Research Article

Reciprocal degree distance of Eliasi-Taeri sums of graphs

K. Pattabiraman ${ }^{1, *}$, Manzoor Ahmad Bhat ${ }^{2}$
${ }^{1}$ Department of Mathematics, Government Arts College (Autonomous), Kumbakonam, India
${ }^{2}$ Department of Mathematics, Annamalai University, Annamalainagar, India

(Received: 14 March 2022. Received in revised form: 16 May 2022. Accepted: 20 May 2022. Published online: 23 May 2022.)
© 2022 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

For a connected graph G, the reciprocal degree distance is defined as $R D D(G)=\sum_{u, v \in V(G)}\left(d_{G}(u)+d_{G}(v)\right)\left(2 d_{G}(u, v)\right)^{-1}$, where $d_{G}(u)$ denotes the degree of a vertex u in G and $d_{G}(u, v)$ represents the distance between the vertices u and v in G. In this paper, upper bounds for the reciprocal degree distance of graphs, arising from four operations introduced by Eliasi and Taeri in [Discrete Appl. Math. 157 (2009) 794-803], are provided.

Keywords: distance; reciprocal degree distance; Eliasi-Taeri sums.
2020 Mathematics Subject Classification: 05C76, 05C12.

1. Introduction

Throughout this paper, we assume that G is a finite, connected, undirected, and simple graph, with vertex set $V(G)$ and edge set $E(G)$. The degree of a vertex x in G is denoted by $d_{G}(x)$ and the distance between $u, v \in V(G)$ is denoted by $d_{G}(u, v)$.

Topological indices provide contemporary tools to predict diverse psychochemical features of chemical compounds. A lot of available research shows that topological indices are easy to compute and they efficiently encrypt significant structural information of chemical compounds. Distance-based topological indices form a vital class of indices and these indices have significantly better efficiency.

The Zagreb indices have been introduced around a half century ago by Gutman and Trinajestić in [6]. They are defined as

$$
M_{1}(G)=\sum_{u \in V(G)} d_{G}(u)^{2}=\sum_{u v \in E(G)}\left(d_{G}(u)+d_{G}(v)\right)
$$

and

$$
M_{2}(G)=\sum_{u v \in E(G)} d_{G}(u) d_{G}(v)
$$

In the definitions of the Zagreb indices, if one takes the sums over the edges of the complement of G then the resulting quantities are the Zagreb coindices. More precisely, the first and second Zagreb coindices of G are defined as

$$
\bar{M}_{1}(G)=\sum_{u v \notin E(G)}\left[d_{G}(u)+d_{G}(v)\right]
$$

and

$$
\bar{M}_{2}(G)=\sum_{u v \notin E(G)} d_{G}(u) d_{G}(v) .
$$

One of the oldest and well-studied topological indices is the Wiener index. The Wiener index of G is defined as the sum of the distances of all unordered vertex pairs in G, that is,

$$
W(G)=\frac{1}{2} \sum_{u, v \in V(G)} d_{G}(u, v)
$$

Another distance-based topological index, defined in a fully analogous manner to the Wiener index, is the Harary index which is equal to the sum of the the reciprocal distances overall all unordered vertex pairs in G, that is,

$$
H(G)=\frac{1}{2} \sum_{u, v \in V(G)} \frac{1}{d_{G}(u, v)}
$$

[^0]Dobrynin and Kochetova [3], and Gutman [5] independently proposed a vertex-degree-weighted version of the Wiener index known as the degree distance ($D D$), which is defined as

$$
D D(G)=\frac{1}{2} \sum_{u, v \in V(G)}\left(d_{G}(u)+d_{G}(v)\right) d_{G}(u, v)
$$

The reciprocal degree distance ($R D D$) of a connected graph G is defined [1] as

$$
R D D(G)=\frac{1}{2} \sum_{u, v \in V(G)} \frac{d_{G}(u)+d_{G}(v)}{d_{G}(u, v)} .
$$

One can observe that the degree distance and reciprocal degree distance are defined by using the concepts of the first Zagreb index, Wiener index, and Harary index.

Chemical applications and mathematical properties of the reciprocal degree distance are well studied [1,8,12]. Hua and Zhang [7] obtained lower and upper bounds for the reciprocal degree distance of graphs in terms of other graph parameters. The mathematical behavior of the reciprocal degree distance of some composite graphs was analysed in [10, 11]. In the present paper, we obtain upper bounds for the reciprocal degree distance of F-sums of graphs introduced in [4].

2. Main results

In order to state and prove the main results, we need some definitions. In the following, we define four graphs generated from a given connected graph G.
(i). The graph formed by inserting a new vertex on every edge of G is known as the subdivision graph $S(G)$ of G.
(ii). The graph deduced from G by first inserting an additional vertex corresponding to every edge of G and then joining every newly added vertex to the end vertices of the corresponding edge is denoted by $R(G)$.
(iii). The graph deduced from G by first inserting an additional vertex into every edge of G and then joining with edges the pairs of new vertices on adjacent edges of G is denoted by $Q(G)$.
(iv). The total graph $T(G)$ of G has the vertex set consisting of the vertices and edges of G. Two vertices in $T(G)$ are adjacent if and only if they are either adjacent or incident in G.

For $F \in\{S, R, Q, T\}$, the F-sum or Eliasi-Taeri sum of the graphs $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$ is denoted by $G_{1}+{ }_{F} G_{2}$ and is defined as the graph with the vertex set $V\left(G_{1}+{ }_{F} G_{2}\right)=\left(V_{1} \cup E_{1}\right) \times V_{2}$ and two vertices $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ of $G_{1}+{ }_{F} G_{2}$ are adjacent if and only if either $u_{1}=v_{1} \in V_{1}$ and $u_{2} v_{2} \in E_{2}$ or $u_{2}=v_{2}$ and $u_{1} v_{1} \in E\left(F\left(G_{1}\right)\right)$.

The following known lemmas are used in the proofs of our main results.
Lemma 2.1 (see [13]). For a graph G and $v, v^{\prime} \in V(G)$, we have

$$
\frac{1}{2} d_{S(G)}\left(v, v^{\prime}\right)=d_{T(G)}\left(v, v^{\prime}\right)=d_{R(G)}\left(v, v^{\prime}\right)=d_{Q(G)}\left(v, v^{\prime}\right)-1=d_{G}\left(v, v^{\prime}\right) .
$$

Lemma 2.2 (see [13]). For an edge $e \in E(G)$ and a vertex $v \in V(G)$, we have

$$
\frac{1}{2}\left(d_{S(G)}(e, v)+1\right)=d_{T(G)}(e, v)=d_{R(G)}(e, v)=d_{Q(G)}(e, v) .
$$

Lemma 2.3 (see [4]). Let G_{1} and G_{2} be two connected graphs and $v=\left(v_{1}, v_{2}\right)$ be a vertex of $G_{1}+{ }_{F} G_{2}$. Then
(i). If $v_{1} \notin E\left(G_{1}\right)$, then for every $u=\left(u_{1}, u_{2}\right) \in V\left(G_{1}+{ }_{F} G_{2}\right)$ we have

$$
d_{G_{1}+F G_{2}}(u, v)=d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)+d_{G_{2}}\left(u_{2}, v_{2}\right) .
$$

(ii). If $v_{1} \in E\left(G_{1}\right)$, then for every $u=\left(u_{1}, u_{2}\right) \in V\left(G_{1}+{ }_{F} G_{2}\right)$ with $u_{2} \neq v_{2}, u_{1}=u_{1}^{\prime} v_{1}^{\prime} \in E\left(G_{1}\right)$ and $u_{1}^{\prime}, v_{1}^{\prime} \in V\left(G_{1}\right)$ we have

$$
d_{G_{1}+F_{F}}(u, v)=1+d_{G_{2}}\left(u_{2}, v_{2}\right)+\min \left\{d_{F\left(G_{1}\right)}\left(u_{1}^{\prime}, v_{1}\right), d_{F\left(G_{1}\right)}\left(v_{1}^{\prime}, v_{1}\right)\right\}
$$

(iii). If $v_{1} \in E\left(G_{1}\right)$, then for every $u=\left(u_{1}, u_{2}\right) \in V\left(G_{1}+{ }_{F} G_{2}\right)$, where $u_{2}=v_{2}$, and $u_{1} \in E\left(G_{1}\right)$, we have

$$
d_{G_{1}+F G_{2}}(u, v)=d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)+d_{G_{2}}\left(u_{2}, v_{2}\right)=d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right) .
$$

Lemma 2.4 (see [4]). Let G_{1} and G_{2} be two connected graphs, $u_{1}, v_{1} \in E\left(G_{1}\right), u_{2}, v_{2} \in V\left(G_{2}\right)$, and $F \in\{S, R\}$. Then for $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ in $V\left(G_{1}+{ }_{F} G_{2}\right)$, with $u_{2} \neq v_{2}$, we have

$$
d_{G_{1}+F G_{2}}(u, v)= \begin{cases}2+d_{G_{2}}\left(u_{2}, v_{2}\right) & \text { if } u_{1}=v_{1} \\ d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)+d_{G_{2}}\left(u_{2}, v_{2}\right) & \text { if } u_{1} \neq v_{1}\end{cases}
$$

Lemma 2.5 (see [4]). Let G_{1} and G_{2} be two connected graphs, $u_{1}, v_{1} \in E\left(G_{1}\right), u_{2}, v_{2} \in V\left(G_{2}\right)$, and $F \in\{Q$, T\}. Then for $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ in $V\left(G_{1}+{ }_{F} G_{2}\right)$, with $u_{2} \neq v_{2}$, we have

$$
d_{G_{1}+F_{F} G_{2}}(u, v)= \begin{cases}2+d_{G_{2}}\left(u_{2}, v_{2}\right) & \text { if } u_{1}=v_{1} \\ 1+d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)+d_{G_{2}}\left(u_{2}, v_{2}\right) & \text { if } u_{1} \neq v_{1}, u_{2} \neq v_{2}\end{cases}
$$

Lemma 2.6 (see [2]). Let G be a graph.
(i). If $u_{1} \in V(G)$, then $d_{F\left(G_{1}\right)}\left(u_{1}\right)=k d_{G_{1}}\left(u_{1}\right)$, where

$$
k= \begin{cases}1 & \text { if } F \in\{S, Q\} \\ 2 & \text { if } F \in\{R, T\}\end{cases}
$$

(ii). If $u=u_{1}^{\prime} u_{1}^{\prime \prime} \in E(G)$, then we have $d_{S(G)}\left(u_{1}\right)=d_{R(G)}\left(u_{1}\right)=2$ and $d_{Q(G)}\left(u_{1}\right)=d_{T(G)}\left(u_{1}\right)=d_{S(G)}\left(u_{1}\right)=d_{L(G)}\left(u_{1}\right)+2$, where $d_{L(G)}\left(u_{1}\right)=d_{(G)}\left(u_{1}^{\prime}\right)+d_{(G)}\left(u_{1}^{\prime \prime}\right)-2$.

Lemma 2.7 (see [9]). Let g be a convex function on the interval Z and $z_{1}, z_{2}, \ldots, z_{n} \in Z$. Then

$$
g\left(\frac{z_{1}+z_{2}+\ldots+z_{n}}{n}\right) \leq \frac{g\left(z_{1}\right)+g\left(z_{2}\right)+\ldots+g\left(z_{n}\right)}{n}
$$

with equality if and only if $z_{1}=z_{2}=\ldots=z_{n}$.
Now, we are able to state and prove the first main result of this paper.
Theorem 2.1. For $i=1,2$, let G_{i} be a connected graph with n_{i} vertices and m_{i} edges, and take $F \in\{S, R\}$. Then

$$
\begin{aligned}
R D D\left(G_{1}+{ }_{F} G_{2}\right) \leq & \frac{n_{2}^{2}}{4} R D D\left(F\left(G_{1}\right)\right)+\frac{n_{1}\left(n_{1}+m_{1}\right)}{4} R D D\left(G_{2}\right)+n_{2} m_{2} H\left(F\left(G_{1}\right)\right)+\frac{n_{2}\left(n_{2}-1\right) k}{8}\left(M_{1}\left(G_{1}\right)-2 m_{1}\right) \\
& +\frac{n_{2}^{2}\left(m_{1}-1\right)}{4} M_{1}\left(G_{1}\right)+\frac{H\left(G_{2}\right)}{4}\left[\left(3 k+2 m_{1}-2\right) M_{1}\left(G_{1}\right)+k \bar{M}_{1}\left(G_{1}\right)+4 m_{1}\left(k\left(m_{1}-1\right)+n_{1}\right)\right] \\
& +\frac{n_{2}^{2} m_{1}\left(k m_{1}+n_{1}\right)}{2}
\end{aligned}
$$

Proof. Let $G=G_{1}+{ }_{F} G_{2}$. By the definition of the reciprocal degree distance, we have

$$
\begin{aligned}
R D D(G)= & \frac{1}{2} \sum_{\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right) \in V\left(G_{1}+F G_{2}\right)} \frac{d_{G}\left(u_{1}, u_{2}\right)+d_{G}\left(v_{1}, v_{2}\right)}{d_{G}\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right)} \\
= & \frac{1}{2} \sum_{\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right) \in V\left(G_{1}\right) \times V\left(G_{2}\right)} \frac{d_{G}\left(u_{1}, u_{2}\right)+d_{G}\left(v_{1}, v_{2}\right)}{d_{G}\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right)} \\
& +\sum_{\left(u_{1}, u_{2}\right) \in V\left(G_{1}\right) \times V\left(G_{2}\right),\left(v_{1}, v_{2}\right) \in E\left(G_{1}\right) \times V\left(G_{2}\right)} \frac{d_{G}\left(u_{1}, u_{2}\right)+d_{G}\left(v_{1}, v_{2}\right)}{d_{G}\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right)} \\
& +\frac{1}{2} \sum_{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \in E\left(G_{1}\right), u_{1}=v_{1}, u_{2} \neq v_{2}} \frac{d_{G}\left(u_{1}, u_{2}\right)+d_{G}\left(v_{1}, v_{2}\right)}{d_{G}\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right)} \\
& +\frac{1}{2} \sum_{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \in E\left(G_{1}\right) \times V\left(G_{2}\right), u_{1} \neq v_{1}} \frac{d_{G}\left(u_{1}, u_{2}\right)+d_{G}\left(v_{1}, v_{2}\right)}{d_{G}\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right)} \\
& =S_{1}+S_{2}+S_{3}+S_{4},
\end{aligned}
$$

where $S_{1}, S_{2}, S_{3}, S_{4}$ are the sums in order.

First, we compute S_{1}. By Lemma 2.3, we have

$$
\begin{aligned}
S_{1} & =\frac{1}{2} \sum_{\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right) \in V(G)} \frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{G_{2}}\left(u_{2}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)+d_{G_{2}}\left(v_{2}\right)}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)+d_{G_{2}}\left(u_{2}, v_{2}\right)}, \\
& =\frac{1}{2} \sum_{u_{1}, v_{1} \in V\left(G_{1}\right) u_{2}, v_{2} \in V\left(G_{2}\right)}\left[\frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)+d_{G_{2}}\left(u_{2}, v_{2}\right)}+\frac{d_{\left(G_{2}\right)}\left(u_{2}\right)+d_{G_{2}}\left(v_{2}\right)}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)+d_{G_{2}}\left(u_{2}, v_{2}\right)}\right] .
\end{aligned}
$$

By Lemma 2.7, we have,

$$
\frac{1}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)+d_{G_{2}}\left(u_{2}, v_{2}\right)} \leq \frac{1}{4 d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)}+\frac{1}{4 d_{G_{2}}\left(u_{2}, v_{2}\right)}
$$

with equality if and only if $d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)=d_{G_{2}}\left(u_{2}, v_{2}\right)$. Therefore,

$$
\begin{aligned}
S_{1} \leq & \frac{1}{8} \sum_{u_{1}, v_{1} \in V\left(G_{1}\right) u_{2}, v_{2} \in V\left(G_{2}\right)}\left[\left(d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)\right)\left(\frac{1}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)}+\frac{1}{d_{G_{2}}\left(u_{2}, v_{2}\right)}\right)\right. \\
& \left.+\left(d_{G_{2}}\left(u_{2}\right)+d_{G_{2}}\left(v_{2}\right)\right)\left(\frac{1}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)}+\frac{1}{d_{G_{2}}\left(u_{2}, v_{2}\right)}\right)\right] \\
= & \frac{1}{8}\left[\sum_{u_{1}, v_{1} \in V\left(G_{1}\right) u_{2}, v_{2} \in V\left(G_{2}\right)}\left(\frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)}\right)+\sum_{u_{1}, v_{1} \in V\left(G_{1}\right) u_{2}, v_{2} \in V\left(G_{2}\right)} \sum_{\sum_{u_{1}, v_{1} \in V\left(G_{1}\right) u_{2}, v_{2} \in V\left(G_{2}\right)}\left(\frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)}{d_{G_{2}}\left(u_{2}, v_{2}\right)}\right)}^{\left.\sum_{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)}\right)+\sum_{u_{1}, v_{1} \in V\left(G_{1}\right) u_{2}, v_{2} \in V\left(G_{2}\right)}\left(\frac{d_{G_{2}\left(u_{2}\right)+d_{G_{2}}\left(v_{2}\right)}}{\left.\left.\sum_{d_{G_{2}}\left(u_{2}\right)+d_{G_{2}}\left(v_{2}\right)}\right)\right]}\right.} \begin{array}{rl}
\\
& +\sum_{\left.d_{2}, v_{2}\right)}
\end{array}\right)
\end{aligned}
$$

By the definitions of the Harary index and reciprocal degree distance, we obtain

$$
\begin{aligned}
S_{1} \leq & \frac{n_{2}^{2}}{8} \sum_{u_{1}, v_{1} \in V\left(G_{1}\right)} \frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)}+\frac{1}{4} H\left(G_{2}\right) \sum_{u_{1}, v_{1} \in V\left(G_{1}\right)}\left(d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)\right) \\
& +\frac{1}{2} n_{2} m_{2} \sum_{u_{1}, v_{1} \in V\left(G_{1}\right)} \frac{1}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)}+\frac{n_{1}^{2}}{4} R D D\left(G_{2}\right) .
\end{aligned}
$$

For any vertex $(u, v) \in V\left(G_{1}+_{F} G_{2}\right)$, we have $d_{G_{1}+_{F} G_{2}}(u)=d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{G_{2}}\left(u_{2}\right)$ and $d_{G_{1}+F_{F}\left(G_{2}\right)}(v)=d_{F\left(G_{1}\right)}\left(v_{1}\right)$.

$$
S_{2}=\sum_{u_{2}, v_{2} \in V\left(G_{2}\right)} \sum_{u_{1} \in V\left(G_{1}\right)} \sum_{v_{1} \in E\left(G_{1}\right)} \frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{G_{2}}\left(u_{2}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)+d_{G_{2}}\left(u_{2}, v_{2}\right)} .
$$

By Lemma 2.3, we obtain

$$
S_{2}=\sum_{u_{2}, v_{2} \in V\left(G_{2}\right)} \sum_{u_{1} \in V\left(G_{1}\right)} \sum_{v_{1} \in E\left(G_{1}\right)}\left[\frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)+d_{G_{2}}\left(u_{2}, v_{2}\right)}+\frac{d_{G_{2}}\left(u_{2}\right)}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)+d_{G_{2}}\left(u_{2}, v_{2}\right)}\right]
$$

By Jensen's inequality, we have,

$$
\frac{1}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)+d_{G_{2}}\left(u_{2}, v_{2}\right)} \leq \frac{1}{4 d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)}+\frac{1}{4 d_{G_{2}}\left(u_{2}, v_{2}\right)}
$$

with equality if and only if $d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)=d_{G_{2}}\left(u_{2}, v_{2}\right)$. Thus

$$
\begin{aligned}
S_{2} \leq & \frac{1}{4} \sum_{u_{2}, v_{2} \in V\left(G_{2}\right)} \sum_{u_{1} \in V\left(G_{1}\right)} \sum_{v_{1} \in E\left(G_{1}\right)}\left[\left(d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)\right)\left(\frac{1}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)}+\frac{1}{d_{G_{2}}\left(u_{2}, v_{2}\right)}\right)\right. \\
& \left.+d_{G_{2}}\left(u_{2}\right)\left(\frac{1}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)}+\frac{1}{d_{G_{2}}\left(u_{2}, v_{2}\right)}\right)\right] \\
\leq & \frac{1}{4}\left[\sum_{u_{2}, v_{2} \in V\left(G_{2}\right)} \sum_{u_{1} \in V\left(G_{1}\right)} \sum_{v_{1} \in E\left(G_{1}\right)}\left(\frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)}\right)\right. \\
& +\sum_{u_{2}, v_{2} \in V\left(G_{2}\right)} \sum_{u_{1} \in V\left(G_{1}\right)} \sum_{v_{1} \in E\left(G_{1}\right)} \frac{\left[d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)\right]}{d_{G_{2}}\left(u_{2}, v_{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\quad+\sum_{u_{2}, v_{2} \in V\left(G_{2}\right)} \sum_{u_{1} \in V\left(G_{1}\right)} \sum_{v_{1} \in E\left(G_{1}\right)} \frac{d_{G_{2}}\left(u_{2}\right)}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)}+\sum_{u_{2}, v_{2} \in V\left(G_{2}\right)} \sum_{u_{1} \in V\left(G_{1}\right)} \sum_{v_{1} \in E\left(G_{1}\right)} \frac{d_{G_{2}}\left(u_{2}\right)}{d_{G_{2}}\left(u_{2}, v_{2}\right)}\right] \\
& = \\
& \quad \frac{n_{2}^{2}}{4} \sum_{u_{1} \in V\left(G_{1}\right)} \sum_{v_{1} \in E\left(G_{1}\right)} \frac{\left[d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)\right]}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)} \\
& \quad+\frac{1}{2} H\left(G_{2}\right) \sum_{u_{1} \in V\left(G_{1}\right)} \sum_{v_{1} \in E\left(G_{1}\right)}\left(d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)\right)+\frac{1}{2} n_{2} m_{2} \sum_{u_{1} \in V\left(G_{1}\right)} \sum_{v_{1} \in E\left(G_{1}\right)} \frac{1}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)} \\
& \quad+\frac{1}{4} m_{1} n_{1} R D D\left(G_{2}\right) .
\end{aligned}
$$

In order to calculate S_{3} and S_{4}, we assume that u and v are the vertices such that $u \in E\left(G_{1}\right) \times V\left(G_{2}\right)$ and $v \in E\left(G_{1}\right) \times V\left(G_{2}\right)$. By Lemma 2.4, we have

$$
\begin{aligned}
S_{3} & =\frac{1}{2} \sum_{u_{1} \in E\left(G_{1}\right)} \sum_{u_{2}, v_{2} \in V\left(G_{2}\right) ; u_{2} \neq v_{2}} \frac{2 d_{F\left(G_{1}\right)}\left(u_{1}\right)}{\left(2+d_{G_{2}}\left(u_{2}, v_{2}\right)\right)} \\
& \left.\leq \sum_{u_{1} \in E\left(G_{1}\right)} \sum_{u_{2}, v_{2} \in V\left(G_{2}\right) ; u_{2} \neq v_{2}} \frac{1}{4}\left[\frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)}{2}+\frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)}{d_{G_{2}}\left(u_{2}, v_{2}\right)}\right] \text { (with equality if } d_{G_{2}}\left(u_{2}, v_{2}\right)=2\right) \\
& =\sum_{u_{1} \in E\left(G_{1}\right)} \sum_{u_{2}, v_{2} \in V\left(G_{2}\right) ; u_{2} \neq v_{2}} \frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)}{8}+\frac{1}{4} \sum_{u_{1} \in E\left(G_{1}\right)} \sum_{u_{2}, v_{2} \in V\left(G_{2}\right) ; u_{2} \neq v_{2}} \frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)}{d_{G_{2}}\left(u_{2}, v_{2}\right)} \\
& =\frac{1}{8}\left(n_{2}^{2}-n_{2}\right) \sum_{u_{1} \in E\left(G_{1}\right)} d_{F\left(G_{1}\right)}\left(u_{1}\right)+\frac{1}{2} H\left(G_{2}\right) \sum_{u_{1} \in E\left(G_{1}\right)} d_{F\left(G_{1}\right)}\left(u_{1}\right) .
\end{aligned}
$$

By using Lemma 2.4, we have

$$
S_{4}=\frac{1}{2} \sum_{u_{2}, v_{2} \in V\left(G_{2}\right)} \sum_{u_{1}, v_{1} \in E\left(G_{1}\right) ; u_{1} \neq v_{1}} \frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)+d_{G_{2}}\left(u_{2}, v_{2}\right)} .
$$

By Jensen's inequality, we have

$$
\frac{1}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)+d_{G_{2}}\left(u_{2}, v_{2}\right)} \leq \frac{1}{4 d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)}+\frac{1}{4 d_{G_{2}}\left(u_{2}, v_{2}\right)},
$$

with equality if and only if $d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)=d_{G_{2}}\left(u_{2}, v_{2}\right)$. Thus,

$$
\begin{aligned}
S_{4}= & \frac{1}{8}\left[\sum_{u_{2}, v_{2} \in V\left(G_{2}\right)} \sum_{u_{1}, v_{1} \in E\left(G_{1}\right) ; u_{1} \neq v_{1}} \frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)}{d_{F\left(G_{1}\right)\left(u_{1}, v_{1}\right)}}\right. \\
& \left.+\sum_{u_{2}, v_{2} \in V\left(G_{2}\right)} \sum_{u_{1}, v_{1} \in E\left(G_{1}\right) ; u_{1} \neq v_{1}} \frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)}{d_{G_{2}}\left(u_{2}, v_{2}\right)}\right] \\
= & \frac{1}{8} \sum_{u_{2}, v_{2} \in V\left(G_{2}\right)} \sum_{u_{1}, v_{1} \in E\left(G_{1}\right) ; u_{1} \neq v_{1}} \frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)}{d_{F\left(G_{1}\right)\left(u_{1}, v_{1}\right)}} \\
& +\frac{1}{4} H\left(G_{2}\right) \sum_{u_{1}, v_{1} \in E\left(G_{1}\right) ; u_{1} \neq v_{1}}\left(d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)\right) .
\end{aligned}
$$

From the obtained values and inequalities of S_{1}, S_{2}, S_{3}, and S_{4}, we get

$$
\begin{aligned}
R D D(G)= & S_{1}+S_{2}+S_{3}+S_{4} \\
\leq & \frac{n_{2}^{2}}{8} \sum_{u_{1}, v_{1} \in V\left(G_{1}\right)} \frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)}+\frac{1}{4} H\left(G_{2}\right) \sum_{u_{1}, v_{1} \in V\left(G_{1}\right)}\left(d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)\right) \\
& +\frac{1}{2} n_{2} m_{2} \sum_{u_{1}, v_{1} \in V\left(G_{1}\right)} \frac{1}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)}+\frac{n_{1}^{2}}{4} R D D\left(G_{2}\right)+\frac{n_{2}^{2}}{4} \sum_{u_{1} \in V\left(G_{1}\right)} \sum_{v_{1} \in E\left(G_{1}\right)} \frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)} \\
& +\frac{1}{2} H\left(G_{2}\right) \sum_{u_{1} \in V\left(G_{1}\right)} \sum_{v_{1} \in E\left(G_{1}\right)}\left(d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)\right)+\frac{1}{2} n_{2} m_{2} \sum_{u_{1} \in V\left(G_{1}\right)} \sum_{v_{1} \in E\left(G_{1}\right)} \frac{1}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)}
\end{aligned}
$$

$$
\begin{align*}
& +\frac{1}{4} m_{1} n_{1} R D D\left(G_{2}\right)+\frac{1}{8}\left(n_{2}^{2}-n_{2}\right) \sum_{u_{1} \in E\left(G_{1}\right)} d_{F\left(G_{1}\right)}\left(u_{1}\right)+\frac{1}{2} H\left(G_{2}\right) \sum_{u_{1} \in E\left(G_{1}\right)} d_{F\left(G_{1}\right)}\left(u_{1}\right) \\
& +\frac{n_{2}^{2}}{8} \sum_{u_{1}, v_{1} \in E\left(G_{1}\right) ; u_{1} \neq v_{1}} \frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)} \\
& +\frac{1}{4} H\left(G_{2}\right) \sum_{u_{1}, v_{1} \in E\left(G_{1}\right) ; u_{1} \neq v_{1}}\left(d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)\right) . \tag{1}
\end{align*}
$$

Now, we calculate the sums given in (1) separately.
(i). By Lemma 2.6, one has

$$
\sum_{u_{1} \in V\left(G_{1}\right)} \sum_{v_{1} \in E\left(G_{1}\right)}\left[d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)\right]=\sum_{u_{1} \in V\left(G_{1}\right)} \sum_{v_{1} \in E\left(G_{1}\right)}\left[k d_{G_{1}}\left(u_{1}\right)+2\right]=2 k m_{1}^{2}+2 m_{1} n_{1}
$$

(ii). By the definition of the Harary index, we get

$$
\begin{aligned}
\sum_{u_{1}, v_{1} \in V\left(G_{1}\right)} \frac{1}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)}+\sum_{u_{1} \in V\left(G_{1}\right)} \sum_{v_{1} \in E\left(G_{1}\right)} \frac{1}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)} & =2 W\left(F\left(G_{1}\right)\right)-\sum_{u_{1}, v_{1} \in E\left(G_{1}\right) ; u_{1} \neq v_{1}} \frac{1}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)} \\
& -\sum_{u_{1} \in V\left(G_{1}\right) v_{1} \in E\left(G_{1}\right)} \frac{1}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)} \\
& \leq 2 H\left(F\left(G_{1}\right)\right)
\end{aligned}
$$

(iii). By Lemma 2.6, we have

$$
\begin{aligned}
\sum_{u_{1} \in E\left(G_{1}\right)} d_{F\left(G_{1}\right)}\left(u_{1}\right) & =\sum_{u_{1} \in E\left(G_{1}\right)} k d_{G_{1}}\left(u_{1}\right) \\
& =k \sum_{u_{1} \in E\left(G_{1}\right)} d_{L\left(G_{1}\right)}\left(u_{1}\right) \\
& =k \sum_{u_{1}=u_{1}^{\prime} u_{1}^{\prime \prime} \in E\left(G_{1}\right)}\left(d_{G_{1}}\left(u_{1}^{\prime}\right)+d_{G_{1}}\left(u_{1}^{\prime \prime}\right)-2\right) \\
& =k\left[M_{1}\left(G_{1}\right)-2 m_{1}\right] .
\end{aligned}
$$

(iv).

$$
\begin{aligned}
\sum_{u_{1}, v_{1} \in V\left(G_{1}\right)}\left(d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)\right)= & \sum_{u_{1}, v_{1} \in E\left(G_{1}\right)}\left(k d_{G_{1}}\left(u_{1}\right)+k, d_{G_{1}}\left(V_{1}\right)\right) \\
& +\sum_{u_{1}, v_{1} \notin E\left(G_{1}\right)}\left(k d_{G_{1}}\left(u_{1}\right)+k, d_{G_{1}}\left(V_{1}\right)\right) \\
= & k\left[M_{1}\left(G_{1}\right)+\bar{M}_{1}\left(G_{1}\right)\right] .
\end{aligned}
$$

(v).

$$
\begin{aligned}
\sum_{u_{1}, v_{1} \in E\left(G_{1}\right) ; u_{1} \neq v_{1}}\left(d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)\right)= & \sum_{u_{1}, v_{1} \in E\left(G_{1}\right) ; u_{1} \neq v_{1}}\left(d_{L\left(G_{1}\right)}\left(u_{1}\right)+d_{L\left(G_{1}\right)}\left(v_{1}\right)+4\right) \\
= & \sum_{u_{1}, v_{1} \in E\left(G_{1}\right) ; u_{1} \neq v_{1}}\left(d_{L\left(G_{1}\right)}\left(u_{1}\right)+d_{L\left(G_{1}\right)}\left(v_{1}\right)\right) \\
& +4 \sum_{u_{1}, v_{1} \in E\left(G_{1}\right) ; u_{1} \neq v_{1}}(1) \\
= & 2\left(m_{1}-1\right)\left(M_{1}\left(G_{1}\right)\right)-2 m_{1}+4\left(m_{1}^{2}-m_{1}\right) \\
= & 2\left(m_{1}-1\right) M_{1}\left(G_{1}\right) .
\end{aligned}
$$

(vi). We note that $\left(d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)\right)^{-1} \leq 1$ with equality if $d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)=1$. By (i), we have

$$
\sum_{u_{1} \in V\left(G_{1}\right)} \sum_{v_{1} \in E\left(G_{1}\right)} \frac{\left(d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)\right)}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)} \leq \sum_{u_{1} \in V\left(G_{1}\right)} \sum_{v_{1} \in E\left(G_{1}\right)}\left(d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)\right)=2 k m_{1}^{2}+2 m_{1} n_{1}
$$

Now, by making use of $(i)-(v i)$ in (1), we get

$$
\begin{aligned}
R D D(G) \leq & \frac{n_{2}^{2}}{4} R D D\left(F\left(G_{1}\right)\right)+\frac{n_{1}\left(n_{1}+m_{1}\right)}{4} R D D\left(G_{2}\right)+n_{2} m_{2} H\left(F\left(G_{1}\right)\right)+\frac{n_{2}\left(n_{2}-1\right) k}{8}\left(M_{1}\left(G_{1}\right)-2 m_{1}\right) \\
& +\frac{n_{2}^{2}\left(m_{1}-1\right)}{4} M_{1}\left(G_{1}\right)+\frac{H\left(G_{2}\right)}{4}\left[\left(3 k+2 m_{1}-2\right) M_{1}\left(G_{1}\right)+k \bar{M}_{1}\left(G_{1}\right)+4 m_{1}\left(k\left(m_{1}-1\right)+n_{1}\right)\right] \\
& +\frac{n_{2}^{2} m_{1}\left(k m_{1}+n_{1}\right)}{2} .
\end{aligned}
$$

Next, we state and prove the second main result of this paper.
Theorem 2.2. Suppose that G_{i} is a connected graph with n_{i} vertices and m_{i} edges, $i=1,2$, and take $F \in\{Q, T\}$. Then

$$
\begin{aligned}
R D D\left(G_{1}+{ }_{F} G_{2}\right) \leq & \frac{n_{2}^{2}}{4} R D D\left(F\left(G_{1}\right)\right)+\frac{n_{1}\left(n_{1}+m_{1}\right)}{4} R D D\left(G_{2}\right)+2 n_{2} m_{2} H\left(F\left(G_{1}\right)\right) \\
& +\frac{\left.H_{(} G_{2}\right)}{2}\left[\frac{k}{2}\left(M_{1}+\bar{M}_{1}\left(G_{1}\right)\right) 22 m-1\left(k m_{1}+n_{1}\right)+\frac{M_{1}\left(G_{1}\right)\left(m_{1}-1\right)}{4}\right] \\
& +\frac{n_{2}}{16} M_{1}\left(G_{1}\right)\left(\left(21 n_{2}-1\right)\left(m_{1}-1\right)+2 k\left(n_{2}-1\right)\right)-\frac{k m_{1} n_{2}\left(n_{2}-1\right)}{4}
\end{aligned}
$$

Proof. Let $G=G_{1}+{ }_{F} G_{2}$. By the definition of the $R D D$ index, we have

$$
\begin{aligned}
& R D D(G)= \frac{1}{2} \sum_{\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right) \in V\left(G_{1}+G_{2}\right)} \frac{d_{G}\left(u_{1}, u_{2}\right)+d_{G}\left(v_{1}, v_{2}\right)}{d_{G}\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right)}, \\
&= \frac{1}{2} \sum_{\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right) \in V\left(G_{1}\right) \times V\left(G_{2}\right)} \frac{d_{G}\left(u_{1}, u_{2}\right)+d_{G}\left(v_{1}, v_{2}\right)}{d_{G}\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right)} \\
& \sum_{\left(u_{1}, u_{2}\right) \in V\left(G_{1}\right) \times V\left(G_{2}\right),\left(v_{1}, v_{2}\right) \in E\left(G_{1}\right) \times V\left(G_{2}\right)} \frac{d_{G}\left(u_{1}, u_{2}\right)+d_{G}\left(v_{1}, v_{2}\right)}{d_{G}\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right)} \\
&+\frac{1}{2} \sum_{\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right) \in E\left(G_{1}\right), u_{1}=v_{1}, u_{2} \neq v_{2}} \frac{d_{G}\left(u_{1}, u_{2}\right)+d_{G}\left(v_{1}, v_{2}\right)}{d_{G}\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right)} \\
&+\frac{1}{2} \sum_{\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right) \in E\left(G_{1}\right) \times V\left(G_{2}\right), u_{2}=v_{2} ; u_{1} \neq v_{1}} \frac{d_{G}\left(u_{1}, u_{2}\right)+d_{G}\left(v_{1}, v_{2}\right)}{d_{G}\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right)} \\
&+\frac{1}{2} \sum_{\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right) \in E\left(G_{1}\right) \times V\left(G_{2}\right), u_{2} \neq v_{2} ; u_{1} \neq v_{1}} \\
& d_{G}\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right) \\
&= S_{1}+S_{2}+S_{3}+S_{4}+S_{5},
\end{aligned}
$$

where $S_{1}, S_{2}, \cdots, S_{5}$ are the sums in order.
First, we compute S_{1} and S_{2}. By Lemma 2.4 and a similar way as used in Theorem 2.1, we obtain

$$
\begin{aligned}
S_{1}= & \frac{1}{2} \sum_{\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right) \in V(G)} \frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{G_{2}}\left(u_{2}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)+d_{G_{2}}\left(v_{2}\right)}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)+d_{G_{2}}\left(u_{2}, v_{2}\right)} . \\
\leq & \frac{n_{2}^{2}}{8} \sum_{u_{1}, v_{1} \in V\left(G_{1}\right)} \frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)}+\frac{1}{4} H\left(G_{2}\right) \sum_{u_{1}, v_{1} \in V\left(G_{1}\right)}\left(d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)\right) \\
& +\frac{1}{2} n_{2} m_{2} \sum_{u_{1}, v_{1} \in V\left(G_{1}\right)} \frac{1}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)}+\frac{n_{1}^{2}}{4} R D D\left(G_{2}\right) .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
S_{2}= & \sum_{u_{2}, v_{2} \in V_{2}} \sum_{u_{1} \in V\left(G_{1}\right)} \sum_{v_{1} \in E\left(G_{1}\right)} \frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{G_{2}}\left(u_{2}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)+d_{G_{2}}\left(u_{2}, v_{2}\right)} \\
\leq & \frac{n_{2}^{2}}{4} \sum_{u_{1} \in V\left(G_{1}\right)} \sum_{v_{1} \in E\left(G_{1}\right)} \frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)}+\frac{1}{2} H\left(G_{2}\right) \sum_{u_{1} \in V\left(G_{1}\right)} \sum_{v_{1} \in E\left(G_{1}\right)}\left(d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)\right) \\
& +\frac{n_{2} m_{2}}{2} \sum_{u_{1} \in V\left(G_{1}\right)} \sum_{v_{1} \in E\left(G_{1}\right)} \frac{1}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)}+\frac{m_{1} n_{1}}{4} R D D\left(G_{2}\right) .
\end{aligned}
$$

To calculate S_{3} and S_{4}, we assume that u and v are the vertices such that $u \in E\left(G_{1}\right) \times V\left(G_{2}\right)$ and $v \in E\left(G_{1}\right) \times V\left(G_{2}\right)$. By Lemma 2.4, we have

$$
\begin{aligned}
S_{3} & =\frac{1}{2} \sum_{u_{1} \in E\left(G_{1}\right)} \sum_{u_{2}, v_{2} \in V\left(G_{2}\right) ; u_{2} \neq v_{2}} \frac{2 d_{F\left(G_{1}\right)}\left(u_{1}\right)}{2+d_{G_{2}}\left(u_{2}, v_{2}\right)} \\
& \leq \sum_{u_{1} \in E\left(G_{1}\right)} \sum_{u_{2}, v_{2} \in V\left(G_{2}\right) ; u_{2} \neq v_{2}} \frac{1}{4}\left[\frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)}{2}+\frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)}{d_{G_{2}}\left(u_{2}, v_{2}\right)}\right] \quad \text { (with equality if } d_{G_{2}}\left(u_{2}, v_{2}\right)=2 \text {) } \\
& =\sum_{u_{1} \in E\left(G_{1}\right)} \sum_{u_{2}, v_{2} \in V\left(G_{2}\right) ; u_{2} \neq v_{2}} \frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)}{8}+\frac{1}{4} \sum_{u_{1} \in E\left(G_{1}\right)} \sum_{u_{2}, v_{2} \in V\left(G_{2}\right) ; u_{2} \neq v_{2}} \frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)}{d_{G_{2}}\left(u_{2}, v_{2}\right)} \\
& =\frac{n_{2}^{2}-n_{2}}{8} \sum_{u_{1} \in E\left(G_{1}\right)} d_{F\left(G_{1}\right)}\left(u_{1}\right)+\frac{H\left(G_{2}\right)}{2} \sum_{u_{1} \in E\left(G_{1}\right)} d_{F\left(G_{1}\right)}\left(u_{1}\right) .
\end{aligned}
$$

By Lemma 2.5, we get

$$
\begin{aligned}
S_{4} & =\frac{1}{2} \sum_{u_{1}, v_{1} \in E\left(G_{1}\right) ; u_{1} \neq v_{1} u_{2}, v_{2} \in V\left(G_{2}\right)} \frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)}, \\
& =\frac{n_{2}}{2} \sum_{u_{1}, v_{1} \in E\left(G_{1}\right) ;} \frac{d_{F\left(G G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)} .
\end{aligned}
$$

Finally, the quantity of S_{5} is computed as follows.

$$
S_{5}=\frac{1}{2} \sum_{u_{1}, v_{1} \in E\left(G_{1}\right) ; u_{1} \neq v_{1} u_{2}, v_{2} \in V\left(G_{2}\right) ; u_{2} \neq v_{2}} \frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)}{\left(1+d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)+d_{G_{2}}\left(u_{2}, v_{2}\right)\right)} .
$$

By using Lemma 2.4 and Jenson's inequality, we have

$$
\begin{aligned}
S_{5} \leq & \frac{1}{8} \sum_{u_{1}, v_{1} \in E\left(G_{1}\right) ;} \sum_{u_{1} \neq v_{1}}\left(d_{u_{2}, v_{2} \in V\left(G_{2}\right) ; u_{2} \neq v_{2}}\left(d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)\right)\left[\frac{1}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)}+\frac{1}{d_{G_{2}}\left(u_{2}, v_{2}\right)+1}\right]\right. \\
& \left(\text { with equality if } d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)=d_{\left(G_{2}\right)}\left(u_{2}, v_{2}\right)+1\right) \\
\leq & \frac{1}{8} \sum_{u_{1}, v_{1} \in E\left(G_{1}\right) ; ;} \sum_{u_{1} \neq v_{1}} \sum_{u_{2}, v_{2} \in V\left(G_{2}\right) ; u_{2} \neq v_{2}} \frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)}{d_{F\left(G_{1}\right)\left(u_{1}, v_{1}\right)}} \\
& +\frac{1}{32} \sum_{u_{1}, v_{1} \in E\left(G_{1}\right) ;} \sum_{u_{1} \neq v_{1}} \sum_{u_{2}, v_{2} \in V\left(G_{2}\right) ; u_{2} \neq v_{2}}\left[\frac{1}{d_{G_{2}}\left(u_{2}, v_{2}\right)}+1\right]\left(\text { with equality if } d_{G_{2}}\left(u_{2}, v_{2}\right)=1\right) \\
= & \frac{1}{32} \sum_{u_{1}, v_{1} \in E\left(G_{1}\right) ; ; u_{1} \neq v_{1}} \sum_{u_{2}, v_{2} \in V\left(G_{2}\right) ; u_{2} \neq v_{2}}\left(d_{\left.F\left(G_{1}\right)\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)\right)}\right. \\
& +\frac{1}{8} \sum_{u_{1}, v_{1} \in E\left(G_{1}\right) ;} \sum_{u_{1} \neq v_{1}} \sum_{u_{2}, v_{2} \in V\left(G_{2}\right) ; u_{2} \neq v_{2}} \frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)}{\left.d_{F\left(G_{1}\right)}\right)\left(u_{1}, v_{1}\right)} \\
& +\frac{1}{32} \sum_{u_{1}, v_{1} \in E\left(G_{1}\right) ; u_{1} \neq v_{1}, u_{2}, v_{2} \in V\left(G_{2}\right) ; u_{2} \neq v_{2}} \frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)}{d_{G_{2}}\left(u_{2}, v_{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{n_{2}^{2}-n_{2}}{32} \sum_{u_{1}, v_{1} \in E\left(G_{1}\right) ; u_{1} \neq v_{1}}\left(d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)\right) \\
& +\frac{n_{2}^{2}-n_{2}}{8} \sum_{u_{1}, v_{1} \in E\left(G_{1}\right) ; u_{1} \neq v_{1}} \frac{d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)}{d_{F\left(G_{1}\right)}\left(u_{1}, v_{1}\right)} \\
& +\frac{H\left(G_{2}\right)}{16} \sum_{u_{1}, v_{1} \in E\left(G_{1}\right) ; u_{1} \neq v_{1}}\left(d_{F\left(G_{1}\right)}\left(u_{1}\right)+d_{F\left(G_{1}\right)}\left(v_{1}\right)\right) .
\end{aligned}
$$

By using the obtained values and inequalities of $S_{1}, S_{2}, \cdots, S_{5}$, and an argument similar to the one used in the proof of Theorem 2.1, we obtain

$$
\begin{aligned}
R D D(G) \leq & \frac{n_{2}^{2}}{4} R D D\left(F\left(G_{1}\right)\right)+\frac{n_{1}\left(n_{1}+m_{1}\right)}{4} R D D\left(G_{2}\right)+2 n_{2} m_{2} H\left(F\left(G_{1}\right)\right) \\
& +\frac{H\left(G_{2}\right)}{2}\left[\frac{k}{2}\left(M_{1}+\bar{M}_{1}\left(G_{1}\right)\right) 22 m-1\left(k m_{1}+n_{1}\right)+\frac{M_{1}\left(G_{1}\right)\left(m_{1}-1\right)}{4}\right] \\
& +\frac{n_{2}}{16} M_{1}\left(G_{1}\right)\left(\left(21 n_{2}-1\right)\left(m_{1}-1\right)+2 k\left(n_{2}-1\right)\right)-\frac{k m_{1} n_{2}\left(n_{2}-1\right)}{4}
\end{aligned}
$$

We end this paper by posing the following open problem which is related to our main results.
Problem 2.1. Characterize the graphs attaining the upper bounds given in Theorems 2.1 and 2.2.

References

[1] Y. Alizadeh, A. Iranmanesh, T. Doslić, Additively weighted Harary index of some composite graphs, Discrete Math. 313 (2013) $26-34$.
[2] M. An, L. Xiong, K. C. Das, Two upper bounds for the degree distances of four sums of graphs, Filomat 28 (2014) 579-590.
[3] A. A. Dobrynin, A. A. Kochetova, Degree distance of a graph: A degree analogue of the Wiener index, J. Chem. Inf. Comput. Sci. 34 (1994) $1082-1086$.
[4] M. Eliasi, B. Taeri, Four new sums of graphs and their Wiener indices, Discrete Appl. Math. 157 (2009) 794-803.
[5] I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci. 34 (1994) $1087-1089$.
[6] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals, Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[7] H. Hua, S. Zhang, On the reciprocal degree distance of graphs, Discrete Appl. Math. 160 (2012) 1152-1163.
[8] S. C. Li, X. Meng, Four edge-grafting theorems on the reciprocal degree distance of graphs and their applications, J. Comb. Optim. 30 (2015) 468-488.
[9] C. Niculescu, L. E. Persson, Convex Functions and Their Applications: A Contemporary Approach, Springer, New York, 2006.
[10] K. Pattabiraman, M. Vijayaragavan, Reciprocal degree distance of some graph operations, Trans. Comb. 2 (2013) 13-24.
[11] K. Pattabiraman, M. Vijayaragavan, Reciprocal degree distance of product graphs, Discrete Appl. Math. 179 (2014) 201-213.
[12] G. F. Su, L. Xiong, X. F. Su, X. L. Chen, Some results on the reciprocal sum-degree distance of graphs, J. Comb. Optim. 30 (2015) $435-446$.
[13] W. Yan, B. Y. Yang, Y. N. Yeh, The behavior of Wiener indices and polynomials of graphs under five graph decorations, Appl. Math. Lett. 20 (2007) 290-295.

[^0]: *Corresponding author (pramank@gmail.com).

