=0

Lαn(x)zn =
1

(1− z)α
exp

(
xz

1− z

)
, |z| < 1.

Theorem 2.1 implies the next result.

Corollary 3.10. For every m > 0 and every |z| < 1/m we have the representation
∞∑
n=0

S(n,m)Lαn(x)zn =
(−1)m

m!

m∑
k=0

(
m

k

)
1

(1− kz)α
exp

(
kxz

1− kz

)
. (31)

In particular,
∞∑
n=0

S(n,m)Ln(x)zn =
(−1)m

m!

m∑
k=0

(
m

k

)
exp

(
kxz

1− kz

)
. (32)

4. Conclusion

This article was concerned with the closed form evaluation of a number of power series where the coefficients are products
of Stirling numbers of the second kind and other important numbers or polynomials. The list of examples that was pre-
sented is, of course, not complete and some more series could be derived straightforwardly from Theorem 2.1. We mention
Chebyshev polynomials, Fibonacci (Lucas) polynomials, Hermite polynomials and generalized Bernoulli polynomials as
four important examples that were not stated explicitly. We leave them to the interested reader.
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