## Research Article

## Fibonacci and Lucas identities derived via the golden ratio*

## Kunle Adegoke ${ }^{\dagger}$

Department of Physics and Engineering Physics, Obafemi Awolowo University, 220005 Ile-Ife, Nigeria
(Received: 22 April 2022. Received in revised form: 4 July 2022. Accepted: 27 July 2022. Published online: 23 August 2022.)
(C) 2022 the author. This is an open access article under the CC BY (International 4.0) license (www. creativecommons.org/licenses/by/4.0/).


#### Abstract

By expressing Fibonacci and Lucas numbers in terms of the powers of the golden ratio $\alpha=(1+\sqrt{5}) / 2$ and its inverse $\beta=-1 / \alpha=(1-\sqrt{5}) / 2$, a multitude of Fibonacci and Lucas identities have been developed in the literature. In this paper, the reverse course is followed: numerous Fibonacci and Lucas identities are derived by making use of the well-known expressions for the powers of $\alpha$ and $\beta$ in terms of Fibonacci and Lucas numbers.


Keywords: Fibonacci number; Lucas number; Gibonacci number; generating function; golden ratio.
2020 Mathematics Subject Classification: 11B39, 11B37.

## 1. Introduction

For $n \in \mathbb{Z}$, the Fibonacci numbers $F_{n}$ and the Lucas numbers $L_{n}$ are defined through the recurrence relations

$$
F_{n}=F_{n-1}+F_{n-2},(n \geq 2), \quad F_{0}=0, F_{1}=1
$$

and

$$
L_{n}=L_{n-1}+L_{n-2},(n \geq 2), \quad L_{0}=2, L_{1}=1
$$

with

$$
F_{-n}=(-1)^{n-1} F_{n}, \quad L_{-n}=(-1)^{n} L_{n} .
$$

Throughout this paper, the golden ratio $(1+\sqrt{5}) / 2$ is denoted by $\alpha$. Take $\beta=(1-\sqrt{5}) / 2$, then $\beta=-1 / \alpha$, that is $\alpha \beta=-1$, and $\alpha+\beta=1$. The following well-known algebraic properties of $\alpha$ and $\beta$ can be proved directly from Binet's formula for the $n$th Fibonacci number or by induction:

$$
\begin{gather*}
\alpha^{n}=\alpha^{n-1}+\alpha^{n-2}, \\
\beta^{n}=\beta^{n-1}+\beta^{n-2}, \\
\alpha^{n}=\alpha F_{n}+F_{n-1},  \tag{1}\\
\alpha^{n} \sqrt{5}=\alpha^{n}(\alpha-\beta)=\alpha L_{n}+L_{n-1},  \tag{2}\\
\beta^{n}=\beta F_{n}+F_{n-1},  \tag{3}\\
\beta^{n} \sqrt{5}=\beta^{n}(\alpha-\beta)=-\beta L_{n}-L_{n-1},  \tag{4}\\
\beta^{n}=-\alpha F_{n}+F_{n+1},  \tag{5}\\
\beta^{n} \sqrt{5}=\alpha L_{n}-L_{n+1},  \tag{6}\\
\alpha^{-n}=(-1)^{n-1} \alpha F_{n}+(-1)^{n} F_{n+1},
\end{gather*}
$$

and

$$
\beta^{-n}=(-1)^{n} \alpha F_{n}+(-1)^{n} F_{n-1} .
$$

Carlitz [4] (also Hoggatt et al. [11]) derived the identity $F_{k+t}=\alpha^{k} F_{t}+\beta^{t} F_{k}$, which can be put in the form

$$
\begin{equation*}
\alpha^{s} F_{k+t}=\alpha^{s+k} F_{t}+(-1)^{t} \alpha^{s-t} F_{k} \tag{7}
\end{equation*}
$$

[^0]or equivalently,
\[

$$
\begin{equation*}
\alpha^{s} F_{k+t}=\alpha^{s+t} F_{k}+(-1)^{k} \alpha^{s-k} F_{t} . \tag{8}
\end{equation*}
$$

\]

As Koshy [14, p.93] noted, the two Binet formulas

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, \quad L_{n}=\alpha^{n}+\beta^{n}
$$

expressing $F_{n}$ and $L_{n}$ in terms of $\alpha^{n}$ and $\beta^{n}$, can be used in tandem to derive an array of identities.
The aim of this paper is to derive numerous Fibonacci and Lucas identities by emphasizing identities (1)-(6), expressing $\alpha^{n}$ and $\beta^{n}$ in terms of $F_{n}$ and $L_{n}$. The method used in this paper for deriving the mentioned identities relies on the fact that $\alpha$ and $\beta$ are irrational numbers. The following fact is used frequently in the remaining part of this paper: if $a, b, c$, and $d$ are rational numbers, and if $\gamma$ is an irrational number, then $a \gamma+b=c \gamma+d$ implies that $a=c$ and $b=d$; an observation that was used by also Griffiths [8,9].

As a quick illustration of the above-mentioned method, take $x=\alpha F_{p}$ and $y=F_{p-1}$ in the binomial identity

$$
\sum_{j=0}^{n}\binom{n}{j} x^{j} y^{n-j}=(x+y)^{n}
$$

to obtain

$$
\sum_{j=0}^{n}\binom{n}{j} \alpha^{j} F_{p}^{j} F_{p-1}^{n-j}=\alpha^{n p},
$$

which, after multiplying both sides by $\alpha^{q}$, can be written as

$$
\begin{equation*}
\sum_{j=0}^{n}\binom{n}{j} \alpha^{j+q} F_{p}^{j} F_{p-1}^{n-j}=\alpha^{n p+q} \tag{9}
\end{equation*}
$$

which, by (1), gives

$$
\begin{equation*}
\alpha \sum_{j=0}^{n}\binom{n}{j} F_{p}^{j} F_{p-1}^{n-j} F_{j+q}+\sum_{j=0}^{n}\binom{n}{j} F_{p}^{j} F_{p-1}^{n-j} F_{j+q-1}=\alpha F_{n p+q}+F_{n p+q-1} \tag{10}
\end{equation*}
$$

Comparing the coefficients of $\alpha$ in (10), one finds

$$
\begin{equation*}
\sum_{j=0}^{n}\binom{n}{j} F_{p}^{j} F_{p-1}^{n-j} F_{j+q}=F_{n p+q} \tag{11}
\end{equation*}
$$

which is valid for every non-negative integer $n$ and for arbitrary integers $p$ and $q$. Identity (11) contains many known identities as special cases. If one writes (9) as

$$
\sum_{j=0}^{n}\binom{n}{j} \alpha^{j+q} \sqrt{5} F_{p}^{j} F_{p-1}^{n-j}=\alpha^{n p+q} \sqrt{5}
$$

and applies (2), then the Lucas version of (11) is obtained; namely,

$$
\begin{equation*}
\sum_{j=0}^{n}\binom{n}{j} F_{p}^{j} F_{p-1}^{n-j} L_{j+q}=L_{n p+q} \tag{12}
\end{equation*}
$$

Identities (11) and (12) are known in the literature; for example, see [19]. A more general identity that includes (11) and (12) as special cases is

$$
\sum_{j=0}^{n}\binom{n}{j} F_{p}^{j} F_{p-1}^{n-j} G_{p+q}=G_{n p+q},
$$

where $\left(G_{k}\right)_{k \in \mathbb{Z}}$ is the Gibonacci sequence (a generalization of the Fibonacci sequence) whose initial terms $G_{0}$ and $G_{1}$ are given integers, not both zero, and

$$
\begin{equation*}
G_{k}=G_{k-1}+G_{k-2}, \quad G_{-k}=G_{-k+2}-G_{-k+1} \tag{13}
\end{equation*}
$$

Lemma 1.1. The following properties hold for the rational numbers $a, b, c$, and $d$ :

$$
\begin{gathered}
a \alpha+b=c \alpha+d \Longleftrightarrow a=c, b=d, \\
a \beta+b=c \beta+d \Longleftrightarrow a=c, b=d,
\end{gathered}
$$

$$
\begin{gathered}
\frac{1}{c \alpha+d}=\left(\frac{c}{c^{2}-d^{2}-c d}\right) \alpha-\left(\frac{c+d}{c^{2}-d^{2}-c d}\right) \\
\frac{1}{c \beta+d}=\left(\frac{c}{c^{2}-d^{2}-c d}\right) \beta-\left(\frac{c+d}{c^{2}-d^{2}-c d}\right) \\
\frac{a \alpha+b}{c \alpha+d}=\frac{c b-d a}{c^{2}-d^{2}-c d} \alpha+\frac{c a-d b-c b}{c^{2}-c d-d^{2}}
\end{gathered}
$$

and

$$
\begin{equation*}
\frac{a \beta+b}{c \beta+d}=\frac{c b-d a}{c^{2}-d^{2}-c d} \beta+\frac{c a-d b-c b}{c^{2}-c d-d^{2}} \tag{P6}
\end{equation*}
$$

Properties P3 to P6 follow from properties P1 and P2. Observe that P3 is a special case of P5 and P4 is a special case of P6. The next section aims to re-discover some known identities, using the above-mentioned method, and to discover some new results that may be easily deduced from the known ones. Presumably new results are developed in Section 3.

## 2. Preliminary results

In this section, the method described in the preceding section is utilized to re-discover some known identities and to discover some new identities that may be easily deduced from the known ones. In establishing some of such identities, one requires the fundamental relations $F_{2 n}=F_{n} L_{n}, L_{n}=F_{n-1}+F_{n+1}$, and $5 F_{n}=L_{n-1}+L_{n+1}$.

## Fibonacci and Lucas addition formulas

To derive the Fibonacci addition formula, use (1) to write the identity

$$
\alpha^{p+q}=\alpha^{p} \alpha^{q}
$$

as

$$
\alpha F_{p+q}+F_{p+q-1}=\left(\alpha F_{p}+F_{p-1}\right)\left(\alpha F_{q}+F_{q-1}\right)
$$

By simplifying the right side of the last identity and then making use of (1), one gets

$$
\begin{align*}
\alpha F_{p+q}+F_{p+q-1} & =\alpha\left(F_{p} F_{q}+F_{p} F_{q-1}+F_{p-1} F_{q}\right)+F_{p} F_{q}+F_{p-1} F_{q-1}  \tag{14}\\
& =\alpha\left(F_{p} F_{q+1}+F_{p-1} F_{q}\right)+F_{p} F_{q}+F_{p-1} F_{q-1}
\end{align*}
$$

By equating coefficients of $\alpha$ (property P1) from both sides of (14), one gets the well-known Fibonacci addition formula:

$$
\begin{equation*}
F_{p+q}=F_{p} F_{q+1}+F_{p-1} F_{q} . \tag{15}
\end{equation*}
$$

A similar procedure using the identity

$$
\begin{equation*}
\alpha^{p} \beta^{q}=(-1)^{q} \alpha^{p-q} \tag{16}
\end{equation*}
$$

produces the subtraction formula

$$
(-1)^{q} F_{p-q}=F_{p} F_{q-1}-F_{p-1} F_{q}
$$

which may, of course, be obtained from (15) by changing $q$ to $-q$. The Lucas counterpart of (15) is obtained by applying (1) and (2) to the identity

$$
\alpha^{p+q} \sqrt{5}=\left(\alpha^{p} \sqrt{5}\right) \alpha^{q}
$$

and proceeding as in the Fibonacci case:

$$
L_{p+q}=F_{p} L_{q+1}+F_{p-1} L_{q} .
$$

Application of (1) to the right side and (2) to the left side of the identity

$$
5 \alpha^{p+q}=\left(\alpha^{p} \sqrt{5}\right)\left(\alpha^{q} \sqrt{5}\right)
$$

produces

$$
5 F_{p+q}=L_{p} L_{q+1}+L_{p-1} L_{q}
$$

## Fibonacci and Lucas multiplication formulas

By subtracting (7) from (8), one has

$$
\begin{equation*}
F_{t}\left(\alpha^{s+k}-(-1)^{k} \alpha^{s-k}\right)=F_{k}\left(\alpha^{s+t}-(-1)^{t} \alpha^{s-t}\right) . \tag{17}
\end{equation*}
$$

By applying (1) to (17) and equating coefficients of $\alpha$, one obtains

$$
F_{t}\left(F_{s+k}-(-1)^{k} F_{s-k}\right)=F_{k}\left(F_{s+t}-(-1)^{t} F_{s-t}\right),
$$

which, upon setting $k=1$, gives

$$
\begin{equation*}
F_{t} L_{s}=F_{s+t}-(-1)^{t} F_{s-t} \tag{18}
\end{equation*}
$$

Writing (17) as

$$
F_{t}\left(\alpha^{s+k} \sqrt{5}-(-1)^{k} \alpha^{s-k} \sqrt{5}\right)=F_{k}\left(\alpha^{s+t} \sqrt{5}-(-1)^{t} \alpha^{s-t} \sqrt{5}\right)
$$

By applying (2) and equating coefficients of $\alpha$, one gets

$$
F_{t}\left(L_{s+k}-(-1)^{k} L_{s-k}\right)=F_{k}\left(L_{s+t}-(-1)^{t} L_{s-t}\right)
$$

which, upon setting $k=1$, gives

$$
\begin{equation*}
5 F_{t} F_{s}=L_{s+t}-(-1)^{t} L_{s-t} \tag{19}
\end{equation*}
$$

By adding (7) and (8), making use of (1), and then equating the coefficients of $\alpha$, one obtains

$$
2 F_{k+t} F_{s}=F_{t}\left(F_{s+k}+(-1)^{k} F_{s-k}\right)+F_{k}\left(F_{s+t}+(-1)^{t} F_{s-t}\right),
$$

which, at $k=t$ reduces to

$$
\begin{equation*}
L_{t} F_{s}=F_{s+t}+(-1)^{t} F_{s-t} . \tag{20}
\end{equation*}
$$

Identities (18), (19), and (20) are already known, see [14, p. 118, Formulas 55-57]. Similarly, by adding (7) and (8), multiplying with $\sqrt{5}$, making use of (2), and then equating the coefficients of $\alpha$, one has

$$
2 F_{k+t} L_{s}=F_{t}\left(L_{s+k}+(-1)^{k} L_{s-k}\right)+F_{k}\left(L_{s+t}+(-1)^{t} L_{s-t}\right),
$$

which, at $k=t$ reduces to

$$
\begin{equation*}
L_{t} L_{s}=L_{s+t}+(-1)^{t} L_{s-t} . \tag{21}
\end{equation*}
$$

Identities (20) and (21), first reported by Carlitz [4, Identities (10) and (15)], are identities (15a) and (17a) of [18].

## Cassini's identity

Since

$$
\begin{equation*}
\alpha^{n} \beta^{n}=(\alpha \beta)^{n}=(-1)^{n} ; \tag{22}
\end{equation*}
$$

applying identities (1) and (5) to the left hand side of the above identity gives

$$
\begin{aligned}
\alpha^{n} \beta^{n} & =\left(\alpha F_{n}+F_{n-1}\right)\left(-\alpha F_{n}+F_{n+1}\right) \\
& =-\alpha^{2} F_{n}^{2}+\alpha\left(F_{n} F_{n+1}-F_{n} F_{n-1}\right)+F_{n-1} F_{n+1} \\
& =\alpha\left(-F_{n}^{2}+F_{n}^{2}\right)-F_{n}^{2}+F_{n-1} F_{n+1} .
\end{aligned}
$$

Thus, according to (22), we have

$$
\alpha\left(-F_{n}^{2}+F_{n}^{2}\right)-F_{n}^{2}+F_{n-1} F_{n+1}=(-1)^{n} .
$$

Comparing coefficients of $\alpha^{0}$ from both sides gives Cassini's identity:

$$
\begin{equation*}
F_{n-1} F_{n+1}=F_{n}^{2}+(-1)^{n} \tag{23}
\end{equation*}
$$

To derive the Lucas version of (23), write

$$
\left(\alpha^{n} \sqrt{5}\right)\left(\beta^{n} \sqrt{5}\right)=(-1)^{n} 5 ;
$$

apply (2) and (6) to the left hand side, multiply out and equate coefficients, obtaining

$$
L_{n-1} L_{n+1}-L_{n}^{2}=(-1)^{n-1} 5
$$

## General Fibonacci and Lucas addition formulas and Catalan's identity

From (7), we can derive an addition formula that includes (15) as a particular case.
Using (1) to write the left hand side (lhs) and the right hand side (rhs) of (7), we have

$$
\begin{equation*}
\text { lhs of }(7)=\alpha F_{s} F_{k+t}+F_{s-1} F_{k+t} \tag{24}
\end{equation*}
$$

and

$$
\begin{align*}
\text { rhs of (7) } & =\alpha F_{s+k} F_{t}+F_{s+k-1} F_{t}+\alpha(-1)^{t} F_{s-t} F_{k}+(-1)^{t} F_{s-t-1} F_{k}  \tag{25}\\
& =\alpha\left(F_{s+k} F_{t}+(-1)^{t} F_{s-t} F_{k}\right)+\left(F_{s+k-1} F_{t}+(-1)^{t} F_{s-t-1} F_{k}\right) .
\end{align*}
$$

Comparing the coefficients of $\alpha$ from (24) and (25), we find

$$
\begin{equation*}
F_{s} F_{k+t}=F_{s+k} F_{t}+(-1)^{t} F_{s-t} F_{k}, \tag{26}
\end{equation*}
$$

of which (15) is a particular case.
Setting $t=s-k$ in (26) produces Catalan's identity:

$$
F_{s}^{2}=F_{s+k} F_{s-k}+(-1)^{s+k} F_{k}^{2}
$$

Multiplying through (7) by $\sqrt{5}$ and performing similar calculations to above produces

$$
\begin{equation*}
L_{s} F_{k+t}=L_{s+k} F_{t}+(-1)^{t} L_{s-t} F_{k} \tag{27}
\end{equation*}
$$

which at $t=s-k$ gives

$$
F_{2 s}=L_{s+k} F_{s-k}+(-1)^{s+k} F_{2 k}
$$

Identities (26) and (27) appeared as problem proposals in The Fibonacci Quarterly [17, Problems B-460, B-461].

## Sums of Fibonacci and Lucas numbers with subscripts in arithmetic progression

Setting $x=\alpha^{p}$ in the geometric sum identity

$$
\begin{equation*}
\sum_{j=0}^{n} x^{j}=\frac{1-x^{n+1}}{1-x} \tag{28}
\end{equation*}
$$

and multiplying through by $\alpha^{q}$ gives

$$
\begin{equation*}
\sum_{j=0}^{n} \alpha^{p j+q}=\frac{\alpha^{q}-\alpha^{p n+p+q}}{1-\alpha^{p}} \tag{29}
\end{equation*}
$$

Thus, we have

$$
\sum_{j=0}^{n} \alpha^{p j+q}=\frac{\alpha\left(F_{p n+p+q}-F_{q}\right)+F_{p n+p+q-1}-F_{q-1}}{\alpha F_{p}+F_{p-1}-1}
$$

from which, with the use of (1) and property P5, we find

$$
\begin{equation*}
\sum_{j=0}^{n} F_{p j+q}=\frac{F_{p}\left(F_{p n+p+q-1}-F_{q-1}\right)-\left(F_{p-1}-1\right)\left(F_{p n+p+q}-F_{q}\right)}{L_{p}-1+(-1)^{p-1}}, \tag{30}
\end{equation*}
$$

valid for all integers $p, q$ and $n$. The derivation here is considerably simpler than the one involving the direct use of Binet's formula; as done, for example, by Koshy [14, p. 104, Theorem 5.10] and Freitag [7] or by Siler [16] who first derived (30).

Multiplying through (29) by $\sqrt{5}$ gives

$$
\sum_{j=0}^{n} \alpha^{p j+q} \sqrt{5}=\frac{\alpha^{q} \sqrt{5}-\alpha^{p n+p+q} \sqrt{5}}{1-\alpha^{p}}
$$

from which, by identities (2), (1), and properties P5, P1, we find

$$
\begin{equation*}
\sum_{j=0}^{n} L_{p j+q}=\frac{F_{p}\left(L_{p n+p+q-1}-L_{q-1}\right)-\left(F_{p-1}-1\right)\left(L_{p n+p+q}-L_{q}\right)}{L_{p}-1+(-1)^{p-1}} . \tag{31}
\end{equation*}
$$

Identity (31) was first derived by Zeitlin [20] who established a generalization of Siler's result.
Equations (30) and (31) can be summarized as

$$
\sum_{j=0}^{n} G_{p j+q}=\frac{F_{p}\left(G_{p n+p+q-1}-G_{q-1}\right)-\left(F_{p-1}-1\right)\left(G_{p n+p+q}-G_{q}\right)}{L_{p}-1-(-1)^{p-1}}
$$

which is a special case of (2.11) in [13] and (2) in [3].

## Generating functions of Fibonacci and Lucas numbers with indices in arithmetic progression

Setting $x=y \alpha^{p}$ in the identity

$$
\sum_{j=0}^{\infty} x^{j}=\frac{1}{1-x}
$$

and multiplying through by $\alpha^{q}$ gives

$$
\sum_{j=0}^{\infty} \alpha^{p j+q} y^{j}=\frac{\alpha^{q}}{1-\alpha^{p} y}=\frac{F_{q} \alpha+F_{q-1}}{-y F_{p} \alpha+1-y F_{p-1}}
$$

Application of (1) and properties P5 and P1 then produces

$$
\begin{equation*}
\sum_{j=0}^{\infty} F_{p j+q} y^{j}=\frac{F_{q}+(-1)^{q} F_{p-q} y}{1-L_{p} y+(-1)^{p} y^{2}} . \tag{32}
\end{equation*}
$$

To find the corresponding Lucas result, we write

$$
\sum_{j=0}^{\infty} \alpha^{p j+q} \sqrt{5} y^{j}=\frac{\alpha^{q} \sqrt{5}}{1-\alpha^{p} y}
$$

and use (2) and properties P5 and P1, obtaining

$$
\begin{equation*}
\sum_{j=0}^{\infty} L_{p j+q} y^{j}=\frac{L_{q}-(-1)^{q} L_{p-q} y}{1-L_{p} y+(-1)^{p} y^{2}} . \tag{33}
\end{equation*}
$$

Identities (32) and (33) were first derived by Zeitlin [20]. Identity (32), but not (33), was reported by Koshy [14, Identity 18, p.245]. The case $q=0$ in (32) was also obtained by Hoggatt [10] while the case $p=1$ in (33) is also found by Koshy [14, Identity (13.13), p.246]. Identity (33) is a special case of the generating function of $k$-Lucas numbers with indices in arithmetic progression derived by Falcon [6].

## 3. Main results

## Fibonacci relations involving several subscripts

Theorem 3.1. The following identities hold for integers $p, q$ and $r$ :

$$
\begin{align*}
& F_{p+q+r}=F_{p+1} F_{q+1} F_{r+1}+F_{p} F_{q} F_{r}-F_{p-1} F_{q-1} F_{r-1}  \tag{34}\\
& L_{p+q+r}=F_{p+1} F_{q+1} L_{r+1}+F_{p} F_{q} L_{r}-F_{p-1} F_{q-1} L_{r-1}  \tag{35}\\
& 5 F_{p+q+r}=L_{p+1} L_{q+1} F_{r+1}+L_{p} L_{q} F_{r}-F_{p-1} F_{q-1} F_{r-1}  \tag{36}\\
& 5 L_{p+q+r}=L_{p+1} L_{q+1} L_{r+1}+L_{p} L_{q} L_{r}-L_{p-1} L_{q-1} L_{r-1} \tag{37}
\end{align*}
$$

Proof. Identities (34) - (37) are derived by applying (1) and (2) to the following identities:

$$
\begin{gathered}
\alpha^{p+q+r}=\alpha^{p} \alpha^{q} \alpha^{r}, \\
\alpha^{p+q+r} \sqrt{5}=\left(\alpha^{p} \sqrt{5}\right) \alpha^{q} \alpha^{r}, \\
5 \alpha^{p+q+r}=\left(\alpha^{p} \sqrt{5}\right)\left(\alpha^{q} \sqrt{5}\right) \alpha^{r}, \\
5 \alpha^{p+q+r} \sqrt{5}=\left(\alpha^{p} \sqrt{5}\right)\left(\alpha^{q} \sqrt{5}\right)\left(\alpha^{r} \sqrt{5}\right) ;
\end{gathered}
$$

replacing $\alpha^{3}$ with $\alpha^{2}+\alpha$, replacing $\alpha^{2}$ with $\alpha+1$ and making use of property P 1 .

Identity (34) appeared as problem H-4, proposed by Ruggles [15]. The identities (34) and (35) can be generalized as

$$
G_{p+q+r}=F_{p+1} F_{q+1} G_{r+1}+F_{p} F_{q} G_{r}-F_{p-1} F_{q-1} G_{r-1} .
$$

Similarly, identities (36) and (37) can be generalized as

$$
5 G_{p+q+r}=L_{p+1} L_{q+1} G_{r+1}+L_{p} L_{q} G_{r}-L_{p-1} L_{q-1} G_{r-1}
$$

Theorem 3.2. The following identities hold for integers $p, q, r, s$ and $t$ :

$$
\begin{align*}
& F_{p+q-r} F_{t-s+r}+F_{p+q-r-1} F_{t-s+r-1}=F_{p-s} F_{t+q}+F_{p-s-1} F_{t+q-1}  \tag{38}\\
& F_{p+q-r} L_{t-s+r}+F_{p+q-r-1} L_{t-s+r-1}=F_{p-s} L_{t+q}+F_{p-s-1} L_{t+q-1} \tag{39}
\end{align*}
$$

and

$$
\begin{equation*}
L_{p+q-r} L_{t-s+r}+L_{p+q-r-1} L_{t-s+r-1}=L_{p-s} L_{t+q}+L_{p-s-1} L_{t+q-1} . \tag{40}
\end{equation*}
$$

Proof. Identity (38) is proved by applying (1) to the identity

$$
\alpha^{p+q-r} \alpha^{t-s+r}=\alpha^{p-s} \alpha^{t+q},
$$

multiplying out the products and applying property P1. Identity (39) is derived by writing

$$
\alpha^{p+q-r}\left(\alpha^{t-s+r} \sqrt{5}\right)=\alpha^{p-s}\left(\alpha^{t+q} \sqrt{5}\right)
$$

and applying identities (1) and (2) and property P1. Finally (40) is derived from

$$
\left(\alpha^{p+q-r} \sqrt{5}\right)\left(\alpha^{t-s+r} \sqrt{5}\right)=\left(\alpha^{p-s} \sqrt{5}\right)\left(\alpha^{t+q} \sqrt{5}\right)
$$

Identities (38) and (40) can be generalized to

$$
G_{p+q-r} G_{t-s+r}+G_{p+q-r-1} G_{t-s+r-1}=G_{p-s} G_{t+q}+G_{p-s-1} G_{t+q-1} .
$$

## Binomial summation identities

Lemma 3.1. The following identities hold for positive integer $n$ and arbitrary $x$ and $y$ :

$$
\begin{gather*}
\sum_{j=0}^{n}\binom{n}{j} y^{j} x^{n-j}=(x+y)^{n},  \tag{41}\\
\sum_{j=0}^{n}(-1)^{j}\binom{n}{j}(x+y)^{j} x^{n-j}=(-1)^{n} y^{n},  \tag{42}\\
\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} y^{j}(x+y)^{n-j}=x^{n},  \tag{43}\\
\sum_{j=0}^{n}\binom{n}{j} j y^{j-1} x^{n-j}=n(x+y)^{n-1},  \tag{44}\\
\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} j(x+y)^{j-1} x^{n-j}=(-1)^{n} n y^{n-1} \tag{45}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{n}(-1)^{j-1}\binom{n}{j} y^{j-1} j(x+y)^{n-j}=n x^{n-1} \tag{46}
\end{equation*}
$$

Proof. Identities (42) and (43) are obtained from (41) by obvious transformations. Identity (44) is obtained by differentiating the identity

$$
\sum_{j=0}^{n}\binom{n}{j} y^{j} e^{j z} x^{n-j}=\left(x+y e^{z}\right)^{n}
$$

with respect to $z$ and then setting $z$ to zero. More generally,

$$
\sum_{j=0}^{n}\binom{n}{j} j^{r} y^{j} x^{n-j}=\left.\frac{d^{r}}{d z^{r}}\left(x+y e^{z}\right)^{n}\right|_{z=0}
$$

Identities (45) and (46) are obtained from (44) by transformations.

Theorem 3.3. The following identities hold for integers $k$, $t$, $s$ and positive integer $n$ :

$$
\begin{gather*}
\sum_{j=0}^{n}(-1)^{t j}\binom{n}{j} F_{k}^{j} F_{t}^{n-j} F_{(s+k) n-(t+k) j}=F_{t+k}^{n} F_{s n},  \tag{47}\\
\sum_{j=0}^{n}(-1)^{t j}\binom{n}{j} F_{k}^{j} F_{t}^{n-j} L_{(s+k) n-(t+k) j}=F_{t+k}^{n} L_{s n},  \tag{48}\\
\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} F_{k+t}^{j} F_{t}^{n-j} F_{(s+k) n-k j}=(-1)^{n(t+1)} F_{k}^{n} F_{n(s-t),},  \tag{49}\\
\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} F_{k+t}^{j} F_{t}^{n-j} L_{(s+k) n-k j}=(-1)^{n(t+1)} F_{k}^{n} L_{n(s-t),},  \tag{50}\\
\left.\sum_{j=0}^{n}(-1)^{(t+1) j}\binom{n}{j} F_{k}^{j} F_{k+t}^{n-j} F_{s n-t j}=F_{t}^{n} F_{n(s+k),},\right)^{(t+1) j}\binom{n}{j} F_{k}^{j} F_{k+t}^{n-j} L_{s n-t j}=F_{t}^{n} L_{n(s+k),},  \tag{51}\\
\sum_{j=1}^{n}(-1)^{t j}\binom{n}{j} j F_{k}^{j-1} F_{t}^{n-j} F_{(k+s) n+t-s-(k+t) j}=(-1)^{t} n F_{k+t}^{n-1} F_{s(n-1)},  \tag{52}\\
\sum_{j=1}^{n}(-1)^{t j}\binom{n}{j} j F_{k}^{j-1} F_{t}^{n-j} L_{(k+s) n+t-s-(k+t) j}=(-1)^{t} n F_{k+t}^{n-1} L_{s(n-1)},  \tag{53}\\
\sum_{j=1}^{n}(-1)^{j}\binom{n}{j} j F_{k+t}^{j-1} F_{t}^{n-j} F_{(k+s) n-s-k j}=(-1)^{n(t+1)+t} n F_{k}^{n-1} F_{(s-t)(n-1)},  \tag{54}\\
\sum_{j=1}^{n}(-1)^{j}\binom{n}{j} j F_{k+t}^{j-1} F_{t}^{n-j} L_{(k+s) n-s-k j}=(-1)^{n(t+1)+t} n F_{k}^{n-1} L_{(s-t)(n-1)},  \tag{55}\\
\sum_{j=1}^{n}(-1)^{(t+1) j}\binom{n}{j} j F_{k}^{j-1} F_{k+t}^{n-j} F_{s(n-1)+t-t j}=(-1)^{t+1} n F_{t}^{n-1} F_{(s+k)(n-1)} \tag{56}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{n}(-1)^{(t+1) j}\binom{n}{j} j F_{k}^{j-1} F_{k+t}^{n-j} L_{s(n-1)+t-t j}=(-1)^{t+1} n F_{t}^{n-1} L_{(s+k)(n-1)} \tag{58}
\end{equation*}
$$

Proof. Choosing $x=\alpha^{s+k} F_{t}$ and $y=(-1)^{t} \alpha^{s-t} F_{k}$ in (41) and taking note of (7), we have

$$
\begin{equation*}
\sum_{j=0}^{n}(-1)^{t j}\binom{n}{j} F_{k}^{j} F_{t}^{n-j} \alpha^{(s+k) n-(t+k) j}=F_{k+t}^{n} \alpha^{n s} \tag{59}
\end{equation*}
$$

Application of (1) and property P1 to (59) produces (47). To prove (48), multiply through (59) by $\sqrt{5}$ to obtain

$$
\begin{equation*}
\sum_{j=0}^{n}(-1)^{t j}\binom{n}{j} F_{k}^{j} F_{t}^{n-j} \alpha^{(s+k) n-(t+k) j} \sqrt{5}=F_{k+t}^{n} \alpha^{n s} \sqrt{5} \tag{60}
\end{equation*}
$$

Use of (2) and property P1 in (60) gives (48). Identities (49) - (58) are derived in a similar fashion.

Identities related to or equivalent to some of the identities listed in Theorem 3.3 were also derived by Carlitz [5] and Griffiths [9].

We list below the Gibonacci versions of identities (47) - (58).

$$
\begin{gather*}
\sum_{j=0}^{n}(-1)^{t j}\binom{n}{j} F_{k}^{j} F_{t}^{n-j} G_{(s+k) n-(t+k) j}=F_{t+k}^{n} G_{s n},  \tag{61}\\
\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} F_{k+t}^{j} F_{t}^{n-j} G_{(s+k) n-k j}=(-1)^{n(t+1)} F_{k}^{n} G_{n(s-t)}, \tag{62}
\end{gather*}
$$

$$
\begin{gather*}
\sum_{j=0}^{n}(-1)^{(t+1) j}\binom{n}{j} F_{k}^{j} F_{k+t}^{n-j} G_{s n-t j}=F_{t}^{n} G_{n(s+k)},  \tag{63}\\
\sum_{j=1}^{n}(-1)^{t j}\binom{n}{j} j F_{k}^{j-1} F_{t}^{n-j} G_{(k+s) n+t-s-(k+t) j}=(-1)^{t} n F_{k+t}^{n-1} G_{s(n-1)},  \tag{64}\\
\sum_{j=1}^{n}(-1)^{j}\binom{n}{j} j F_{k+t}^{j-1} F_{t}^{n-j} G_{(k+s) n-s-k j}=(-1)^{n(t+1)+t} n F_{k}^{n-1} G_{(s-t)(n-1)}, \tag{65}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{n}(-1)^{(t+1) j}\binom{n}{j} j F_{k}^{j-1} F_{k+t}^{n-j} G_{s(n-1)+t-t j}=(-1)^{t+1} n F_{t}^{n-1} G_{(s+k)(n-1)} \tag{66}
\end{equation*}
$$

Lemma 3.2. The following identities hold true for integer $r$, non-negative integer $n$, and arbitrary $x$ and $y$ :

$$
\begin{gather*}
\sum_{j=0}^{n} \frac{2 n+1}{n+j+1}\binom{n+j+1}{2 j+1}(x y)^{r-j}(x-y)^{2 j+1}=x^{r+n+1} y^{r-n}-y^{r+n+1} x^{r-n},  \tag{67}\\
\sum_{j=0}^{n} \frac{2 n+1}{n+j+1}\binom{n+j+1}{2 j+1}(x(x-y))^{r-j} y^{2 j+1}=x^{r+n+1}(x-y)^{r-n}-(x-y)^{r+n+1} x^{r-n} \tag{68}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{n} \frac{2 n+1}{n+j+1}\binom{n+j+1}{2 j+1}(y(y-x))^{r-j} x^{2 j+1}=y^{r+n+1}(y-x)^{r-n}-(y-x)^{r+n+1} y^{r-n} \tag{69}
\end{equation*}
$$

Proof. Jennings [12, Lemma (i)] derived an identity equivalent to the following:

$$
\sum_{j=0}^{n} \frac{2 n+1}{n+j+1}\binom{n+j+1}{2 j+1}\left(\frac{z^{2}-1}{z}\right)^{2 j}=\frac{z^{2} z^{2 n}-z^{-2 n}}{z^{2}-1}
$$

Setting $z^{2}=x / y$ in the above identity and clearing fractions gives (67). Identity (68) is obtained by replacing $y$ with $x-y$ in (67). Identity (69) is obtained by interchanging $x$ with $y$ in (68).

Theorem 3.4. The following identities hold for non-negative integer $n$ and integers $s, k, r$ and $t$ :

$$
\begin{align*}
& \sum_{j=0}^{n} \frac{2 n+1}{n+j+1}\binom{n+j+1}{2 j+1}\left(F_{k+t} F_{t}\right)^{r-j} F_{k}^{2 j+1} F_{r(2 s+k)+s-t-(2 t+k) j}  \tag{70}\\
& =(-1)^{t} F_{k+t}^{r+n+1} F_{t}^{r-n} F_{s(r+n+1)+(s+k)(r-n)}-(-1)^{t} F_{t}^{r+n+1} F_{k+t}^{r-n} F_{(s+k)(r+n+1)+s(r-n)}, \\
& \sum_{j=0}^{n} \frac{2 n+1}{n+j+1}\binom{n+j+1}{2 j+1}\left(F_{k+t} F_{t}\right)^{r-j} F_{k}^{2 j+1} L_{r(2 s+k)+s-t-(2 t+k) j}  \tag{71}\\
& =(-1)^{t} F_{k+t}^{r+n+1} F_{k}^{r-n} L_{s(r+n+1)+(s+k)(r-n)}-(-1)^{t} F_{t}^{r+n+1} F_{k+t}^{r-n} L_{(s+k)(r+n+1)+s(r-n)}, \\
& \sum_{j=0}^{n}(-1)^{t j} \frac{2 n+1}{n+j+1}\binom{n+j+1}{2 j+1}\left(F_{k+t} F_{t}\right)^{r-j} F_{t}^{2 j+1} F_{r(2 s-t)+s+k+(2 k+t) j}  \tag{72}\\
& =(-1)^{t n} F_{k+t}^{r+n+1} F_{k}^{r-n} F_{s(2 r+1)-t(r-n)}-(-1)^{t n+t} F_{k}^{r+n+1} F_{k+t}^{r-n} F_{s(2 r+1)-t(r+n+1)}, \\
& \sum_{j=0}^{n}(-1)^{t j} \frac{2 n+1}{n+j+1}\binom{n+j+1}{2 j+1}\left(F_{k+t} F_{t}\right)^{r-j} F_{t}^{2 j+1} L_{r(2 s-t)+s+k+(2 k+t) j}  \tag{73}\\
& =(-1)^{t n} F_{k+t}^{r+n+1} F_{k}^{r-n} L_{s(2 r+1)-t(r-n)}-(-1)^{t n+t} F_{k}^{r+n+1} F_{k+t}^{r-n} L_{s(2 r+1)-t(r+n+1)}, \\
& \sum_{j=0}^{n}(-1)^{(t-1) j} \frac{2 n+1}{n+j+1}\binom{n+j+1}{2 j+1}\left(F_{t} F_{k}\right)^{r-j} F_{k+t}^{2 j+1} F_{s(2 r+1)+(k-t) r-(k-t) j}  \tag{74}\\
& =(-1)^{(t-1) n} F_{t}^{r+n+1} F_{k}^{r-n} F_{s(2 r+1)+k(r+n+1)+t(n-r)} \\
& -(-1)^{(t-1)(n+1)} F_{k}^{r+n+1} F_{t}^{r-n} F_{s(2 r+1)-k(n-r)-t(r+n+1)}
\end{align*}
$$

and

$$
\begin{gather*}
\sum_{j=0}^{n}(-1)^{(t-1) j} \frac{2 n+1}{n+j+1}\binom{n+j+1}{2 j+1}\left(F_{t} F_{k}\right)^{r-j} F_{k+t}^{2 j+1} L_{s(2 r+1)+(k-t) r-(k-t) j}  \tag{75}\\
=(-1)^{(t-1) n} F_{t}^{r+n+1} F_{k}^{r-n} L_{s(2 r+1)+k(r+n+1)+t(n-r)} \\
-(-1)^{(t-1)(n+1)} F_{k}^{r+n+1} F_{t}^{r-n} L_{s(2 r+1)-k(n-r)-t(r+n+1)}
\end{gather*}
$$

Proof. Each of the identities (70) - (75) is proved by setting $x=\alpha^{s+k} F_{t}$ and $y=(-1)^{t} \alpha^{s-t} F_{k}$ in the identities of Lemma 3.2 and taking note of (7) while making use of (1) and (2) and property P1.

## Summation identities not involving binomial coefficients

Lemma 3.3 (See [1, Lemma 1]). Let $\left(X_{t}\right)$ and $\left(Y_{t}\right)$ be any two sequences such that $X_{t}$ and $Y_{t}$, $t \in \mathbb{Z}$, are connected by a three-term recurrence relation $h X_{t}=f_{1} X_{t-a}+f_{2} Y_{t-b}$, where $h, f_{1}$ and $f_{2}$ are arbitrary non-vanishing complex functions, not dependent on $t$, and $a$ and b are integers. Then, the following identity holds for integer $n$ :

$$
f_{2} \sum_{j=0}^{n} f_{1}^{n-j} h^{j} Y_{t-n a-b+a j}=h^{n+1} X_{t}-f_{1}^{n+1} X_{t-(n+1) a}
$$

Theorem 3.5. The following identities hold for integers $n, k, s$ and $t$ :

$$
\begin{align*}
& F_{k} \sum_{j=0}^{n}(-1)^{k j} F_{n(s-k)+s-t+2 k j}=(-1)^{n k} F_{k(n+1)} F_{s(n+1)-t},  \tag{76}\\
& F_{k} \sum_{j=0}^{n}(-1)^{k j} L_{n(s-k)+s-t+2 k j}=(-1)^{n k} F_{k(n+1)} L_{s(n+1)-t} . \tag{77}
\end{align*}
$$

Proof. Write (7) as $\alpha^{s+k} F_{t}=\alpha^{s} F_{t+k}+(-1)^{t-1} \alpha^{s-t} F_{k}$ and identify $h=\alpha^{s+k}, f_{1}=\alpha^{s}, f_{2}=F_{k}, a=-k, b=0, X_{t}=F_{t}$ and $Y_{t}=(-1)^{t-1} \alpha^{s-t}$ in Lemma 3.3. Application of (1) to the resulting summation identity yields

$$
(-1)^{n k+t-1} F_{k} \sum_{j=0}^{n}(-1)^{k j} F_{n(s-k)+s-t+2 k j}=F_{t} F_{(s+k)(n+1)}-F_{t+(n+1) k} F_{s(n+1)}
$$

which, in view of the identity (see [18, Formula (20a)])

$$
F_{a} F_{b}-F_{a+c} F_{b-c}=(-1)^{b-c} F_{c} F_{a+c-b}
$$

gives (76). Multiplying the $\alpha$-sum by $\sqrt{5}$ and using (2) gives

$$
(-1)^{n k+t-1} F_{k} \sum_{j=0}^{n}(-1)^{k j} L_{n(s-k)+s-t+2 k j}=F_{t} L_{(s+k)(n+1)}-F_{t+(n+1) k} L_{s(n+1)}
$$

which with the use of the identity (see [18, Formula (19b)])

$$
F_{a} L_{b}-F_{a+c} L_{b-c}=(-1)^{b-c-1} F_{c} L_{a+c-b}
$$

gives (77).

Lemma 3.4. The following identities hold for integers $r$ and $n$ and arbitrary $x$ and $y$ :

$$
\begin{gather*}
(x-y) \sum_{j=0}^{n} y^{r-j} x^{j}=y^{r-n} x^{n+1}-y^{r+1},  \tag{78}\\
x \sum_{j=0}^{n} y^{r-j}(x+y)^{j}=y^{r-n}(x+y)^{n+1}-y^{r+1} \tag{79}
\end{gather*}
$$

and

$$
\begin{equation*}
(x-y) \sum_{j=0}^{n} x^{r-j} y^{j}=x^{r+1}-x^{r-n} y^{n+1} \tag{80}
\end{equation*}
$$

Proof. Identity (78) is obtained by replacing $x$ with $x / y$ in (28). Identity (79) is obtained by replacing $x$ with $x+y$ in (78). Finally, identity (80) is obtained by interchanging $x$ and $y$ in (78).

Theorem 3.6. The following identities hold for integers $r, n, s, k$ and $t$ :

$$
\begin{gather*}
F_{k} \sum_{j=0}^{n} F_{k+t}^{j} F_{t}^{r-j} F_{r(s+k)+s-t-k j}=(-1)^{t} F_{t}^{r-n} F_{k+t}^{n+1} F_{s(r+1)+k(r-n)}-(-1)^{t} F_{t}^{r+1} F_{(s+k)(r+1)},  \tag{81}\\
F_{k} \sum_{j=0}^{n} F_{k+t}^{j} F_{t}^{r-j} L_{r(s+k)+s-t-k j}=(-1)^{t} F_{t}^{r-n} F_{k+t}^{n+1} L_{s(r+1)+k(r-n)}-(-1)^{t} F_{t}^{r+1} L_{(s+k)(r+1)},  \tag{82}\\
F_{t} \sum_{j=0}^{n}(-1)^{t j} F_{k}^{r-j} F_{k+t}^{j} F_{r(s-t)+s+k+t j}=(-1)^{r t} F_{k}^{r-n} F_{k+t}^{n+1} F_{r(s-t)+t n+s}-(-1)^{t} F_{k}^{r+1} F_{(s-t)(r+1)},  \tag{83}\\
F_{t} \sum_{j=0}^{n}(-1)^{t j} F_{k}^{r-j} F_{k+t}^{j} L_{r(s-t)+s+k+t j}=(-1)^{r t} F_{k}^{r-n} F_{k+t}^{n+1} L_{r(s-t)+t n+s}-(-1)^{t} F_{k}^{r+1} L_{(s-t)(r+1)},  \tag{84}\\
F_{k} \sum_{j=0}^{n} F_{k+t}^{r-j} F_{t}^{j} F_{s(r+1)+s-t+k j}=(-1)^{t} F_{k+t}^{r+1} F_{s(r+1)}-(-1)^{t} F_{k+t}^{r-n} F_{t}^{n+1} F_{s(r+1)+k(n+1)}, \tag{85}
\end{gather*}
$$

and

$$
\begin{equation*}
F_{k} \sum_{j=0}^{n} F_{k+t}^{r-j} F_{t}^{j} L_{s(r+1)+s-t+k j}=(-1)^{t} F_{k+t}^{r+1} L_{s(r+1)}-(-1)^{t} F_{k+t}^{r-n} F_{t}^{n+1} L_{s(r+1)+k(n+1)} \tag{86}
\end{equation*}
$$

Proof. Identities (81) and (82) and identities (85) and (86) are obtained by setting $x=\alpha^{s} F_{k+t}$ and $y=\alpha^{s+k} F_{t}$ in identities (78) and (80) while taking note of (7). Identities (83) and (84) are derived by setting $x=\alpha^{s+k} F_{t}$ and $y=(-1)^{t} \alpha^{s-t} F_{k}$ in (79).

Theorem 3.7. The following identities hold for integers $p, q$ and $n$ :

$$
\begin{aligned}
\sum_{j=0}^{n} j F_{p j+q}= & (n+1) \frac{F_{p} F_{p(n+1)+q-1}-\left(F_{p-1}-1\right) F_{p(n+1)+q}}{L_{p}-1+(-1)^{p-1}} \\
& +\frac{\left(F_{2 p}-2 F_{p}\right)\left(F_{p(n+2)+q-1}-F_{p+q-1}\right)}{\left(F_{2 p-1}-2 F_{p-1}+1\right)\left(F_{2 p+1}-2 F_{p+1}+1\right)-\left(F_{2 p}-2 F_{p}\right)^{2}} \\
& -\frac{\left(F_{2 p-1}-2 F_{p-1}+1\right)\left(F_{p(n+2)+q}-F_{p+q}\right)}{\left(F_{2 p-1}-2 F_{p-1}+1\right)\left(F_{2 p+1}-2 F_{p+1}+1\right)-\left(F_{2 p}-2 F_{p}\right)^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{j=0}^{n} j L_{p j+q}= & (n+1) \frac{F_{p} L_{p(n+1)+q-1}-\left(F_{p-1}-1\right) L_{p(n+1)+q}}{L_{p}-1+(-1)^{p-1}} \\
& +\frac{\left(F_{2 p}-2 F_{p}\right)\left(L_{p(n+2)+q-1}-L_{p+q-1}\right)}{\left(F_{2 p-1}-2 F_{p-1}+1\right)\left(F_{2 p+1}-2 F_{p+1}+1\right)-\left(F_{2 p}-2 F_{p}\right)^{2}} \\
& -\frac{\left(F_{2 p-1}-2 F_{p-1}+1\right)\left(L_{p(n+2)+q}-L_{p+q}\right)}{\left(F_{2 p-1}-2 F_{p-1}+1\right)\left(F_{2 p+1}-2 F_{p+1}+1\right)-\left(F_{2 p}-2 F_{p}\right)^{2}}
\end{aligned}
$$

Proof. Differentiating (28) with respect to $x$ and multiplying through by $x$ gives

$$
\sum_{j=0}^{n} j x^{j}=(n+1) \frac{x^{n+1}}{x-1}-\frac{x^{n+2}-x}{(x-1)^{2}}
$$

Setting $x=\alpha^{p}$ and multiplying through by $\alpha^{q}$ produces

$$
\sum_{j=0}^{n} j \alpha^{p j+q}=\frac{(n+1) \alpha^{p(n+1)+q}}{\alpha^{p}-1}+\frac{\alpha^{p(n+2)+q}-\alpha^{p+q}}{2 \alpha^{p}-\alpha^{2 p}-1}
$$

from which the results follow after the use of the identities (1) and (2) and properties P1 and P5.

## Acknowledgement

Thanks are due to the anonymous reviewers for many helpful suggestions. One of the reviewers helped to simplify the identities given in Theorems 3.1 and 3.5.

## References

[1] K. Adegoke, Weighted sums of some second-order sequences, Fibonacci Quart. 56 (2018) 252-262.
[2] K. Adegoke, Fibonacci and Lucas identities the golden way, arXiv:1810.12115 [math.NT].
[3] K. Adegoke, R. Frontczak, T. Goy, Partial sum of the products of the Horadam numbers with subscripts in arithmetic progression, Notes Number Theory Discrete Math. 27 (2021) 54-63.
[4] L. Carlitz, A note on Fibonacci numbers, Fibonacci Quart. 2 (1964) 15-28.
[5] L. Carlitz, Some classes of Fibonacci sums, Fibonacci Quart. 16 (1978) 411-426.
[6] S. Falcon, On the $k$-Lucas numbers of arithmetic indices, Appl. Math. 3 (2012) 1202-1206.
[7] H. T. Freitag, On summations and expansions of Fibonacci numbers, Fibonacci Quart. 11 (1973) 63-71.
[8] M. Griffiths, Extending the domains of definition of some Fibonacci identities, Fibonacci Quart. 50 (2012) 352-359.
[9] M. Griffiths, From golden-ratio equalities to Fibonacci and Lucas identities, Math. Gaz. 97 (2013) 234-241.
[10] V. E. Hoggatt, Some special Fibonacci and Lucas generating functions, Fibonacci Quart. 9 (1971) 121-133.
[11] V. E. Hoggatt, J. W. Phillips, H. T. Leonard, Twenty-four master identities, Fibonacci Quart. 9 (1971) 1-17.
[12] D. Jennings, Some polynomial identities for the Fibonacci and Lucas numbers, Fibonacci Quart. 31 (1993) 134-137.
[13] E. Kiliç, Y. T. Ulutaş, N. Ömür, Sums of products of the terms of the generalized Lucas sequence $\left\{V_{k n}\right\}$, Hacet. J. Math. Stat. 40 (2011) $147-161$.
[14] T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume 1: 2nd Edition, Wiley, 2017.
[15] I. D. Ruggles, Problem H-4, Fibonacci Quart. 1 (1963) 47.
[16] K. Siler, Fibonacci summations, Fibonacci Quart. 1 (1963) 67-69.
[17] L. Taylor, Problem B-460 and Problem B-461, Fibonacci Quart. 19 (1981) 466.
[18] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Dover Publications, Mineola, 2008.
[19] J. Vinson, The relation of the period modulo to the rank of apparition of $m$ in the Fibonacci sequence, Fibonacci Quart. 1 (1963) $37-45$.
[20] D. Zeitlin, On summation formulas for Fibonacci and Lucas numbers, Fibonacci Quart. 2 (1964) 105-107.


[^0]:    *This paper is a slightly modified version of the preprint [2]
    ${ }^{\dagger}$ E-mail address: adegoke00@gmail.com

