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Abstract

Initial-boundary value problems for the n-dimensional Kuramoto-Sivashinsky equation posed on smooth bounded domains
in R" are considered, where n is a natural number from the interval [2, 7]. The existence and uniqueness of global regular
solutions as well as their exponential decay are established.
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1. Introduction

This work concerns the existence, uniqueness, regularity, and exponential decay rates of solutions to initial-boundary
value problems for the n-dimensional Kuramoto-Sivashinsky (KS) equation

bt A6+ Mg+ 2|V =0, W

Here n is a natural number from the interval [2,7], A and V are the Laplacian and the gradient in R™. In [10], Kuramoto
studied the turbulent phase waves and Sivashinsky in [17] obtained an asymptotic equation which simulated the evolu-
tion of a disturbed plane flame front (see also [7]). Mathematical results on initial and initial-boundary value problems
for the one-dimensional KS equation (1) are presented in [3,5,6,12,14,15,19,20]. The initial-value problem for the multi-
dimensional KS type equations (1) was studied in [4,5]. Two-dimensional periodic problems for the KS equation and its
modifications posed on rectangles were examined in [2, 13,14, 16,19], where some results on the existence of weak solu-
tions and nonlinear stability were established. In [11], initial-boundary value problems for the 3D Kuramoto-Sivashinsky
equation were studied; the existence, uniqueness, and exponential decay of global regular solutions were proved. For n

dimensions, x = (z1,...,2,), n = 2,3,4,5,6,7, Equation (1) can be rewritten in the form of the following system:
1« ,
(uj)t+A2uj+Auj+§Z;(ui)gj =0,j=1,...,n, 2)
where u; = (¢)a,, j =1,...,n. Let Q, = [\, (0, L;) be the minimal nD parallelepiped containing a given smooth domain

D,,. The first essential problem that arises while one studies either (1) or (2)—(3), is concerned about the destabilizing effects
of Auj; they may be damped by dissipative terms A%u; provided D,, has some specific properties. In order to understand
this, we use Steklov’s inequalities to estimate

n 2

T
allu | < Vs )%, al Vugl|? < | Aug)? a = 7o

i=1 "1

j=1...,n.
A simple analysis shows that if
1
1-=>0, 4
a

then A%u; damp Au;. Naturally, here appear admissible domains where (4) is fulfilled; these are the so-called “thin
domains”, where some L; are sufficiently small while others L; may be large i,j =1,...,7; i # j.
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The second essential problem is the presence of semi-linear terms in (2) which are interconnected. This does not allow
to obtain the first estimate independent of u; and leads to a connection between L; and «;(0), i,5 =1,...,7.

The aim of this paper is to study n-dimensional initial-boundary value problems for (2)—(3) posed on smooth domains,
where the existence and uniqueness of global regular solutions as well as their exponential decay of the H?(D,,)-norm are
established. A “smoothing effect” for solutions with respect to initial data is also obtained. Although, the cases n = 2,3
are not new, we included them for the sake of generality.

The remaining part of this paper is organized as follows. Section 2 gives notations and auxiliary facts. In Section 3,
formulation of an initial-boundary value problem in a smooth bounded domain D,, is given. The existence and uniqueness
of global regular solutions, exponential decay of the H?(D,,)-norm, and a “smoothing effect” are established also in Section
3. Section 4 consists of conclusion.

2. Notations and auxiliary facts

Let D,, be a sufficiently smooth domain in R", where n € [2,7] is a fixed natural number, satisfying the Cone condition

(see[1D) and = = (z1,...,2,) € D,. We use the standard notations of Sobolev spaces W*?, L? and H* for functions and the
following notations for the norms [1] for scalar functions f(x,t) :
912 = [ 17,
D’Vl

11,y = [ 16170
Dy,

1 5km(p,y = > D s
0|<a|<k
||f||Hk(Dn) = Hf||W’“=2(Dn)~

When p = 2, W*?(D,,) = H*(D,,) is a Hilbert space with the scalar product

((u7u))Hk(Dn) = Z (Dju7Djv)a ||u||L°°(D7,) = €8s supDn|u(x)\.
l7I<k

We use the notation H%(D,,) to represent the closure of C5°(D,,), the set of all C*° functions with compact support in D,,,
with respect to the norm of H*(D,,).

Lemma 2.1 (Steklov’s inequality [18]). Let v € H{ (0, L). Then

w? 2 2
7z 1) < flva (D).

Lemma 2.2 (Differential form of the Gronwall Inequality). Let I = [to, t1]. Suppose that functions a,b : I — R are integrable
and a function a(t) may be of any sign. Let u : I — R be a differentiable function satisfying

w(t) < a(t)ult) + b(t), for t € I and u(to) = uo, )
then .
u(t) < uoeftto a®dt | / elro 2™ drb(s) ds.
to
Proof. Multiply (5) by the integrating factor elio 4 ang integrate from t; to t. O

The next Lemmas will be used in estimates.

Lemma 2.3 (See Theorem 9.1 in [8]). Let n be a natural number from the interval [2,7). If D, is a sufficiently smooth
bounded domain in R" satisfying the cone condition and v € H*(D,,) N H}(D,,), then

sup [v(z)| < Cyllv| g2(p,,)-

n

The constant C,, depends on n and D,,.
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Lemma 2.4. Let f(t) be a continuous positive function and f'(t) be a measurable integrable function such that

)+ (a—=kf™@#)f(t) <0, t>0, neN,
a—kf"0)>0, k>0,

then
f(t) < f(0)

forall t > 0.

3. KS equation posed on smooth domains

Let Q,, be the minimal nD-parallelepiped containing a given bounded smooth domain D, € R*, n=1,...,7:

Qn = {1’ € Rn;(Ei S (O,Ll)}, U; = ((b)xm 7= 17

, 1.

Fix a natural number n € [2, 7] and consider in Q,, = D,, x (0,¢) the following initial-boundary value problem:

1 ¢ ‘
(uj)e + A%uj + Auj + 52(113)% =0,j=1,...,

i=1

(ui)r;j = (uj)zm ]7&@7 1,j=1,...,

n,

)

ujlop, = Aujlop, =0, t >0,

uj(z,0) = ujo(z), j=1,...,n, = € D,.

Lemma 3.1. If f € H*(D,,) N H}(D,,) and Af|sp, = 0, then
alfIP < IV 5P,
@72 < |AFI2,
NN
2 |AF|? < |62,
IAVFI? < 1A% FIIAS] < - A2

where

NN

n 2
™
a = zzzl f’
and
1917 = [ fys,
D,
Proof. We have
VA2 =Ml
i=1
Define

f(l‘,t) =

~ flz,t) ifx € Dy;
0 ifzeQ,/D,.

Making use of Steklov's inequalities for f(z,t) and taking into account that |V f|| = ||V f||, we get

n 2
v
IVFII? > al f]?, wherea =" 5.
=1 T
On the other hand,
allfIF <IVAE == [ rarde < afIIfI

(6)
(7

C))

9)

(10)

(11)

(12)

(13)
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This implies
allfIl < |AfIl and a®[|£]1* < [|AF]*.

Consequently, a||Vf||? < |[|Af|*. Similarly,
1
IAf]? = /D fA?fda < ||APF||If] < 5||A2f||HAf||-
Hence, al|Af|| < ||A2f||. Moreover,

V1P == [ afapde < |ARIIAS < 1A%

O
Remark 3.1. Assertions of Lemma 3.1 are true if the function f is replaced respectively by u;, j=1,...,n.
Lemma 3.2. In conditions of Lemma 3.1, the following inequalities hold
IFIP (D) 20,y < 3IAFIP (@), (14)
A2 ma(p,) < BIAFIP (@), (15)
sup| f(z)] < Cs|| A% f||, where Cy = 5C,. (16)
Proof. To prove (15), we make use of Lemma 3.1 and find
£ Zra .y = 112+ IVAIZ AP + IVAF? + 1A% f?
< (;Jralg +a12+i+1> A% 2.
Since a > 1, then (15) follows. Similarly, (14) can be proved. Moreover, taking into account Lemma 2.3, we get (16). O

Theorem 3.1 (Special basis). Let n € {2,3,...,7} and D,, € R™ be a bounded smooth domain satisfying the Cone condition.
Let Q,, be a minimal nD-parallelepiped containing D,, and

1 1

a D1 %
Given
such that

203 [
R L (ZA%H ) (18)

then there exists a unique global regular solution to (9)—(12):
u; € L¥(RY; H(D,)) N AR HY(Dy) 0 B (D)
Ujp € L2(R+a L2(Dn))a .] =1,...,n

Moreover,

Z | Ay |2 (t (Z Aujouz) exp{—a®t0/2} (19)
and

S lawl() /ZHMH Jir < O3 [ Aual?, £ 0.
i=1

i=1
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Remark 3.2. In Theorem 3.1, there are two types of restrictions: the first one is pure geometrical,
1
1-->0
a
which is needed to eliminate destabilizing effects of the terms Au; in (9):
A |* = ||V
It is clear that

no o
R
m a = —-_— = [ee]
L;—=0 '1L12 ’
i

hence to achieve (17), it is possible to decrease L;, i = 1,...,n allowing other L;, j # i to grow. The situation with condition
(18) is more complicated: if initial data are not small, then it is possible either to decrease L;, i = 1,...,n, to fulfill this
condition or for fixed L;, i =1,...,n to decrease initial data ||u;o||.

Proof of Theorem 3.1. 1t is possible to construct Galerkin‘s approximations to (9)—(12) by the following way. Let w;(z) be
eigenfunctions of the problem:

Aw; — N\jw; = 01in D,; wjlap, = Aw;lop, =0, =1,2,....

Define

N

uj»v(ac,t) = Zgi(t)wj(x)

k=1

Unknown functions gf (t) satisfy the following initial problems:
d 1 (<
(dtué'VWJ) (#) + (A%, w;) (1) + (Al wj) (1) + 5 <Z(va)ij»wj> () =0,

a0 =gl j=1,....n, k=1,2,....
The estimates that follow may be established on Galerkin’s approximations (see [5, 6]), but it is more explicitly to prove

them on smooth solutions of (9)-(12).

Estimate I: u € L°(R*; H2(D,,) N HL(D,)) N L2(R*; HA(D,)) N HL(Dy)).
For any natural number n € [2, 7], multiply (9) by 2A2u; to obtain

d n
AP0+ 2187610 + A UONAwIO + 23 (1), A%0)(0) =0 (20)

Making use of (15) and Lemmas 2.3, 3.1, 3.2, we write

d [ n
T Aw (1) + 20] A% () < 2 > sup ui(a, )] Vs | (8) ] A%]](2)
Li=1 P
<2 G Y IIAw (O Vuill(t) | 1A%u]1(5):5 = 1, ,n. 1)
L =1
Summing over j = 1,...,n and making use of Lemma 3.1, we rewrite (20) in the form:
d n n n n
ﬁzIIAujIIQ(t)+29Z|\A2uj\|(t)SQCsn DIV li) | [ D 1147 ()
j=1 j=1 J=1 i=1
_ -
0  20%n% [ & =
<3t IVas i) || D 1A%, )%()
j=1 j=1
0 20n° [ 2 - 2,112
<3t DIV PE) || D 1A%, )%t
i j=1 | =1
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< | 2 (Z 2 ) Z ISRL
Taking this into account, we transform (20) in the form
2C n® [ -
dt Z ARG Z 1A | (¢ (Zl 1 ) Z NG (22)
= J=1
Condition (18) and Lemma 2.4 guarantee that
- @ (En: ||Auj||2(t)) >0, t>0.
j=1
Hence, (21) can be rewritten as
" Z | 20 Z | 20 (23)
Integrating, we get
Z [Au;|2(t) < Z | Awjol|? exp{—a6t/2}. (24)
j=1
Consequently, we find
Z i + [ S Ia% i < 3 Al (25)
i=1

=1

Finally, directly from (9), we obtain
(uj)t € Lz(R+; Lz(Dn))7 J = ]-7 e n

Since these inclusions, estimates (24), (25) and Lemma 3.2 do not depend on N, the same estimates are valid also for

uéV (z,t). Hence, it is possible to pass to the limit as N — +oc0 in
N .
ulY (z,6) =Y gh(t)w;(x)
k=1

and to prove the existence part of Theorem 3.1.

Lemma 3.3. A regular solution of Theorem 3.1 is uniquely defined.

Proof. Let u; and v;, j = 1,...,n, be two distinct solutions to (9)—(12). Denoting w; = u;
system:

1 n
(w))e + A%wj + Aw; + 52 (uf —v7), =0,

i=1 zj
(W))a; = (Wi)ay, 1 J,
wjlap, = Aw;lap, =0, t > 0;
wj(z,0)=0inD, j=1,...,n

Multiply (26) by 2w;, we obtain

d = .
alleIIQ(t) + 2| Aw; 12() = 20V, 1P (8) = D ({ui + vitwi, (w))a;) (1) =0, j=1,...,n.
=1

— v;j, we come to the following

(26)

(27)
(28)

(29)

(30)
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Making use of Lemmas 2.3 and 3.1, 3.2, we estimate

zn: ({uz- + v Yw;, (wj)mj>

i=1

IN

2

€ 1 "

§||ij||2 T 5 (Z [[{ui + Ui}wiH)
1=1

€ 2 &
%HAMJ‘II2 +o > " sup{uf (@, t); + 07 (2, ) H|w? | (2)

i=1 “n

Z{ 1A% ]| + ]| A% | }1 Z w1

Here, € is an arbitrary positive number. Substituting I into (30), we get

d 2 2n02 [ " 1

IA

€ 2nC
< oA 2 +

> llwsl®. (C1Y)

j=1

Sl + 2= = = =) Awg P Sz + [[4%2)
Taking € = g and summing up over j = 1,...,n, we transform (31) as follows:
d n n
@Z s (8 < O | D LA wl|? + | A% 1* + [Jwil*(2) + v (¢ ] Z lw; %, i
j=1

=1

By (25) and Lemma 3.1, we have
1A% (t), A% |*(t) € L' (RT)
and
luill @), loil*(t) € LYRT), i =1,...,n,
thence by Lemma 2.2, it holds that
|w;|?(t)=0 j=1,...,n, forall t> 0.

Therefore,
uj(z,t) =vi(z,t);5=1,...,n

This completes the proofs of Lemma 3.3 and Theorem 3.1. O

4, Conclusion

This paper is concerned with the formulation and solvability of initial-boundary value problems for the n-dimensional
Kuramoto-Sivashinsky system (9)—(10) posed on smooth bounded domains, where n € {2,3,...,7}. Theorem 3.1 contains
results on existence and uniqueness of global regular solutions as well as exponential decay of the H?(D,,)-norm, where
D,, is a smooth bounded domain in R"”. We define a set of admissible domains, where destabilizing effects of terms Aw;
are damped by dissipativity of A?u; due to condition (17). This set contains “thin domains”, see [9, 13, 16], where some
dimensions of D,, are small while others may be large. Since initial-boundary value problems studied in this paper do not
admit a priori estimate independent of ¢, u;, in order to prove the existence of global regular solutions, we put conditions
(18) connecting geometrical properties of D,, with initial data w;,. Moreover, Theorem 3.1 provides “smoothing effect”:
initial data ujo € H?(D,,) N H}(D,,) imply that u; € L>(R'H*(D,,)).
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