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Abstract

Initial-boundary value problems for the n-dimensional Kuramoto-Sivashinsky equation posed on smooth bounded domains
in Rn are considered, where n is a natural number from the interval [2, 7]. The existence and uniqueness of global regular
solutions as well as their exponential decay are established.
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1. Introduction

This work concerns the existence, uniqueness, regularity, and exponential decay rates of solutions to initial-boundary
value problems for the n-dimensional Kuramoto-Sivashinsky (KS) equation

φt + ∆2φ+ ∆φ+
1

2
|∇φ|2 = 0. (1)

Here n is a natural number from the interval [2,7], ∆ and ∇ are the Laplacian and the gradient in Rn. In [10], Kuramoto
studied the turbulent phase waves and Sivashinsky in [17] obtained an asymptotic equation which simulated the evolu-
tion of a disturbed plane flame front (see also [7]). Mathematical results on initial and initial-boundary value problems
for the one-dimensional KS equation (1) are presented in [3,5,6,12,14,15,19,20]. The initial-value problem for the multi-
dimensional KS type equations (1) was studied in [4, 5]. Two-dimensional periodic problems for the KS equation and its
modifications posed on rectangles were examined in [2, 13, 14, 16, 19], where some results on the existence of weak solu-
tions and nonlinear stability were established. In [11], initial-boundary value problems for the 3D Kuramoto-Sivashinsky
equation were studied; the existence, uniqueness, and exponential decay of global regular solutions were proved. For n
dimensions, x = (x1, . . . , xn), n = 2, 3, 4, 5, 6, 7, Equation (1) can be rewritten in the form of the following system:

(uj)t + ∆2uj + ∆uj +
1

2

n∑
i=1

(ui)
2
xj

= 0, j = 1, . . . , n, (2)

(ui)xj
= (uj)xi

, j 6= i, i, j = 1, . . . , n. (3)

where uj = (φ)xj , j = 1, . . . , n. Let Ωn =
∏n
i=1(0, Li) be the minimal nD parallelepiped containing a given smooth domain

D̄n. The first essential problem that arises while one studies either (1) or (2)–(3), is concerned about the destabilizing effects
of ∆uj ; they may be damped by dissipative terms ∆2uj provided Dn has some specific properties. In order to understand
this, we use Steklov’s inequalities to estimate

a‖uj‖2 ≤ ‖∇uj‖2, a‖∇uj‖2 ≤ ‖∆uj‖2; a =

n∑
i=1

π2

L2
i

, j = 1, . . . , n.

A simple analysis shows that if
1− 1

a
> 0, (4)

then ∆2uj damp ∆uj . Naturally, here appear admissible domains where (4) is fulfilled; these are the so-called “thin
domains”, where some Li are sufficiently small while others Lj may be large i, j = 1, . . . , 7; i 6= j.
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The second essential problem is the presence of semi-linear terms in (2) which are interconnected. This does not allow
to obtain the first estimate independent of uj and leads to a connection between Li and uj(0), i, j = 1, . . . , 7.

The aim of this paper is to study n-dimensional initial-boundary value problems for (2)–(3) posed on smooth domains,
where the existence and uniqueness of global regular solutions as well as their exponential decay of the H2(Dn)-norm are
established. A “smoothing effect” for solutions with respect to initial data is also obtained. Although, the cases n = 2, 3

are not new, we included them for the sake of generality.
The remaining part of this paper is organized as follows. Section 2 gives notations and auxiliary facts. In Section 3,

formulation of an initial-boundary value problem in a smooth bounded domain Dn is given. The existence and uniqueness
of global regular solutions, exponential decay of the H2(Dn)-norm, and a “smoothing effect” are established also in Section
3. Section 4 consists of conclusion.

2. Notations and auxiliary facts

Let Dn be a sufficiently smooth domain in Rn, where n ∈ [2, 7] is a fixed natural number, satisfying the Cone condition
(see [1]) and x = (x1, . . . , xn) ∈ Dn. We use the standard notations of Sobolev spaces W k,p, Lp and Hk for functions and the
following notations for the norms [1] for scalar functions f(x, t) :

‖f‖2 =

∫
Dn

|f |2dx,

‖f‖pLp(Dn)
=

∫
Dn

|f |p dx,

‖f‖p
Wk,p(Dn)

=
∑

0|≤α|≤k

‖Dαf‖pLp(Dn)
,

‖f‖Hk(Dn) = ‖f‖Wk,2(Dn).

When p = 2, W k,p(Dn) = Hk(Dn) is a Hilbert space with the scalar product

((u, v))Hk(Dn) =
∑
|j|≤k

(Dju,Djv), ‖u‖L∞(Dn) = ess supDn
|u(x)|.

We use the notation Hk
0 (Dn) to represent the closure of C∞0 (Dn), the set of all C∞ functions with compact support in Dn,

with respect to the norm of Hk(Dn).

Lemma 2.1 (Steklov’s inequality [18]). Let v ∈ H1
0 (0, L). Then

π2

L2
‖v‖2(t) ≤ ‖vx‖2(t).

Lemma 2.2 (Differential form of the Gronwall Inequality). Let I = [t0, t1]. Suppose that functions a, b : I → R are integrable
and a function a(t) may be of any sign. Let u : I → R be a differentiable function satisfying

ut(t) ≤ a(t)u(t) + b(t), for t ∈ I and u(t0) = u0, (5)

then
u(t) ≤ u0e

∫ t
t0
a(t) dt

+

∫ t

t0

e
∫ s
t0
a(r) dr

b(s) ds.

.

Proof. Multiply (5) by the integrating factor e
∫ s
t0
a(r) dr and integrate from t0 to t.

The next Lemmas will be used in estimates.

Lemma 2.3 (See Theorem 9.1 in [8]). Let n be a natural number from the interval [2, 7]. If Dn is a sufficiently smooth
bounded domain in Rn satisfying the cone condition and v ∈ H4(Dn) ∩H1

0 (Dn), then

sup
Dn

|v(x)| ≤ Cn‖v‖H4(Dn).

The constant Cn depends on n and Dn.

13
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Lemma 2.4. Let f(t) be a continuous positive function and f ′(t) be a measurable integrable function such that

f ′(t) + (α− kfn(t))f(t) ≤ 0, t > 0, n ∈ N, (6)

α− kfn(0) > 0, k > 0, (7)

then
f(t) < f(0) (8)

for all t > 0.

3. KS equation posed on smooth domains

Let Ωn be the minimal nD-parallelepiped containing a given bounded smooth domain D̄n ∈ Rn, n = 1, . . . , 7:

Ωn = {x ∈ Rn;xi ∈ (0, Li)}, ui = (φ)xi
, i = 1, . . . , n.

Fix a natural number n ∈ [2, 7] and consider in Qn = Dn × (0, t) the following initial-boundary value problem:

(uj)t + ∆2uj + ∆uj +
1

2

n∑
i=1

(u2i )xj = 0, j = 1, . . . , n, (9)

(ui)xj
= (uj)xi

, j 6= i, i, j = 1, . . . , n; (10)

uj |∂Dn
= ∆uj |∂Dn

= 0, t > 0, (11)

uj(x, 0) = uj0(x), j = 1, . . . , n, x ∈ Dn. (12)

Lemma 3.1. If f ∈ H4(Dn) ∩H1
0 (Dn) and ∆f |∂Dn

= 0, then

a‖f‖2 ≤ ‖∇f‖2,

a2‖f‖2 ≤ ‖∆f‖2,

a‖∇f‖2 ≤ ‖∆f‖2,

a2‖∆f‖2 ≤ ‖∆2f‖2,

‖∆∇f‖2 ≤ ‖∆2f‖‖∆f‖ ≤ 1

a
‖∆2f‖2.

where
a =

n∑
i=1

π2

L2
i

,

and
‖f‖2 =

∫
Dn

f2(x)dx.

Proof. We have

‖∇f‖2 =

n∑
i=1

‖fxi
‖2.

Define

f̃(x, t) =

f(x, t) if x ∈ Dn;

0 if x ∈ Ωn/Dn.
(13)

Making use of Steklov‘s inequalities for f̃(x, t) and taking into account that ‖∇f‖ = ‖∇f̃‖, we get

‖∇f‖2 ≥ a‖f‖2, where a =

n∑
i=1

π2

L2
i

.

On the other hand,
a‖f‖2 ≤ ‖∇f‖2 = −

∫
Dn

f∆fdx ≤ ‖∆f‖‖f‖.

14
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This implies
a‖f‖ ≤ ‖∆f‖ and a2‖f‖2 ≤ ‖∆f‖2.

Consequently, a‖∇f‖2 ≤ ‖∆f‖2. Similarly,

‖∆f‖2 =

∫
Dn

f∆2fdx ≤ ‖∆2f‖‖f‖ ≤ 1

a
‖∆2f‖‖∆f‖.

Hence, a‖∆f‖ ≤ ‖∆2f‖. Moreover,

‖∆∇f‖2 = −
∫
Dn

∆2f∆fdx ≤ ‖∆2f‖‖∆f‖ ≤ 1

a
‖∆2f‖2.

Remark 3.1. Assertions of Lemma 3.1 are true if the function f is replaced respectively by uj , j = 1, . . . , n.

Lemma 3.2. In conditions of Lemma 3.1, the following inequalities hold

‖f‖2(t)H2(Dn) ≤ 3‖∆f‖2(t), (14)

‖f‖2(t)H4(Dn) ≤ 5‖∆2f‖2(t), (15)

sup
Dn

|f(x)| ≤ Cs‖∆2f‖, where Cs = 5Cn. (16)

Proof. To prove (15), we make use of Lemma 3.1 and find

‖f‖2H4(Dn)
= ‖f‖2 + ‖∇f‖2 + ‖∆f‖2 + ‖∇∆f‖2 + ‖∆2f‖2

≤
(

1

a4
+

1

a3
+

1

a2
+

1

a
+ 1

)
‖∆2f‖2.

Since a > 1, then (15) follows. Similarly, (14) can be proved. Moreover, taking into account Lemma 2.3, we get (16).

Theorem 3.1 (Special basis). Let n ∈ {2, 3, . . . , 7} andDn ∈ Rn be a bounded smooth domain satisfying the Cone condition.
Let Ωn be a minimal nD-parallelepiped containing D̄n and

θ = 1− 1

a
= 1− 1∑n

i=1
π2

L2
i

> 0. (17)

Given
uj0(Dn) ∈ H2(Dn) ∩H1

0 (Dn), j = 1, . . . , n

such that

θ − 2C2
s73

aθ

 n∑
j=1

‖∆uj‖2(0)

 > 0, (18)

then there exists a unique global regular solution to (9)–(12):

uj ∈ L∞(R+;H2(Dn)) ∩ L2(R+;H4(Dn) ∩H1
0 (Dn));

ujt ∈ L2(R+;L2(Dn)), j = 1, . . . , n.

Moreover,

n∑
j=1

‖∆uj‖2(t) ≤

 n∑
j=1

‖∆uj0‖2
 exp{−a2tθ/2} (19)

and
n∑
i=1

‖∆ui‖2(t) +

∫ t

0

n∑
i=1

‖∆2ui‖2(τ)dτ ≤ C
n∑
i=1

‖∆ui0‖2, t > 0.

15
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Remark 3.2. In Theorem 3.1, there are two types of restrictions: the first one is pure geometrical,

1− 1

a
> 0

which is needed to eliminate destabilizing effects of the terms ∆uj in (9):

‖∆uj‖2 − ‖∇uj‖2.

It is clear that
lim
Li→0

a =

n∑
i=1

π2

L2
i

= +∞,

hence to achieve (17), it is possible to decrease Li, i = 1, . . . , n allowing other Lj , j 6= i to grow. The situation with condition
(18) is more complicated: if initial data are not small, then it is possible either to decrease Li, i = 1, . . . , n, to fulfill this
condition or for fixed Li, i = 1, . . . , n to decrease initial data ‖uj0‖.

Proof of Theorem 3.1. It is possible to construct Galerkin‘s approximations to (9)–(12) by the following way. Let wj(x) be
eigenfunctions of the problem:

∆2wj − λjwj = 0 in Dn; wj |∂Dn
= ∆wj |∂Dn

= 0, j = 1, 2, . . . .

Define

uNj (x, t) =

N∑
k=1

gjk(t)wj(x).

Unknown functions gji (t) satisfy the following initial problems:(
d

dt
uNj , wj

)
(t) +

(
∆2uNj , wj

)
(t) +

(
∆uNj , wj

)
(t) +

1

2

(
n∑
i=1

(uNi )2xj
, wj

)
(t) = 0,

gjk(0) = gj0k, j = 1, . . . , n, k = 1, 2, . . . .

The estimates that follow may be established on Galerkin’s approximations (see [5, 6]), but it is more explicitly to prove
them on smooth solutions of (9)-(12).

Estimate I: u ∈ L∞(R+;H2(Dn) ∩H1
0 (Dn)) ∩ L2(R+;H4(Dn) ∩H1

0 (Dn)).
For any natural number n ∈ [2, 7], multiply (9) by 2∆2uj to obtain

d

dt
‖∆uj‖2(t) + 2‖∆2uj‖2(t) + 2‖∆2u‖(t)‖∆uj‖(t) + 2

n∑
i=1

(ui(ui)xj ,∆
2uj)(t) = 0. (20)

Making use of (15) and Lemmas 2.3, 3.1, 3.2, we write

d

dt
‖∆uj‖2(t) + 2θ‖∆2uj‖2(t) ≤ 2

[
n∑
i=1

sup
Dn

|ui(x, t)|‖∇ui‖(t)

]
‖∆2uj‖(t)

≤ 2

[
Cs

n∑
i=1

‖∆2ui‖(t)‖∇ui‖(t)

]
‖∆2uj‖(t); j = 1, . . . , n. (21)

Summing over j = 1, . . . , n and making use of Lemma 3.1, we rewrite (20) in the form:

d

dt

n∑
j=1

‖∆uj‖2(t) + 2θ

n∑
j=1

‖∆2uj‖(t) ≤ 2Csn

 n∑
j=1

‖∇uj‖(t)

 n∑
j=1

‖∆2uj‖2(t)



≤

θ
2

+
2C2

sn
2

θ

 n∑
j=1

‖∇uj‖(t)

2
 n∑
j=1

‖∆2uj‖2(t)

≤

θ
2

+
2C2

sn
3

θ

 n∑
j=1

‖∇uj‖2(t)

 n∑
j=1

‖∆2uj‖2(t)

16
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≤

θ
2

+
2C2

sn
3

aθ

 n∑
j=1

‖∆uj‖2(t)

 n∑
j=1

‖∆2uj‖2(t).

Taking this into account, we transform (20) in the form

d

dt

n∑
j=1

‖∆uj‖2(t) +
θ

2

n∑
j=1

‖∆2uj‖2(t) +

θ − 2C2
sn

3

aθ

 n∑
j=1

‖∆uj‖2(t)

 n∑
j=1

‖∆2uj‖2(t) ≤ 0. (22)

Condition (18) and Lemma 2.4 guarantee that

θ − 2C2
sn

3

aθ

 n∑
j=1

‖∆uj‖2(t)

 > 0, t > 0.

Hence, (21) can be rewritten as

d

dt

n∑
j=1

‖∆uj‖2(t) +
a2θ

2

n∑
j=1

‖∆uj‖2(t) ≤ 0. (23)

Integrating, we get
n∑
i=1

‖∆uj‖2(t) ≤
n∑
j=1

‖∆uj0‖2 exp{−a2θt/2}. (24)

Consequently, we find
n∑
i=1

‖∆ui‖2(t) +

∫ t

0

n∑
i=1

‖∆2ui‖2(τ)dτ ≤ C
n∑
i=1

‖∆ui0‖2. (25)

Finally, directly from (9), we obtain
(uj)t ∈ L2(R+;L2(Dn)), j = 1, . . . , n.

Since these inclusions, estimates (24), (25) and Lemma 3.2 do not depend on N , the same estimates are valid also for
uNj (x, t). Hence, it is possible to pass to the limit as N → +∞ in

uNj (x, t) =

N∑
k=1

gjk(t)wj(x)

and to prove the existence part of Theorem 3.1.

Lemma 3.3. A regular solution of Theorem 3.1 is uniquely defined.

Proof. Let uj and vj , j = 1, . . . , n, be two distinct solutions to (9)–(12). Denoting wj = uj − vj , we come to the following
system:

(wj)t + ∆2wj + ∆wj +
1

2

n∑
i=1

(
u2i − v2i

)
xj

= 0, (26)

(wj)xi
= (wi)xj

, i 6= j, (27)

wj |∂Dn
= ∆wj |∂Dn

= 0, t > 0; (28)

wj(x, 0) = 0 in D, j = 1, . . . , n. (29)

Multiply (26) by 2wj , we obtain

d

dt
‖wj‖2(t) + 2‖∆wj‖2(t)− 2‖∇wj‖2(t)−

n∑
i=1

(
{ui + vi}wi, (wj)xj

)
(t) = 0, j = 1, . . . , n. (30)

17
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Making use of Lemmas 2.3 and 3.1, 3.2, we estimate

I =

n∑
i=1

(
{ui + vi}wi, (wj)xj

)

≤ ε

2
‖∇wj‖2 +

1

2ε

(
n∑
i=1

‖{ui + vi}wi‖

)2

≤ ε

2a
‖∆wj‖2 +

2

ε

n∑
i=1

sup
Dn

{u2i (x, t)i + v2i (x, t)}‖w2
i ‖(t)

≤ ε

2a
‖∆wj‖2 +

2nC2
s

ε

[
n∑
i=1

{‖∆2ui‖2 + ‖∆2vi‖2}

]
n∑
j=1

‖wj‖2.

Here, ε is an arbitrary positive number. Substituting I into (30), we get

d

dt
‖wj‖2(t) + (2− 2

a
− ε

2a
)‖∆wj‖2(t) ≤ 2nC2

s

ε

[
n∑
i=1

{‖∆2ui‖2 + ‖∆2vi‖2}

]
n∑
j=1

‖wj‖2. (31)

Taking ε = θ
2 and summing up over j = 1, . . . , n, we transform (31) as follows:

d

dt

n∑
j=1

‖wj‖2(t) ≤ C

[
n∑
i=1

{‖∆2ui‖2 + ‖∆2vi‖2 + ‖ui‖2(t) + ‖vi‖2(t)}

]
n∑
j=1

‖wj‖2, i = 1, . . . , n.

By (25) and Lemma 3.1, we have
‖∆2ui‖2(t), ‖∆2vi‖2(t) ∈ L1(R+)

and
‖ui‖(t), ‖vi‖2(t) ∈ L1(R+), i = 1, . . . , n,

thence by Lemma 2.2, it holds that
‖wj‖2(t) ≡ 0 j = 1, . . . , n, for all t > 0.

Therefore,

uj(x, t) ≡ vj(x, t); j = 1, . . . , n.

This completes the proofs of Lemma 3.3 and Theorem 3.1.

4. Conclusion

This paper is concerned with the formulation and solvability of initial-boundary value problems for the n-dimensional
Kuramoto-Sivashinsky system (9)–(10) posed on smooth bounded domains, where n ∈ {2, 3, . . . , 7}. Theorem 3.1 contains
results on existence and uniqueness of global regular solutions as well as exponential decay of the H2(Dn)-norm, where
Dn is a smooth bounded domain in Rn. We define a set of admissible domains, where destabilizing effects of terms ∆uj

are damped by dissipativity of ∆2uj due to condition (17). This set contains “thin domains”, see [9, 13, 16], where some
dimensions of Dn are small while others may be large. Since initial-boundary value problems studied in this paper do not
admit a priori estimate independent of t, uj , in order to prove the existence of global regular solutions, we put conditions
(18) connecting geometrical properties of Dn with initial data uj0. Moreover, Theorem 3.1 provides “smoothing effect”:
initial data uj0 ∈ H2(Dn) ∩H1

0 (Dn) imply that uj ∈ L2(R;H4(Dn)).
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