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Abstract

The generating function approach is utilized to establish several convolution formulae between Chebyshev polynomials
and other well-known numbers and polynomials; for example, numbers/polynomials of Bernoulli/Euler and Fibonacci/Lucas
numbers.
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1. Introduction and motivation

The Chebyshev polynomials of the first kind and the second kind form important classes of special functions that have
wide applications in pure mathematics and applied sciences. They are defined by

Tn(cos θ) = cos(nθ) and Un(cos θ) =
sin(n+ 1)θ

sin θ
,

and admit several useful properties (for example, see [17]):

• Recurrence relations (n ≥ 2):

Tn(y) = 2yTn−1(y)− Tn−2(y),

Un(y) = 2yUn−1(y)− Un−2(y).

• Initial conditions:

T0(y) = 1, T1(y) = y,

U0(y) = 1, U1(y) = 2y.

• Ordinary generating functions:

1− ηy
1− 2ηy + η2

=

∞∑
n=0

Tn(y)ηn, (1)

1

1− 2ηy + η2
=

∞∑
n=0

Un(y)ηn. (2)

• Binet formulae: 
Tn(y) =

αn + βn

2

Un(y) =
αn+1 − βn+1

α− β

 , α, β = y ±
√
y2 − 1. (3)
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• Exponential generating functions:

eηα + eηβ

2
=

∞∑
n=0

ηn

n!
Tn(y), (4)

αeηα − βeηβ

2
√
y2 − 1

=

∞∑
n=0

ηn

n!
Un(y). (5)

• Fibonacci and Lucas numbers:
Un( i

2 ) = Fn+1i
n and Tn( i

2 ) =
Ln
2
in.

The reader can find, in the recent papers [1,4,13,16], more formulae about trigonometric expressions, generating functions,
and power sums as well as convolutions.

By means of the generating function approach (see [20]), we investigate convolution sums involving Chebyshev polyno-
mials. In the next section, classical convolutions are examined through ordinary generating functions, that lead to several
convolution identities including Catalan numbers, harmonic numbers and Fibonacci/Lucas numbers. Then in Section
3, by employing the exponential generating functions, we establish further convolution formulae of binomial type con-
cerning numbers/polynomials of Bernoulli/Euler, Hermite polynomials, as well as Fibonacci/Lucas numbers. Among the
identities presented in this paper, the following two unusual convolution formulae about Bernoulli numbers proposed by
Frontczak [11] are contained as very particular cases:

n∑
k=0

(
n

k

)
BkBn−kFkλLnλ−kλ =

(1− n)BnFnλ, n is even;

−nBn−1Fnλ, n is odd;
(6)

n∑
k=0

(
n

k

)
B′kB

′
n−kFkλLnλ−kλ =

(1− n)BnFnλ, n is even;

0, n is odd;
(7)

where B′n = Bn(21−n − 1) and λ, n ∈ N with λ ≥ 1 and n ≥ 3.

2. Ordinary generating functions

For an arbitrary sequence {Φn}, suppose that its ordinary generating function is given by the formal power series φ(η).
Denote by [ηn]φ(η) the coefficient of ηn in φ(η). We have the following relations:

φ(η) =

∞∑
n=0

Φnη
n if and only if Φn = [ηn]φ(η) for all n ∈ N0.

The main result of this section is the following theorem.

Theorem 2.1 (λ ∈ N). Let Tk(y) and Uk(y) be Chebyshev polynomials. Then for an arbitrary sequence {Φk} (of numbers or
polynomials), the following universal convolution formula holds

n∑
k=0

ΦkΦn−kUkλ−1(y)Tnλ−kλ(y) =
Unλ−1(y)

2

n∑
k=0

ΦkΦn−k.

Proof. For a positive integer λ, rewrite the formal power series φ(η) by

φ(ηαλ) =

∞∑
n=0

Φn(ηαλ)n, (8)

φ(ηβλ) =

∞∑
n=0

Φn(ηβλ)n. (9)

Now, multiplying (8) + (9) by (8)− (9) and then extracting the coefficient of ηn, we get the equality
n∑
k=0

ΦkΦn−k(αkλ − βkλ)(αnλ−kλ + βnλ−kλ) = [ηn]
{
φ2(ηαλ)− φ2(ηβλ)

}
. (10)
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Because the right member of (10) is substantially equal to (αnλ − βnλ) times the coefficient φ2(η), we have the equality
n∑
k=0

ΦkΦn−k(αkλ − βkλ)(αnλ−kλ + βnλ−kλ) = (αnλ − βnλ)[ηn]φ2(η). (11)

Dividing the (11) by α−β and then writing in terms of Chebyshev polynomials, we confirm the convolution formula stated
in Theorem 2.1.

It should be noted that U−1(y) = 0 in Theorem 2.1, which can be obtained from the Binet formulae of Chebyshev
polynomials. Letting y = i

2 in Theorem 2.1, we get the following convolution formula involving Fibonacci and Lucas
numbers.

Corollary 2.1 (λ ∈ N). For an arbitrary sequence {Φk} (of numbers or polynomials), we have the convolution formula
n∑
k=0

ΦkΦn−kFkλLnλ−kλ = Fnλ

n∑
k=0

ΦkΦn−k.

By choosing properly the sequence {Φk} in Theorem 2.1 and Corollary 2.1 so that the convolution sums on the right
hand sides can be evaluated in closed form. In this case, we would find closed expressions for the convolution sums on the
left hand sides. Some interesting identities are exhibited below.

Catalan numbers
Recall the Catalan numbers (see [12, §5.4])

Cn =
1

n+ 1

(
2n

n

)
that are generated by the function

1−
√

1− 4η

2η
=

∞∑
n=0

Cnη
n

and admit the following convolution formula
n∑
k=0

CkCn−k = Cn+1.

By specifying Φn = Cn in Theorem 2.1 and Corollary 2.1, we derive the two identities as in the following proposition.

Proposition 2.1 (n ∈ N0).

(a)
n∑
k=0

CkCn−kUkλ−1(y)Tnλ−kλ(y) =
Unλ−1(y)Cn+1

2
,

(b)
n∑
k=0

CkCn−kFkλLnλ−kλ = FnλCn+1.

Harmonic numbers
The harmonic numbers are defined by (see [12, §6.3])

Hn =

n∑
k=1

1

k
and H〈2〉

n =

n∑
k=1

1

k2
.

Applying the generating function (see [2,5])
∞∑
n=0

Hnη
n =

ln(1− η)

η − 1
,

we can express the convolution as
n∑
k=0

HkHn−k = [ηn]
ln2(1− η)

(1− η)2
.

By means of the MacLaurin series

1

(1− η)2
=

∞∑
`=0

(`+ 1)η` for ln2(1− η) =

∞∑
i,j=1

ηi+j

ij
,
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the rightmost double sum can be reformulated, under i+ j = k, as

∞∑
k=2

ηk
k−1∑
i=1

1

i(k − i)
=

∞∑
k=2

ηk

k

k−1∑
i=1

{
1

i
+

1

k − i

}
= 2

∞∑
k=2

Hk−1

k
ηk.

Therefore we get the equality
n∑
k=0

HkHn−k = 2

n∑
k=2

1 + n− k
k

Hk−1 = 2(1 + n)

n∑
k=2

Hk−1

k
− 2

n∑
k=2

Hk−1.

Evaluating the above two sums further
n∑
k=2

Hk−1

k
=

∑
1≤i<k≤n

1

ik
=

1

2

{ n∑
k=1

1

k

}2

− 1

2

n∑
k=1

1

k2
=
H2
n −H〈2〉

n

2
,

n∑
k=2

Hk−1 =

n∑
k=2

k−1∑
i=1

1

i
=

n∑
i=1

1

i

n∑
k=i+1

1 =

n∑
i=1

n− i
i

= nHn − n;

we find the following closed formula
n∑
k=0

HkHn−k = (n+ 1)
{
H2
n −H〈2〉

n

}
− 2nHn + 2n.

In Theorem 2.1 and Corollary 2.1, letting Φn = Hn yields immediately the following two convolution identities.

Proposition 2.2 (n ∈ N0).

(a)
n∑
k=0

HkHn−kUkλ−1(y)Tnλ−kλ(y) =
Unλ−1(y)

2

{
(n+ 1)

(
H2
n −H〈2〉

n

)
− 2nHn + 2n

}
,

(b)
n∑
k=0

HkHn−kFkλLnλ−kλ = Fnλ

{
(n+ 1)

(
H2
n −H〈2〉

n

)
− 2nHn + 2n

}
.

Chebyshev polynomials
For the Chebyshev polynomials defined in (1) and (2), by manipulating their generating functions

2(1− xη)2

(1− 2xη + η2)2
=

1

1− 2xη + η2
+ (1 + ηDη)

1− xη
1− 2xη + η2

,

2(1− x2)

(1− 2xη + η2)2
=

1

1− 2xη + η2
+ (1− 2x+ η)Dη

1− xη
1− 2xη + η2

;

and then making use of the recurrence relation

Tn+1(x) = 2xTn(x)− Tn−1(x)

we can evaluate, in closed form, the following two convolutions
n∑
k=0

Tk(x)Tn−k(x) =
Un(x) + (n+ 1)Tn(x)

2
,

n∑
k=0

Uk(x)Un−k(x) =
Un(x)− (n+ 1)Tn+2(x)

2(1− x2)
.

Now, specializing Φn = Tn(x) and Φn = Un(x) in Theorem 2.1 and Corollary 2.1, we establish two pairs of convolution
identities below.

Proposition 2.3 (n ∈ N0).

(a)
n∑
k=0

Tk(x)Tn−k(x)Ukλ−1(y)Tnλ−kλ(y) =
Unλ−1(y)

{
Un(x) + (n+ 1)Tn(x)

}
4

,
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(b)
n∑
k=0

Uk(x)Un−k(x)Ukλ−1(y)Tnλ−kλ(y) =
Unλ−1(y)

{
Un(x)− (n+ 1)Tn+2(x)

}
4(1− x2)

;

(c)
n∑
k=0

Tk(x)Tn−k(x)FkλLnλ−kλ =
Fnλ

{
Un(x) + (n+ 1)Tn(x)

}
2

,

(d)
n∑
k=0

Uk(x)Un−k(x)FkλLnλ−kλ =
Fnλ

{
Un(x)− (n+ 1)Tn+2(x)

}
2(1− x2)

.

Fibonacci numbers and Lucas numbers
According to the convolution formulae (see [14])

n∑
k=0

FkFn−k =
(n+ 1)Ln − 2Fn+1

5
,

n∑
k=0

LkLn−k = (n+ 1)Ln + 2Fn+1;

we get, by putting Φn = Fn and Φn = Ln in Theorem 2.1 and Corollary 2.1, two pairs of identities as in the following
proposition.

Proposition 2.4 (n ∈ N0).

(a)
n∑
k=0

FkFn−kUkλ−1(y)Tnλ−kλ(y) =
Unλ−1(y)

10

{
(n+ 1)Ln − 2Fn+1

}
,

(b)
n∑
k=0

LkLn−kUkλ−1(y)Tnλ−kλ(y) =
Unλ−1(y)

2

{
(n+ 1)Ln + 2Fn+1

}
,

(c)
n∑
k=0

FkFn−kFkλLnλ−kλ =
Fnλ

5

{
(n+ 1)Ln − 2Fn+1

}
,

(d)
n∑
k=0

LkLn−kFkλLnλ−kλ = Fnλ

{
(n+ 1)Ln + 2Fn+1

}
.

We remark that these four identities can also be obtained as consequences of Proposition 2.3 under x = i
2 .

3. Exponential generating functions

The convolution identities produced in the previous section admit binomial convolution counterparts. This can be fulfilled
by employing exponential generating functions. Suppose that {Ψn} is a sequence whose exponential generating function
is the formal power series ψ(η). Then there are similar relations:

ψ(η) =

∞∑
n=0

Ψn

n!
ηn if and only if Ψn = n![ηn]ψ(η) for all n ∈ N0.

Now performing the substitutions Φk → Ψk/k! in Theorem 2.1 and then making some routine simplification, we deduce
the following binomial convolution formula.

Theorem 3.1 (λ ∈ N). Let Tk(y) and Uk(y) be Chebyshev polynomials. Then for an arbitrary sequence {Ψk} (of numbers or
polynomials), the following universal convolution formula holds

n∑
k=0

(
n

k

)
ΨkΨn−kUkλ−1(y)Tnλ−kλ(y) =

Unλ−1(y)

2

n∑
k=0

(
n

k

)
ΨkΨn−k.

Analogously, letting y = i
2 in the above theorem yields the formula below about Fibonacci and Lucas numbers.

Corollary 3.1 (λ ∈ N). For an arbitrary sequence {Ψk} (of numbers or polynomials), we have the following convolution
formula

n∑
k=0

(
n

k

)
ΨkΨn−kFkλLnλ−kλ = Fnλ

n∑
k=0

(
n

k

)
ΨkΨn−k.

As applications of Theorem 3.1 and Corollary 3.1 to convolution identities, we show five examples by specifying sequence
Ψn with known polynomial and number sequences.
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Bernoulli polynomials and numbers
Bernoulli polynomials and numbers are defined by (see [6] and [9, §1.14])

ηexη

eη − 1
=

∞∑
n=0

ηn

n!
Bn(x) and η

eη − 1
=

∞∑
n=0

ηn

n!
Bn.

By applying the following known convolution formulae (see [3,8] and [10, §24.14(i)])
n∑
k=0

(
n

k

)
Bk(x)Bn−k(y) = (1− n)Bn(x+ y) + n(x+ y − 1)Bn−1(x+ y),

n∑
k=0

(
n

k

)
BkBn−k = (1− n)Bn − nBn−1;

and then specifying Ψn = Bn(x) and Ψn = Bn in Theorem 3.1 and Corollary 3.1, we derive two pairs of identities as in the
proposition below.

Proposition 3.1 (n ∈ N0).

(a)
n∑
k=0

(
n

k

)
Bk(x)Bn−k(x)Ukλ−1(y)Tnλ−kλ(y) =

Unλ−1(y)

2

{
(1− n)Bn(2x) + n(2x− 1)Bn−1(2x)

}
,

(b)
n∑
k=0

(
n

k

)
BkBn−kUkλ−1(y)Tnλ−kλ(y) =

Unλ−1(y)

2

{
(1− n)Bn − nBn−1

}
,

(c)
n∑
k=0

(
n

k

)
Bk(x)Bn−k(x)FkλLnλ−kλ = Fnλ

{
(1− n)Bn(2x) + n(2x− 1)Bn−1(2x)

}
,

(d)
n∑
k=0

(
n

k

)
BkBn−kFkλLnλ−kλ = Fnλ

{
(1− n)Bn − nBn−1

}
.

In particular, the case x = 0 of identity (c) (equivalently, the case y = i
2 of identity (b)) recovers the identity (6) proposed

by Frontczek [11].
Alternatively, letting x = 1

2 in the first identity (a) of Proposition 3.1 and keeping in mind that Bn(1) = (−1)nBn, we
get the following interesting formula.

Corollary 3.2 (n ∈ N0).
n∑
k=0

(
n

k

)
Bk( 1

2 )Bn−k( 1
2 )Ukλ−1(y)Tnλ−kλ(y) = (−1)n

1− n
2

BnUnλ−1(y).

Taking into account the following further fact

Bn( 1
2 ) = B′n = (21−n − 1)Bn

we can rewrite the last identity as
n∑
k=0

(
n

k

)
B′kB

′
n−kUkλ−1(y)Tnλ−kλ(y) = (−1)n

1− n
2

BnUnλ−1(y).

Finally by letting y = i
2 , we recover another formula (7) due to Frontczek [11].

Euler polynomials and numbers
Euler polynomials and numbers have the following generating functions (see [9, §1.14] and [7,19])

2exη

1 + eη
=

∞∑
n=0

ηn

n!
En(x) and 2eη

1 + e2η
=

∞∑
n=0

ηn

n!
En.
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By letting Ψn = En(x) and Ψn = En Theorem 3.1 and Corollary 3.1, and then appealing to the convolution formulae
(see [8] and [10, §24.14(i)])

n∑
k=0

(
n

k

)
Ek(x)En−k(y) = 2En+1(x+ y)− 2(x+ y − 1)En(x+ y),

n∑
k=0

(
n

k

)
EkEn−k = 2n+2En+2

n+ 2
(2n+2 − 1);

we establish two pairs of identities as in the following proposition.

Proposition 3.2 (n ∈ N0).

(a)
n∑
k=0

(
n

k

)
Ek(x)En−k(x)Ukλ−1(y)Tnλ−kλ(y) = Unλ−1(y)

{
En+1(2x)− 2xEn(2x) + En(2x)

}
,

(b)
n∑
k=0

(
n

k

)
EkEn−kUkλ−1(y)Tnλ−kλ(y) = 2n+1Unλ−1(y)

En+2

n+ 2
(2n+2 − 1),

(c)
n∑
k=0

(
n

k

)
Ek(x)En−k(x)FkλLnλ−kλ = Fnλ

{
2En+1(2x)− 4xEn(2x) + 2En(2x)

}
,

(d)
n∑
k=0

(
n

k

)
EkEn−kFkλLnλ−kλ = 2n+2Fnλ

En+2

n+ 2
(2n+2 − 1).

Hermite polynomials
Hermite polynomials Hn(x) are defined (see Rainville [18, §103]) by the exponential generating function

exp(2xη − η2) =

∞∑
n=0

Hn(x)
ηn

n!

which satisfy the convolution equation
n∑
k=0

(
n

k

)
Hk(x)Hn−k(y) = Hn(x+ y).

By letting Ψn = Hn(x) in Theorem 3.1 and Corollary 3.1, we find the following two respective identities.

Proposition 3.3 (n ∈ N0).

(a)
n∑
k=0

(
n

k

)
Hk(x)Hn−k(x)Ukλ−1(y)Tnλ−kλ(y) =

Unλ−1(y)

2
Hn(2x),

(b)
n∑
k=0

(
n

k

)
Hk(x)Hn−k(x)FkλLnλ−kλ = FnλHn(2x).

Chebyshev polynomials
By combining the exponential generating functions (4–5) with the Binet formulae (3), we can compute without difficulty
the convolutions of Chebyshev polynomials

n∑
k=0

(
n

k

)
Tk(y)Tn−k(y) = n![ηn]

(eηα + eηβ)2

4

= n![ηn]
e2yη

2
+ n![ηn]

e2ηα + e2ηβ

4

= 2n−1yn + 2n−2(αn + βn),

and
n∑
k=0

(
n

k

)
Uk(y)Un−k(y) = n![ηn]

(αeηα − βeηβ)2

4(y2 − 1)
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= n![ηn]
e2yη

2(1− y2)
− n![ηn]

α2e2ηα + β2e2ηβ

4(1− y2)

=
2n−1yn

1− y2
− 2n−2

1− y2
(αn+2 + βn+2);

that result in the following closed formulae
n∑
k=0

(
n

k

)
Tk(y)Tn−k(y) = 2n−1

{
yn + Tn(y)

}
,

n∑
k=0

(
n

k

)
Uk(y)Un−k(y) =

2n−1

1− y2
{
yn − Tn+2(y)

}
.

According to Theorem 3.1 and Corollary 3.1, by assigning Ψn to Tn(x) and Un(x), we deduce two pairs of convolution
identities as in the following proposition.

Proposition 3.4 (n ∈ N0).

(a)
n∑
k=0

(
n

k

)
Tk(x)Tn−k(x)Ukλ−1(y)Tnλ−kλ(y) = 2n−2Unλ−1(y)

{
xn + Tn(x)

}
,

(b)
n∑
k=0

(
n

k

)
Uk(x)Un−k(x)Ukλ−1(y)Tnλ−kλ(y) = 2n−2

Unλ−1(y)

1− x2
{
xn − Tn+2(x)

}
,

(c)
n∑
k=0

(
n

k

)
Tk(x)Tn−k(x)FkλLnλ−kλ = 2n−1Fnλ

{
xn + Tn(x)

}
,

(d)
n∑
k=0

(
n

k

)
Uk(x)Un−k(x)FkλLnλ−kλ = 2n−1

Fnλ
1− x2

{
xn − Tn+2(x)

}
.

Fibonacci numbers and Lucas numbers
Finally, specializing Ψn by Fn and Ln in Theorem 3.1 and Corollary 3.1, and then making use of the following closed
formulae (see [15, P235])

n∑
k=0

(
n

k

)
FkFn−k =

2n

5
Ln −

2

5
,

n∑
k=0

(
n

k

)
LkLn−k = 2nLn + 2;

we find two further pairs of convolution identities, that can also be obtained by letting x = i
2 in Proposition 3.4.

Proposition 3.5 (n ∈ N0).

(a)
n∑
k=0

(
n

k

)
FkFn−kUkλ−1(y)Tnλ−kλ(y) = Unλ−1(y)

{
2n

10
Ln −

1

5

}
,

(b)
n∑
k=0

(
n

k

)
LkLn−kUkλ−1(y)Tnλ−kλ(y) = Unλ−1(y)

{
1 + 2n−1Ln

}
,

(c)
n∑
k=0

(
n

k

)
FkFn−kFkλLnλ−kλ = Fnλ

{
2n

5
Ln −

2

5

}
,

(d)
n∑
k=0

(
n

k

)
LkLn−kFkλLnλ−kλ = Fnλ

{
2 + 2nLn

}
.
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