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Abstract
A zonal labeling of a plane graph G is an assignment of the two nonzero elements of the ring Z3 of integers modulo 3 to
the vertices of G such that the sum of the labels of the vertices on the boundary of each region of G is the zero element
of Z3. A plane graph possessing such a labeling is a zonal graph. A planar graph G is zonal if there exists a zonal planar
embedding of G. If every planar embedding of G is zonal, then G is absolutely zonal. A zonal planar graph G is conditionally
zonal if some planar embedding of G is not zonal. It is shown that there is a class of absolutely zonal graphs possessing an
arbitrarily large number of distinct zonal planar embeddings as well as a class of conditionally zonal graphs possessing an
arbitrarily large number of distinct zonal planar embeddings with prescribed irregularity and regularity properties.

Keywords: planar graph; graph embedding; zonal labeling; conditionally and absolutely zonal graph; irregularity and
regularity.
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1. Introduction

In 2014 Cooroo Egan introduced a vertex labeling of plane graphs (planar graphs embedded in the plane) called a zonal
labeling (see [2]). A zonal labeling ` of a plane graph G is an assignment of the two nonzero elements 1 and 2 of the ring Z3

of integers modulo 3 to the vertices ofG such that the sum of the labels of the vertices on the boundary of each region (zone)
of G, called the value of the region, is the zero element in Z3. If a connected plane graph G possesses a zonal labeling,
then G is a zonal graph. The plane graph G1 of Figure 1 is zonal and a zonal labeling of G1 is given in that figure, while
the plane graph G2 of Figure 1 is not zonal.
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Figure 1: A zonal plane graph and a non-zonal plane graph.

A planar graph G is zonal if there exists a zonal planar embedding of G. If every planar embedding of G is zonal, then
G is absolutely zonal. For example, if G is a maximal planar graph of order 3 or more embedded in the plane, then the
boundary of every region ofG is a triangle. Thus, the labeling that assigns the label 1 to every vertex ofG is a zonal labeling.
Therefore, every maximal planar graph of order 3 or more is absolutely zonal. A zonal planar graph G is conditionally
zonal if some planar embedding of G is not zonal. Since the graphs G1 and G2 of Figure 1 are isomorphic, it follows that G2

is a different planar embedding of G1 and so the planar graph G1 (or G2) is conditionally zonal.
It is the goal of this paper to describe (1) a class of absolutely zonal graphs having an arbitrarily large number of

distinct planar embeddings and (2) a class of conditionally zonal graphs possessing an arbitrarily large number of distinct
zonal planar embeddings with prescribed irregularity or regularity properties. Before doing this, however, we review some
information concerning zonal graphs, mentioned in [2], that illustrates some of the interest in studying zonal labelings. A
cubic map is a connected bridgeless cubic plane graph. The following result was obtained in [2].

Theorem 1.1. A connected cubic plane graph G is zonal if and only if G is bridgeless.
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Consequently, by Theorem 1.1, the only zonal cubic plane graphs are cubic maps. That every cubic map is zonal was
established in [2] with the aid of the Four Color Theorem (the chromatic number of every planar graph is at most 4). The
converse of this statement is also true (see [2]).

Theorem 1.2. If every cubic map is zonal, then the chromatic number of every planar graph is at most 4.

Thus, if it could be shown that every cubic map is zonal without using the Four Color Theorem, then the Four Color
Theorem would follow. This shows that studying zonal labelings of planar graphs are of interest, especially cubic planar
graphs, and cubic maps in particular.

2. Absolutely zonal graphs

The following result was shown in [2].

Proposition 2.1. Every nontrivial tree and every cycle is zonal.

Since there is only one planar embedding of a nontrivial tree or a cycle, it follows that every nontrivial tree and every
cycle is absolutely zonal. A nontrivial tree is connected but not 2-connected, while a cycle is 2-connected but not 3-connected.
There is a class of 2-connected absolutely zonal graphs, as we show next.

Proposition 2.2. Every 2-connected bipartite planar graph is absolutely zonal.

Proof. Let G be a 2-connected bipartite plane graph with partite sets U and W . Define a labeling ` of G by assigning the
label 1 to every vertex of U and the label 2 to every vertex of W . Let R be a region of G. Since G is a 2-connected bipartite
plane graph, the boundary of R is an even cycle C. Thus, half of the vertices of C are labeled 1 and half are labeled 2.
Hence,

∑
v∈V (C) `(v) = 0 in Z3 and so ` is a zonal labeling of G. Consequently, G is absolutely zonal.

Whitney [3] obtained the following result on 3-connected planar graphs.

Theorem 2.1. (Whitney’s Theorem) Every 3-connected planar graph is uniquely embeddable in the plane.

As a consequence of Theorem 2.1, every 3-connected planar graph is either absolutely zonal or non-zonal. Every
wheel Wn = Cn ∨ K1 (the join of Cn and K1), n ≥ 3, is 3-connected. This observation gives rise to an infinite class of
3-connected absolutely zonal graphs and an infinite class of 3-connected non-zonal graphs. To establish this fact, we first
state a definition. Let ` be a labeling of the vertices of a graph G with the labels 1 and 2 of Z3. The vertex labeling ` of G
defined by `(v) = 3− `(v) for each vertex v of G is called the complementary labeling of G. The following is then immediate
(see [2]).

Observation 2.1. If ` is a zonal labeling of a connected plane graph, then so too is its complementary labeling `.

We now present the result on wheels indicated above.

Theorem 2.2. For an integer n ≥ 3, the wheel Wn = Cn ∨K1 is zonal if and only if n ≡ 0 (mod 3).

Proof. Since Wn is a 3-connected planar graph, there is a unique planar embedding of Wn where, in a standard planar
embedding ofWn, the boundary of every interior region ofWn is a triangle and the boundary of the exterior region is Cn. If
n ≡ 0 (mod 3), then the labeling of Wn that assigns the label 1 of Z3 to every vertex of Wn is a zonal labeling and so Wn is
zonal. For the converse, let n ≥ 4 be an integer such that n 6≡ 0 (mod 3). If there exists a zonal labeling ` ofWn, then `must
assign the same label to the three vertices of each triangle of Wn, implying that ` must assign the same label to all vertices
of Wn. By Observation 2.1, we may assume that ` assigns the label 1 to every vertex of Wn. Hence,

∑
v∈V (Cn) `(v) = n 6= 0

in Z3. Since Cn is the boundary of a region of Wn, it follows that ` is not a zonal labeling and so Wn is not zonal.

We mentioned that every connected bridgeless cubic planar graph is absolutely zonal. If a bridgeless cubic planar
graph G is 3-connected, then it follows by Whitney’s Theorem (Theorem 2.1) that there is a unique planar embedding of G.
If a bridgeless cubic planar graph G is 2-connected but not 3-connected (that is, G has connectivity 2), then G may have
two or more distinct planar embeddings, giving rise to distinct cubic maps. Since each cubic map is zonal, the graph G

itself is absolutely zonal. In fact, there is a class of connected bridgeless cubic planar graphs having an arbitrarily large
number of distinct planar embeddings.

Theorem 2.3. For every positive integer k, there exists a connected bridgeless cubic planar graph having at least k distinct
(zonal) planar embeddings.
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C2k−2 when k = 4
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Figure 2: Three plane graphs.

Proof. For k ≥ 3, ler C2k−2 = (a1, b1, a2, b2, . . . , ak−1, bk−1, a1) be a cycle of order 2k − 2. This cycle is shown in Figure 2 for
k = 4. For 1 ≤ i ≤ k − 1, let Fi and F ′i be the planar embedding of a planar graph, also shown in Figure 2. Since the
boundaries of the five regions of Fi and F ′i are the same, these are the same embeddings of a planar graph.

First, we construct a plane graph G0 from C2k−2 and F1, F2, . . . , Fk−1 by identifying the edge aibi of C2k−2 with the
edge uivi of Fi for 1 ≤ i ≤ k−1. Next, we embed G0 in the plane such that (1) each interior region of G0 is either an interior
region of Fi for some integer i with 1 ≤ i ≤ k−1 or the region whose boundary is C2k−2 and (2) the boundary of the exterior
region of G0 is the cycle of order (2k − 2) + 5(k − 1) = 7k − 7. Hence, each Fi (1 ≤ i ≤ k − 1) lies outside of the cycle C2k−2.
The graph G0 is shown in Figure 3 for k = 4. Observe that G0 is a cubic map and so G0 is zonal.
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Figure 3: The plane graph G0 for k = 4.

For an integer j with 1 ≤ j ≤ k − 2, we construct a graph Gj from C2k−2, F ′1, F ′2, . . . , F ′j and Fj+1, Fj+2, . . . , Fk−1 by
identifying the edge u′iv′i of F ′i with the edge aibi of C2k−2 for 1 ≤ i ≤ j and the edge uivi of Fi with the edge aibi of C2k−2 for
j + 1 ≤ i ≤ k − 1. We then embed Gj in the plane such that (1) each interior region of Gj is either an interior region of F ′i
for 1 ≤ i ≤ j, or an interior region of Fi for j + 1 ≤ i ≤ k − 1, or the region whose boundary is C2k−2 and (2) the boundary
of the exterior region of Gj is the cycle of order (2k − 2) + 2j + 5(k − 1− j) = 7k − 7− 3j. Hence, each of F ′i (1 ≤ i ≤ j) and
Fi (j + 1 ≤ i ≤ k− 1) lies outside of C2k−2. The graph G2 is shown in Figure 4 for k = 4. Observe that each plane graph Gj
is a cubic map and so Gj is zonal for 1 ≤ j ≤ k − 2.
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Figure 4: The plane graph G2 for k = 4.

The plane graphs G0, G1, . . . , Gk−1 are all cubic maps and are planar embeddings of the same graph. Since Gi, 0 ≤ i ≤
k− 1, has exactly k− 1− i regions whose boundary is a 4–cycle and whose largest boundary cycle has order 7k− 7− 3i for
0 ≤ i ≤ k − 1, these cubic maps are distinct planar embeddings of the same graph.
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3. Conditionally zonal graphs

We now turn our attention to conditionally zonal graphs, that is, planar graphs having at least one zonal planar embedding
and at least one non-zonal planar embedding. By Whitney’s Theorem, necessarily each such graph must have connectivity
less than 3. We now describe a class of connected bridgeless planar graphs. For integers n ≥ 3 and k ≥ 3, the (standard)
Dutch windmill graph Dk

n is the graph obtained by taking k copies of the n-cycle Cn with a vertex in common. The Dutch
windmill graphDk

3 is commonly called a friendship graph (every two vertices have a unique common neighbor). The Dutch
windmill graphs D3

3, D3
4, and D3

5 are shown in Figure 5, the first of which is a friendship graph. The planar embedding
ofDk

n in which the boundary of each region is either Cn orDk
n is called the standard embedding ofDk

n, as shown in Figure 5
for D3

3, D3
4 and D3

5.

Figure 5: The Dutch windmill graphs D3
3, D3

4, and D3
5.

For an integer k ≥ 2, let S denote a multiset of k cycles and let D(S) denote the Dutch windmill graph constructed
from the cycles in S. The planar embedding of D(S) in which the boundary of each region is either a cycle in S or D(S) is
called the standard embedding of D(S). For example, if S = {C3, C3, C4, C6}, then the standard planar embedding of D(S)

is shown in Figure 6. This plane graph D(S) is zonal and a zonal labeling of D(S) is given in Figure 6.

11
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Figure 6: The Dutch windmill graph D(S) for S = {C3, C3, C4, C6}.

For a labeling ` : V (G)→ {1, 2} of a graph G and a subgraph H of G, let
∑

(`,H) =
∑
x∈V (H) `(x) in Z3. First, we show

that there is a class of non-zonal Dutch windmill graphs.

Proposition 3.1. For every multiset S of two cycles, the Dutch windmill graph D(S) is not zonal.

Proof. Let S = {C,C ′} and let D(S) be the Dutch windmill graph constructed from the two cycles C and C ′ in S. Assume,
to the contrary, that D(S) is zonal. Then there exists a planar embedding G of D(S) having a zonal labeling `. The plane
graph G has three regions whose boundaries are C, C ′ and G. Since each of C and C ′ is the boundary of a region of G, it
follows that

∑
(`, C) =

∑
v∈V (C) `(v) = 0 and

∑
(`, C ′) =

∑
v∈V (C′) `(v) = 0. Let u be the vertex belonging to both C and C ′.

Then the value of the boundary G of the third region is
[∑

(`, C) +
∑

(`, C ′)
]
− `(u) = 0 + 0 − `(u) 6= 0 in Z3, which is a

contradiction.

Next, we show that for every multiset S of three or more cycles, the Dutch windmill graphD(S) is conditionally zonal. It
is convenient to introduce some additional notation. For p ≥ 2 graphsH1, H2, . . . ,Hp, let vi be the vertex ofHi for 1 ≤ i ≤ p.
Then H1 ? H2 ? · · · ? Hp denotes the plane graph constructed from H1, H2, . . . ,Hp by identifying the p vertices v1, v2, . . . , vp

and denoting the identified vertex by v. For example, if S4 = {C3, C3, C4, C6}, then D(S4) = C3 ? C3 ? C4 ? C6 shown in
Figure 6. The following elementary lemma will be useful to us.

Lemma 3.1. Let X be a nonempty set of vertices of a graph.

(1) For each i = 1, 2, there is a labeling `i : X → {1, 2} ⊆ Z3 of X such that
∑

(`i, X) = i in Z3.

(2) If |X| ≥ 2, then there is a labeling `0 : X → {1, 2} ⊆ Z3 of X such that
∑

(`0, X) = 0 in Z3.

Theorem 3.1. For every multiset S of three or more cycles, the Dutch windmill graph D(S) is conditionally zonal.

4
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Proof. Let S be a multiset of k ≥ 3 cycles. We consider two cases, according to whether k ≡ 1 (mod 3) or k 6≡ 1 (mod 3).
Case 1. k ≡ 1 (mod 3). First, we show that D(S) is zonal. Let G be the standard planar embedding of D(S) such that

the boundary of each region of G is either a cycle C ∈ S or the graph G. We show that the plane graph G is zonal. Let
u be the center of G, that is, degG u = 2k. Since every cycle C ∈ S is zonal, there is a zonal labeling `C : V (C) → {1, 2}
of C. By Observation 2.1, we may assume that `C(u) = 1 for every cycle C ∈ S. Since

∑
(`C , C) = 0 and `C(u) = 1 in Z3,

where C ∈ S, it follows that
∑

(`C , C − u) = 2 in Z3. Define a labeling ` : V (G)→ {1, 2} of G by `(v) = `C(v) if v belongs to
a cycle C ∈ S. Let B be the boundary of a region in G. If B = C ∈ S, then

∑
(`, C) =

∑
(`C , C) = 0 in Z3. Thus, we may

assume that B = G. Since k ≥ 4 and k ≡ 1 (mod 3), it follows that k = 3t+ 1 for some integer t ≥ 1. Hence,∑
(`, B) = 1 +

∑
C∈S

∑
(`C , C − u) = 1 + 2k = 1 + 2(3t+ 1) = 0 in Z3.

Therefore, ` is a zonal labeling of G and so D(S) is zonal.
Next, we show that D(S) is conditionally zonal. Let C1 and C2 be two cycles in S and let H be the planar embedding

of D(S) by placing the cycle C2 within the cycle C1 of D(S). This is illustrated in Figure 7. Thus, if B is the boundary of a
region inH, then eitherB = C ∈ S−{C1},B = C1?C2 (consisting ofC1 andC2 with common vertex u), orB = H−V (C2−u).
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Figure 7: The planar embedding H of D(S).

We claim that the plane graph H is not zonal, for suppose that H has a zonal labeling `. By Observation 2.1, we may
assume that `(u) = 1. This implies that (1)

∑
(`, C−u) = 2 in Z3 for each cycle C ∈ S−{C1}, (2)

∑
(`, C1−u)+

∑
(`, C2) = 0

and so
∑

(`, C1 − u) = 0, and (3) 1 +
∑
C∈S−{C2}

∑
(`, C − u) = 0. However, since∑

(`, C1 − u) = 0,

it follows that for the boundary B = H − V (C2 − u) of a region of H, we have∑
(`, B) = 1 +

∑
C∈S−{C2}

∑
(`C , C − u) = 1 + 2(k − 2) = 1 + 2(3t− 1) = 2 in Z3,

which is a contradiction. Thus, H is not zonal and so D(S) is conditionally zonal.
Case 2. k 6≡ 1 (mod 3). Let S = {Cn1

, Cn2
, . . . , Cnk

} be a set of k cycles of length ni for 1 ≤ i ≤ k. First, we show that
D(S) has a zonal planar embedding. We consider two subcases, according to whether k is odd or k is even.

Subcase 2.1. k ≥ 3 is odd. Define the planar embedding D̃(S) of D(S) such that Cni is placed inside Cni−1 for 2 ≤ i ≤ k.
This is illustrated in Figure 8. Thus, if B is the boundary of a region of D̃(S), then B is Cn1

, Cnk
, or Cni

? Cni+1
for

1 ≤ i ≤ k − 1. Let u be the center of D̃(S).
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Figure 8: A planar embedding D̃(S) of D(S) in Case 1.
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We show that D̃(S) is zonal. For 1 ≤ i ≤ k, let Qi = Cni − u be the path of order ni − 1 ≥ 2. Define a labeling
` : V (D̃(S))→ {1, 2} such that `(u) = 1 and

(a)
∑

(`,Qi) = 2 in Z3 for each odd integers i with 1 ≤ i ≤ k and

(b)
∑

(`,Qi) = 0 in Z3 for each even integer i with 2 ≤ i ≤ k − 1.

Such a labeling in (a) and (b) is guaranteed by Lemma 3.1. Let B be the boundary of a region of D̃(S). If B = Cni
for

i = 1, k, then
∑

(`, B) = `(u) +
∑

(`,Qi) = 1 + 2 = 0 in Z3. If B = Cni ? Cni+1 for 1 ≤ i ≤ k − 1, then
∑

(`, B) =

`(u) +
∑

(`,Qi) +
∑

(`,Qi+1) = 1 + 2 + 0 = 0 in Z3. Consequently, ` is a zonal labeling of D̃(S).
Subcase 2.2. k ≥ 6 is even. Let S0 = {Cn5

, Cn6
, . . . , Cnk

} be the subset of k − 4 cycles in S and let D̃(S0) be the planar
embedding ofD(S0) such that Cni+1

is placed inside Cni
for i = 5, 6, . . . , k−1. Thus, ifB is the boundary of a region of D̃(S0),

then B is Cn5 , Cnk
, or Cni ? Cni+1 for 5 ≤ i ≤ k − 1. Then D̃(S) = Cn1 ? Cn2 ? Cn3 ? Cn4 ? D̃(S0) is the planar embedding

obtained by identifying the center of D̃(S0) and a vertex in Cni for i = 1, 2, 3, 4. This identified vertex u is then the center
of D̃(S). This is illustrated in Figure 9. Thus, if B is the boundary of a region of D̃(S), then B = Cni

for i ∈ {1, 2, 3, 4, k},
or B = Cni

? Cni+1
for 5 ≤ i ≤ k − 1, or B = Cn1

? Cn2
? Cn3

? Cn4
? Cn5

where in this case B is the boundary of the exterior
region of D̃(S).
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Figure 9: A planar embedding D̃(S) of D(S) in Case 2.

We show that D̃(S) is zonal. For 1 ≤ i ≤ k, let Qi = Cni − u be the path of order ni − 1 ≥ 2. Define a labeling
` : V (D̃(S))→ {1, 2} such that `(u) = 1 and

(a)
∑

(`,Qi) = 2 in Z3 for 1 ≤ i ≤ 4 and for each even integer i with 6 ≤ i ≤ k and

(b)
∑

(`,Qi) = 0 in Z3 for each odd integer i with 5 ≤ i ≤ k − 1.

Again, such a labeling in (a) and (b) is guaranteed by Lemma 3.1. Let B be the boundary of a region of D̃(S). If B = Cni

for i ∈ {1, 2, 3, 4, k}, then
∑

(`, B) = `(u) +
∑

(`,Qi) = 1 + 2 = 0 in Z3. If B = Cni
? Cni+1

for 5 ≤ i ≤ k − 1, then∑
(`, B) = `(u) +

∑
(`,Qi) +

∑
(`,Qi+1) = 1 + 2 + 0 = 0 in Z3. If B = Cn1 ? Cn2 ? Cn3 ? Cn4 ? Cn5 , then

∑
(`, B) =

`(u) +
∑4
i=1

∑
(`,Qi) +

∑
(`,Q5) = 1 + 4 · 2 + 0 = 0 in Z3. Consequently, ` is a zonal labeling of D̃(S).

It remains to show that D(S) is conditionally zonal. Let G be the standard planar embedding of D(S) such that the
boundary of each region of G is either a cycle C ∈ S or the graph G. We show that the plane graph G is not zonal. Assume,
to the contrary, that there is a zonal labeling ` : V (G) → {1, 2} of G. We may assume that `(u) = 1 by Lemma 3.1. Since∑

(`, C) = 0 for each C ∈ S and `(u) = 1 in Z3, it follows that
∑

(`, C − u) = 2 in Z3. Let B = G be the boundary of the
exterior region of G, then

∑
(`, B) = 1 +

∑
C∈S

∑
(`, C − u) = 1 + 2k in Z3. Since k 6≡ 1 (mod 3), it follows that

∑
(`, B) 6= 0

in Z3, which is a contradiction. Therefore, ` is not a zonal labeling of G and so D(S) is conditionally zonal.

4. Irregular Dutch windmill graphs

In this and the next section, we study Dutch windmill graphs with an irregularity or regularity property (see [1] for a
discussion of irregularity in graphs). A Dutch windmill graph is irregular if no two cycles in the graph have the same
length. Thus, if S is a set of k ≥ 3 distinct cycles, then the Dutch windmill graph D(S) is irregular. By Theorem 3.1, for
every multiset S of three or more cycles, the graph D(S) is conditionally zonal. For example, if S = {C3, C4, C5, C6}, then
D(S), which is the standard plane embedding, is irregular and zonal. A zonal labeling of D(S) is shown in Figure 10.
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Figure 10: A zonal labeling of an irregular Dutch windmill plane graph.

There is a class of irregular Dutch windmill graphs none of which is absolutely zonal but having an arbitrarily large
number of distinct zonal planar embeddings all of which have a similar structure. First, we introduce some additional
definitions and notation and preliminary observations.

Let A = {C1, C2, . . . , Cp} be a set of p ≥ 2 cycles, let D(A) denote the planar embedding of the Dutch windmill graph
constructed from these p cycles in A by placing C1, C2, · · · , Cp−1 inside Cp. For example, if A = {C1, C2, C3, C4} is a set
of 4 cycles, then D(A) is shown in Figure 11, where the three cycles C1, C2, C3 are placed inside the cycle C4. Thus, the
boundary of a region in D(A) is either Ci for i = 1, 2, 3, 4 or D(A).
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Figure 11: A plane graph D(A) for A = {C1, C2, C3, C4}.

For a set S of p ≥ 4 cycles, let Π = {S1, S2, . . . , Sq} be a partition of S into q ≥ 2 subsets S1, S2, . . . , Sq. For 1 ≤ i ≤ q, let
D(Si) be the Dutch windmill plane graph with center ui. The plane graph D(Π) = D(S1)?D(S2)? · · ·?D(Sq) is constructed
from the q plane graphs D(S1), D(S2), . . ., D(Sq) by identifying their centers u1, u2, . . . , uq and denoting the identified
vertex by u. For example, let S = {C1, C2, . . . , C16} and let Π = {S1, S2, S3, S4} be a partition of S into four subsets, where
S1 = {C1, C2, C3, C4}, S2 = {C5, C6, C7, C8}, S3 = {C9, C10, C11, C12}, and S4 = {C13, C14, C15, C16}. ThenD(Π) is shown in
Figure 12. In this example, ifB is the boundary of a region ofD(Π), then eitherB = Ci for some Ci ∈ S−{C4, C8, C12, C16},
or B = D(Si) for 1 ≤ i ≤ 4, or B = C4 ? C8 ? C12 ? C16 having center u where the region is the exterior region of D(S).
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Figure 12: A planar embedding of a graph.

We now present the following lemma.

Lemma 4.1. Let S be a set with 4k elements for some positive integer k. The number of partitions of S into four k-element
subsets is

4∏
i=1

(
ik − 1

k − 1

)
=

(
4k − 1

k − 1

)(
3k − 1

k − 1

)(
2k − 1

k − 1

)
. (1)

7
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Proof. For k = 1, the expression in (1) is 1, which is correct since there is only one way to partition a set with 4 elements
into four subsets. Thus, we may assume that k ≥ 2. Suppose that S = {a1, a2, . . . , a4k}. In any partition of S into four
k-element subsets, the element a1 must belong to a k-element subset of S in this partition. The number of ways to choose
a k-element subset of S containing a1 is

(
4k−1
k−1

)
. Once such a k-element subset S1 of S in the partition is given, let ai be

an element of S − S1. The number of ways to choose a k-element subset of S − S1 containing ai is
(

3k−1
k−1

)
. Once two such

disjoint k-element subsets S1 and S2 of S in the partition are given, let aj be an element of S − (S1 ∪ S2). The number
of ways to chose a k-element subset of S − (S1 ∪ S2) containing aj is

(
2k−1
k−1

)
. Once three such pairwise disjoint k-element

subsets S1, S2, and S3 of S in the partition are given, only k elements remain in S − (S1 ∪ S2 ∪ S3), which constitutes the
fourth k-element subset of S in the partition. Therefore, the total number of such partitions is

(
4k−1
k−1

)(
3k−1
k−1

)(
2k−1
k−1

)
.

For 1 ≤ i ≤ 4k, let ni = 10i + 1. If k = 4, then n1 = 11, n2 = 101, n3 = 1001, n4 = 10001, and n16 = 10 · · · 01 where there
are fifteen 0s between the two 1s. In general, for 1 ≤ i ≤ 16, the first and last digits of ni are 1 and the remaining i − 1

digits of ni are 0 (where there is a total i− 1 0s between the two 1s in ni).

Theorem 4.1. There is an irregular Dutch windmill graph that has an arbitrarily large number of distinct zonal planar
embeddings.

Proof. Let k ≥ 4 be an integer such that k ≡ 1 (mod 3) and let Π(k) =
∏4
i=1

(
ik−1
k−1

)
. We show that there is an irregular

Dutch windmill graph having at least Π(k) distinct zonal planar embeddings. For 1 ≤ i ≤ 4k, let ni = 10i + 1 and let
S = {Cn1

, Cn2
, . . . , Cn4k

} be the set of 4k cycles of length ni for 1 ≤ i ≤ 4k. By Lemma 4.1, the number of partitions of S
into four k-element subsets is Π(k). For 1 ≤ j ≤ Π(k), let Πj be a partition of S into four k-element subsets and so D(Πj) is
a planar embedding of the Dutch windmill graph D(S). We show that D(Π1), D(Π2), . . . , D(ΠΠ(k)) are Π(k) distinct zonal
planar embeddings of D(S).

First, we make an observation concerning the structural property of D(Πj) where 1 ≤ j ≤ Π(k). For example, let
Π1 = {S1, S2, S3, S4} be the partition of S into k-element subsets where

S1 = {Cn1
, Cn2

, . . . Cnk
}, S2 = {Cnk+1

, Cnk+2
, . . . , Cn2k

},
S3 = {Cn2k+1

, Cn2k+2
, . . . , Cn3k

}, and S4 = {Cn3k+1
, Cn3k+2

, . . . , Cn4k
}.

If k = 4 and Ci = Cni for 1 ≤ i ≤ 4, then D(Π1) is shown in Figure 12. For the plane graph D(Π1), there are 4k + 1

regions R1, R2, . . . , R4k+1 of D(Π1), where

• the k regions R1, R2, . . . , Rk have the boundaries Cn1
, Cn2

, . . . , Cnk−1
and D(S1), respectively;

• the k regions Rk+1, Rk+2, . . . , R2k have the boundaries Cnk+1
, Cnk+2

, . . . , Cn2k−1
and D(S2), respectively;

• the k regions R2k+1, R2k+2, . . . , R3k have boundaries Cn2k+1
, Cn2k+2

, . . . , Cn3k−1
and D(S3), respectively;

• the k regions R3k+1, R3k+2, . . . , R4k have the boundaries Cn3k+1
, Cn3k+2

, . . . , Cn4k−1
and D(S4), respectively;

• the exterior region R4k+1 has the boundary Cnk
? Cn2k

? Cn3k
? Cn4k

.

In particular, the boundary of Rk is D(S1) which has order b1,k = 10n1 + 10n2 + · · · + 10nk + 1, the boundary of R2k is
D(S2) which has order b1,2k = 10nk+1 + 10nk+2 + · · · + 10n2k + 1, the boundary of R3k is D(S3) which has order b1,3k =

10n2k+1 +10n2k+2 + · · ·+10n3k +1, and the boundary of R4k isD(S4) which has order b1,4k = 10n3k+1 +10n3k+2 + · · ·+10n4k +1.
First, we show that the planar embeddings D(Π1), D(Π2), . . ., D(ΠΠ(k)) of D(S) are distinct. Let i1, i2 ∈ {1, 2, . . . ,Π(k)}

such that i1 6= i2. From the way in which the plane graphs D(Πj) where 1 ≤ j ≤ Π(k) are constructed, it follows that

{bi1,k, bi1,2k, bi1,3k, bi1,4k} 6= {bi2,k, bi2,2k, bi2,3k, bi2,4k}.

Hence, D(Πi1) and D(Πi2) are distinct. Consequently, D(Π1), D(Π2), . . ., D(ΠΠ(k)) are distinct planar embeddings of D(S).
Next, we show that each D(Πi) is zonal for 1 ≤ j ≤ Π(k). It suffices to show that D(Π1) is zonal since the argument for

showing that D(Πj) is zonal for 2 ≤ j ≤ Π(k) is similar. By Theorem 3.1, the plane graph D(Si) is zonal for i = 1, 2, 3, 4 and
so there is a zonal labeling `i of D(Si). Let u be the center of D(Π1). By Observation 2.1, we may assume that `i(u) = 1

for 1 ≤ i ≤ 4. Define a labeling ` of D(Π1) by `(v) = `i(v) if v belongs to D(Si) for 1 ≤ i ≤ 4. We show that ` is a zonal
labeling of D(Π1). Let B be the boundary of a region R of D(Π1). If R is an interior region of D(Π1), then R is a region
of D(Si) for some integer i with 1 ≤ i ≤ 4 and so

∑
(`, B) =

∑
(`i, B) = 0. Thus, we may assume that R is the exterior

region of D(Π1) and so B = Cnk
? Cn2k

? Cn3k
? Cn4k

whose center is u. Since
∑

(`i, Cnik
) = 0 in Z3 (that is, the value of

the boundary of the exterior region of D(Si) is 0) and `i(u) = 1 for 1 ≤ i ≤ 4, it follows that
∑

(`i, Cnik
− u) = 2 in Z3.

8
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Hence,
∑

(`, B) = 1 +
∑4
i=1

∑
(`i, Cnik

− u) = 1 + 4 · 2 = 0 in Z3. Therefore, D(Π1) is zonal. Consequently, D(Π1), D(Π2),
. . ., D(ΠΠ(k)) are distinct zonal planar embeddings of D(S).

Let N be an arbitrarily large positive integer. Since limk→∞Π(k) = ∞, it follows that there is an integer k0 such that
k0 ≡ 1 (mod 3) and Π(k0) > N . Let S = {Cn1

, Cn2
, . . . , Cn4k0

}. Then the Dutch windmill graph D(S) has at least Π(k0) > N

distinct zonal planar embeddings.

For an integer k ≥ 4 and k ≡ 1 (mod 3), the irregular Dutch windmill graph used to verify Theorem 4.1 has or-
der (104k+1 − 1)/9. An irregular Dutch windmill graph of smaller order can be used to verify Theorem 4.1 by changing the
base integer of each integer ni (1 ≤ i ≤ 4k) from 10 to a smaller base. For example, if we let ni = 2i + 1 (using base 2), the
same proof applies and the order of the irregular Dutch windmill graph is 24k+1 − 1.

5. A special class of Dutch windmill graphs

In the proof of Theorem 4.1, no two cycles in the irregular Dutch windmill graph have the same length and we were able
to obtain an arbitrarily large number of planar embeddings of the graph such that the structure of these embeddings are
similar. If the cycles of a Dutch windmill graph all have the same length (and is consequently a regular Dutch windmill
graph), then this proof does not provide the desired result. In this case, however, by varying the embedding of the Dutch
windmill graph, the same conclusion can be obtained.

Before presenting the next result, we construct a sequence F1, F2, F3, . . . of plane graphs recursively as follows. The
plane graph F1 = D4

3 consists of a triangle T1 within which are three triangles, as indicated in Figure 13. The vertex of
degree 8 in F1 is the center of F1. The plane graph F2 is constructed from three copies of F1 and a triangle T2 by placing
the three copies of F1 inside T2 and identifying their centers with a vertex of T2. Thus, the identified vertex is the center
of F2 and has degree 26 in F2, as indicated in Figure 13. For k ≥ 3, the plane graph Fk is constructed by placing three
copies of Fk−1 inside a triangle Tk and identifying their centers with a vertex of Tk. The plane graph F3 is shown in
Figure 13 whose center has degree 80. Observe that the boundary of every region of Fk either has order 3 or 9 for all k ≥ 1.
Therefore, if every vertex of Fk were to be labeled 1 in Z3, then each region would have the label 0 in Z3. The region of Fk
whose boundary is the triangle Tk is referred to as the exterior region of Fk and each of the other regions is referred to as
an interior region of Fk.

T3

........
....................................
.

........
....................................
. ........

....................................
.

........
....................................
.........

....................................
.

........
....................................
.........

....................................
.

........
....................................
. ........

....................................
. ........

....................................
. ........

....................................
.

t t t
..........................................................................................................................

........................................................................................................................................................................................................

.......................................................................................................................................................................................................

.................................................................................................................................

.........................................................................................................................................

........................................................................................................................................

.....................................................................................................................................

..............................................................................................................................

...........
. ..............

................................................................................................................................................................................................

...........................................................................................................................................................................................

..............................................................................................................................................................................................

...........................................................................................................................................................................................

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

..........................
.......
..... ..........................

.......
..... ..........................

.......
.....

F1 :

F1 F1 F1 F2 F2 F2

F2 : F3 :

T1 T2

........
....................................
.

Figure 13: The plane graphs F1 = D4
3, F2 = D13

3 , F3 = D40
3 .

For a positive integer k, let tk denote the number of triangles in Fk. Then

tk = 1 + 3 + 32 + 33 + · · ·+ 3k =
3k+1 − 1

2
.

For example, t1 = 4, t2 = 13, and t3 = 40. For k ≥ 1, the plane graph Fk is a specific planar embedding of the Dutch
windmill graph Dtk

3 of order 2tk + 1 = 3k+1. Furthermore, Fk is a planar embedding of the friendship graph (tkK2) ∨K1.
The graph Fk therefore has one vertex of degree 2tk and 2tk vertices of degree 2.

Proposition 5.1. For a positive integer k, the plane graph Fk is zonal.

Proof. For k ≥ 1, define a labeling `k : V (Fk) → {1, 2} by `k(x) = 1 for every vertex x of Fk. Since the boundary B of a
region of Fk has order 3 or 9, it follows that

∑
(`, B) = 0 in Z3.

For a positive integer k, the integer π(k) is defined as

π(k) = t1t2 · · · tk =

k∏
i=1

(
3i+1 − 1

2

)
=

1

2k

k∏
i=1

(3i+1 − 1).

9
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Thus, π(1) = t1 = 4, π(2) = t1t2 = 4 · 13 = 52, and π(3) = t1t2t3 = 4 · 13 · 40 = 2080. Since 3i+1 ≡ 0 (mod 3), where 1 ≤ i ≤ k,
it follows that 3i+1 − 1 ≡ 2 (mod 3) and so

3i+1 − 1

2
≡ 1 (mod 3).

Therefore, π(k) ≡ 1 (mod 3) and 2π(k) + 1 ≡ 0 (mod 3) for every positive integer k. By Theorem 3.1, the Dutch windmill
graph Dπ(k)

3 is zonal. For 1 ≤ i ≤ k, let
si =

π(k)

ti
.

Then si ≡ 1 (mod 3) for 1 ≤ i ≤ k and so 2si + 1 ≡ 0 (mod 3). Since t1 < t2 < . . . < tk for a fixed positive integer k, it follows
that s1 > s2 > . . . > sk.

For a Dutch windmill plane graphH, letH1, H2, . . . ,Hp be p copies ofH and let vi be the center ofHi for 1 ≤ i ≤ p. Then
p ? H denotes the Dutch windmill plane graph constructed from H1, H2, . . . ,Hp by identifying the p vertices v1, v2, . . . , vp

and denoting the identified vertex by v. For example, let F2 be the planar embedding of the Dutch windmill graph D13
3

shown in Figure 13 and p = 4, then the plane graph 4 ? F2 is shown in Figure 14. Thus, 4 ? F2 is a planar embedding of the
Dutch windmill graph D52

3 .

F2

........
....................................
.

t

........
....................................
. ........

....................................
.

........
....................................
.

........
....................................
.

........
....................................
.

........
....................................
.

................................................................................................................................................................................................

...........................................................................................................................................................................................

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqq

...........................................................................................................................................................................................

................................................................................................................................................................................................

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..........

............................................................................................................................................................................................................
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..........

............................................................................................................................................................................................................ 

F1 F1 F1

F1 F1 F1

F1

F1

F1

F1

F1

F1

F2

F2

F2

........
....................................
.

Figure 14: The plane graph 4 ? F2.

Theorem 5.1. There is a regular Dutch windmill graph that has an arbitrarily large number of distinct zonal planar
embeddings.

Proof. Let k be a positive integer. We show that the Dutch windmill graph D
π(k)
3 has at least k distinct zonal planar

embeddings. For k = 1, the zonal planar embedding of D4
3 = D

π(1)
3 shown in Figure 15 is zonal. Hence, we may assume

that k ≥ 2. Here we show that there are k distinct zonal planar embeddings of Dπ(k)
3 . Let Gk,1 be the planar embedding

of Dπ(k)
3 such that the boundary of each interior region is a 3-cycle and the boundary of the exterior region is Dπ(k)

3 . Since
D
π(k)
3 has order 2π(k) + 1 ≡ 0 (mod 3), the labeling that assigns the label 1 in Z3 to each vertex of Gk,1 is a zonal labeling.

For 2 ≤ i ≤ k, let si = π(k)
ti

and let Gk,i = si−1 ? Fi−1 be the planar embedding of Dπ(k)
3 . We show that Gk,1, Gk,2, . . . , Gk,k

are k distinct zonal planar embeddings ofDπ(k)
3 . Observe that if B is the boundary of a region ofGk,i, where 2 ≤ i ≤ k, then

the order of B is 3, 9 or 2si−1 + 1, where 2si−1 + 1 ≡ 0 (mod 3). Since π(k) > s1 > s2 > · · · > sk−1, these planar embeddings
are distinct. By assigning the label 1 in Z3 to each vertex of Gk,i for 2 ≤ i ≤ k, we see that the plane graph Gk,i is zonal.

or
1

11

1

1

1

1

1 1

1

1 1

1

1

1 1

1

1

Figure 15: The zonal plane graph D4
3.

Let N be an arbitrary positive integer. Since limk→∞ π(k) = ∞, it follows that there is an integer k0 such that k0 ≡ 1

(mod 3) and π(k0) > N . Then the Dutch windmill graph D
π(k0)
3 has at least π(k0) > N distinct distinct zonal planar

embeddings.
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We illustrate the proof of Theorem 5.1 for k = 2, 3.

? If k = 2, then π(2) = 52 and t1 = 4. Thus, s1 = 52/4 = 13. LetG2,1 be the planar embedding ofD52
3 , where the boundary

of each interior region is a 3-cycle and the boundary of the exterior region isD52
3 and let G2,2 = s1 ?F1 = 13?F1. Here,

G2,1 and G2,2 are distinct planar embeddings of D52
3 .

? If k = 3, then π(3) = 2080, t1 = 4, and t2 = 13. Thus, s1 = 2080/4 = 520 and s2 = π(3)/t2 = 2080/13 = 160. Let G3,1

be the planar embedding of D2080
3 where the boundary of each interior region is a 3-cycle and the boundary of the

exterior region is D2080
3 , let G3,2 = s1 ? F1 = 520 ? F1, and let G3,3 = s2 ? F2 = 160 ? F2. Here, G3,1, G3,2, and G3,3 are

distinct planar embeddings of D2080
3 .

As we saw in the proof of Theorem 5.1, for a given positive integer k, the graph G = D
π(k)
3 has k distinct zonal planar

embeddings. Since the graph G has order 2π(k) + 1, which is large for a large positive integer k, a question here is whether
there is a graph of smaller order with this property. We now discuss this question.

For a positive integer k, let µ(k) = lcm{t1, t2, . . . , tk} be the least common multiple of t1, t2, . . ., tk. Since ti = 3i+1−1
2 ≡ 1

(mod 3) for 1 ≤ i ≤ k, it follows that 3 - ti and so 3 - µ(k). Thus, µ(k) ≡ 1 (mod 3) or µ(k) ≡ 2 (mod 3). If µ(k) ≡ 2

(mod 3), then 2µ(k) ≡ 1 (mod 3). Hence, µ(k) ≡ 1 (mod 3) or 2µ(k) ≡ 1 (mod 3). Consequently, either µ(k)
ti
≡ 1 (mod 3) for

i ∈ {1, 2, . . . , k} or 2µ(k)
ti
≡ 1 (mod 3) for i ∈ {1, 2, . . . , k}. If k is sufficiently large, then π(k) is substantially larger than µ(k)

or 2µ(k). Applying the argument in the proof of Theorem 5.1, we have the following result.

Proposition 5.2. Let k be a positive integer.

? If µ(k) ≡ 1 (mod 3), then the zonal Dutch windmill graph Dµ(k)
3 is conditionally zonal and has at least k distinct zonal

planar embeddings.

? If µ(k) ≡ 2 (mod 3), then the zonal Dutch windmill graphD2µ(k)
3 is conditionally zonal and has at least k distinct zonal

planar embeddings.

We now illustrate Proposition 5.2 for integers k with 1 ≤ k ≤ 12. In this case, expressing each integer tk and µ(k) as a
product of primes, we have the following, where each underlined integer is congruent to 2 modulo 3.

t1 = 4 = 22 µ(1) = 22

t2 = 13 µ(2) = 22 · 13
t3 = 40 = 23 · 5 µ(3) = 23 · 5 · 13
t4 = 121 = 112 µ(4) = 23 · 5 · 112 · 13
t5 = 364 = 22 · 7 · 13 µ(5) = 23 · 5 · 7 · 112 · 13
t6 = 733, µ(6) = 23 · 5 · 7 · 112 · 13 · 733
t7 = 2200 = 23 · 52 · 11 µ(7) = 23 · 52 · 7 · 112 · 13 · 733

t8 = 6601 = 7 · 23 · 41 µ(8) = 23 · 52 · 7 · 112 · 13 · 23 · 41 · 733

t9 = 19, 804 = 22 · 4951 µ(9) = 23 · 52 · 7 · 112 · 13 · 23 · 41 · 733 · 4951

t10 = 59, 413 = 19 · 53 · 59 µ(10) = 23 · 52 · 7 · 112 · 13 · 19 · 23 · 41 · 53 · 59 · 733 · 4951

t11 = 178, 240 = 26 · 5 · 557 µ(11) = 26 · 52 · 7 · 112 · 13 · 19 · 23 · 41 · 53 · 59 · ·557 · 733 · 4951

t12 = 534, 721 = 11 · 48611 µ(12) = 26 · 52 · 7 · 112 · 13 · 19 · 23 · 41 · 53 · 59 · ·557 · 733 · 4951 · 48611

Hence, µ(k) ≡ 1 (mod 3) for 1 ≤ k ≤ 6, while µ(k) ≡ 2 (mod 3) for 7 ≤ k ≤ 11 and µ(12) ≡ 1 (mod 3). Therefore, if
1 ≤ k ≤ 6 or k = 12, then the zonal Dutch windmill graph D

µ(k)
3 is conditionally zonal and has at least k distinct zonal

planar embeddings; while if 7 ≤ k ≤ 11, then the zonal Dutch windmill graph D
2µ(k)
3 is conditionally zonal and has at

least k distinct zonal planar embeddings.
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