Research Article

Uniqueness of the tensor decomposition for tensors with small ranks over a field

Edoardo Ballico*

Department of Mathematics, University of Trento, Trento, Italy

(Received: 9 March 2022. Received in revised form: 2 April 2022. Accepted: 4 April 2022. Published online: 9 April 2022.)

© 2022 the author. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

We study the uniqueness of a decomposition of a tensor over a field as a sum of rank 1 tensors, when the tensor has low rank, up to 3. We put this in a more general framework (X-rank) and study two different definitions of decompositions over a given (not algebraically closed) field.

Keywords: Segre variety; tensor decomposition; perfect field.

2020 Mathematics Subject Classification: 14N07, 12F99, 14N05, 15A69.

1. Introduction

Let K be a field. Let \(\overline{K} \) be the algebraic closure of K. Unless otherwise stated we assume that K is a perfect field. We just mention that this assumption is satisfied if either K is a finite field or if \(\text{char}(K) = 0 \). Let \(X \subset \mathbb{P}^r \) be a geometrically integral subvariety defined over K and such that \(X(\overline{K}) \) is non-degenerate, i.e. no hyperplane of \(\mathbb{P}^r(\overline{K}) \) contains \(X(\overline{K}) \). Recall that for any \(q \in \mathbb{P}^r(\overline{K}) \) the \((X(\overline{K}), q)\)-rank \(r_{X(\overline{K}), q} \) of \(q \) is the minimal cardinality of a finite set \(A \subset X(\overline{K}) \) such that \(q \in \langle A \rangle_{\overline{K}} \), where \(\langle A \rangle_{\overline{K}} \) denotes the linear span over \(\overline{K} \). The solution set \(S(X(\overline{K}), q) \) of \(q \) with respect to \(X(\overline{K}) \) is the set of all finite sets \(A \subset X(\overline{K}) \) such that \(\#A = r_{X(\overline{K}), q} \) and \(q \in \langle A \rangle_{\overline{K}} \). This definition implies \(S(X(\overline{K}), q) \neq \emptyset \). If \(\#S(X(\overline{K}), q) = 1 \) we say that \(q \) satisfies uniqueness or that it has uniqueness with respect to \(X(\overline{K}) \). Now assume \(q \in \mathbb{P}^r(K) \). There are at least two very different ways to define the K-rank of \(q \) and each of these two ways gives a different definition of solution set. These definitions may give different ranks (Example 2.1) or the same rank, but different solution sets (Example 2.2).

Definition 1.1. Let \(r_{X(K), q} \) be the minimal cardinality of a set \(A \subset X(K) \) such that \(A \) spans \(q \) with the convention \(r_{X(K), q} = +\infty \) if there is no such set \(A \) exists, i.e. the set \(X(K) \) is contained in a hyperplane not containing \(q \).

Definition 1.2. The \((X, K)\)-rank \(r_{X, K}(q) \) of \(q \) is the minimal cardinality of a finite set \(A \subset X(\overline{K}) \) defined over \(K \) and whose linear span contains \(q \) (we do not require that all points of \(A \) are defined over \(q \)).

If \(r_{X(K), q} < +\infty \) let \(S(X(K), q) \) denote the set of all \(A \subset X(K) \) spanning \(q \) and with \(\#A = r_{X(K), q} \). The integer \(r_{X(K), q} \) is often called the \((X(K))-rank \) of \(q \).

Call \(S(X, K, q) \) the solution set of \(q \) for Definition 1.2, i.e., let \(S(X, K, q) \) denote the set of all \(A \subset X(\overline{K}) \) defined over \(K \) such that \(\#A = r_{X, K}(q) \) and \(A \) spans \(q \).

In the next two theorems \(X(\overline{K}) \subset \mathbb{P}^r(\overline{K}) \) is a Segre variety defined over \(K \). In their statements \(X(\overline{K}) \) and \(X(K) \) are the images by the Segre embedding \(\nu \) of a multiprojective space

\[
Y_K = \mathbb{P}^{n_1}_K \times \cdots \times \mathbb{P}^{n_k}_K
\]

and conciseness over \(\overline{K} \) means that there is no proper multiprojective space \(Y'(\overline{K}) \subset Y(\overline{K}) \) such that \(q \in \langle \nu(Y'(\overline{K})) \rangle_{\overline{K}} \).

Theorem 1.1. Assume \(\#K \geq 5 \). Take

\[
X(\overline{K}) \cong \mathbb{P}^{n_1}(\overline{K}) \times \cdots \times \mathbb{P}^{n_k}(\overline{K})
\]

with \(n_i > 0 \) for all \(i \) and assume that this decomposition is defined over \(K \). Fix \(q \in \mathbb{P}^r(K) \) such that \(r_{X(K), q} = 2 \) (respectively \(r_{X, K}(q) = 2 \)) and \(X(\overline{K}) \) is concise for \(q \). Then \(\#S(X(K), q) > 1 \) (respectively \(\#S(X, K, q) > 1 \)) if and only if \(k = 2 \) and \(n_1 = n_2 = 1 \). Moreover, the solution sets are infinite in each of these cases if \(k \) is infinite.

*E-mail address: edoardo.ballico@unitn.it
The next result only uses Definition 1.1.

Theorem 1.2. Assume K infinite and $\text{char}(K) \neq 2, 3$. Fix $q \in \mathbb{P}^r(K)$ which is concise over \overline{K}, i.e. there is no Segre variety $X'(\overline{K}) \subseteq X(\overline{K})$ such that $q \in \langle X'(\overline{K}) \rangle_{\overline{K}}$. Assume $r_{X(\overline{K})}(q) = 3$. We have $\#S(X(\overline{K}), q) > 1$ if and only if q and $Y_K = \mathbb{P}^n_1 \times \cdots \times \mathbb{P}^n_k$ are in one of the following 6 cases (up to a permutation of the factors of Y):

1. $k = 2$ and $n + 1 = n_2 = 1$;
2. $k = 3$, $n_1 = n_2 = n_3 = 1$ and q is contained in the tangential variety of $X(\overline{K})$.
3. $k = 4$, $n_1 = n_2 = n_3 = n_4 = 1$;
4. $k = 3$, $n_1 = 2$, $n_2 = n_3 = 1$;
5. $k = 3$, $n_1 \in \{1, 2\}$, $n_2 \in \{1, 2\}$, $n_4 = 1$ for all $i > 2$ and q is represented by a tensor which is the sum of a rank 1 tensor and a rank 2 tensor equivalent to a 2×2 matrix.
6. $r_{X(\overline{K})}(q) = 2$, $\#S(X(\overline{K}), q) = 1$ and $r_{X(\overline{K})}(q) = 3$.

Moreover, $S(X(\overline{K}), q)$ is infinite in all these cases.

See Example 5.6 for case (6) of the list (of course, it does not occur for all K: it does not occur if $K = \mathbb{C}$). Case (6) does not occur for the (X, K)-rank by Lemma 2.1.

The first 5 items of the list are as the ones of [3, Theorem 7.1], except that case 4 covers two cases (case 4 and 5 of [3, Theorem 7.1]), because the integers k and n_i are the same and the thesis in both cases is that $S(X(\overline{K}), q)$ is infinite (see Example 5.5 for an explanation of the geometry involved). The last one is handled in End of Proof of Theorem 1.2 with a quotation to Proposition 4.2 proved in section 4.

A key tool for the proof of Theorem 1.1 is [3, Proposition 2.3]. A key tool for the proof of Theorem 1.2 is [3, Theorem 7.1], which is also listed in the introduction of [3]. To use [3, Proposition 2.3] it will be sufficient to quote it at a key point. The use of [3, Theorem 7.1] is more complicated, because as any reader of [3] can see it says that a concise tensor $q \in \mathbb{P}(\overline{K})$ such that $r_{X(\overline{K})}(q) = 3$ has $\#S(X(\overline{K}), q) > 1$ if and only if q is as in 6 listed classes, with some of the classes described with the parameters of the concise Segre of q, the integer $\dim S(X(\overline{K}), q)$ (which is always > 0) and, sometimes, the additional words: see Example so and so for a description of q and $S(X(\overline{K}), q)$. In each case we will give all the details needed for our proofs over K (Examples 5.1, 5.2, 5.3, 5.4). Then in the end of proof of Theorem 1.2 we will connect the dots and explain the use of [3, Theorem 7.1] in the other cases, too.

2. Arbitrary X

In this section we only assume that $X \subseteq \mathbb{P}^r$ is a geometrically integral and defined over K and that $X(\overline{K})$ is non-degenerate. For any $q = (a_0 : \cdots : a_r) \in \mathbb{P}^r(K)$ let K_q be the subfield of \overline{K} generated by K and all fractions a_i/a_j with $a_j \neq 0$. Note that for all $t \in \overline{K} \setminus \{0\}$ and $(a_0 : \cdots : a_r)$ and $(ta_0 : \cdots : ta_r)$ give the same ratios with non-zero denominators. The field K_q is invariant for the action of $GL(r + 1, K)$ and it is often called the field generated by q and K. Since \overline{K} is algebraic over K, the field K_q is a finite extension of q.

Let $A \subseteq \mathbb{P}^r(K)$ be a finite set. Let $K'_A \subseteq \overline{K}$ be the subfield generated by $\cup q \in A K_q$. The field K'_A will be called the subfield of \overline{K} generated by the points of A. Since K is a perfect field, there is a finite extension K'_1 of K'_A such that the extension K_1/K is Galois, say with Galois group G. Set $H := \{g \in G \mid g(A) = A\}$ and $K_A := K'_1^H$ (the fixed field). The field K_A is called the Galois subfield of \overline{K} generated by A. If $K_A = K$ we say that A is defined over K. Fix any $q \in \mathbb{P}(K)$. The (X, K)-rank $r_{X,K}(q)$ of q is the minimal cardinality of a finite set $A \subseteq \mathbb{P}(\overline{K})$ defined over K and spanning q. We always have $r_{X,K}(q) < +\infty$. Obviously

$$r_{X(\overline{K})}(q) = r_{X,K}(q)$$

Recall that $S(X, K, q)$ denotes the set of all finite sets $S \subseteq Y(\overline{K})$ such that S is defined over K (but we are not assuming that all points of S are defined over q), $\#S = r_{X,K}(q)$ and $q \in \langle \nu(S) \rangle_{\overline{K}}$.

For any field $L \supseteq K$ and any finite set $S \subseteq X(L)$ let $\langle S \rangle_L$ denote the linear span of S in $\mathbb{P}(L)$. For any $q \in \mathbb{P}(K)$ and any $S \subseteq S(X(\overline{K}), q)$ there is a finite extension L of K such that $q \in S(X(L), q)$. The field L depends on S. If $S(X(\overline{K}), q)$ is infinite there should not be, in general, a finite extension L of K such that $S(X(\overline{K}), q) = S(X(L), q)$ (but it may exist, e.g. for $K = \mathbb{R}$, we may take as L the field \mathbb{C}).

Example 2.1. Take $K = \mathbb{R}$ and $\overline{K} = \mathbb{C} = \mathbb{R}(i)$. Let $C \subseteq \mathbb{P}^2$ be a smooth curve defined over \mathbb{R} and with $C(\mathbb{R}) \neq \emptyset$. All $q \in \mathbb{P}(\mathbb{R}) \setminus C(\mathbb{R})$ have $r_{X(\overline{C})}(q) = 2$, but there are many example in [4, §3] of pairs (X, q) with $r_{C(\mathbb{R})}(q) = 3$.

Example 2.2. Take $K = \mathbb{R}$ and $\overline{K} = C = \mathbb{R}(i)$. Let $C \subset \mathbb{P}^2$ be a real smooth conic with $C(\mathbb{R}) \neq \emptyset$. Up to a real change of variables we may take $C = \{x^2 + y^2 - z^2 = 0\}$, where x, y, z are homogeneous coordinates. Fix $q \in \mathbb{P}^2(\mathbb{C}) \setminus C(\mathbb{C})$. Since $q \notin C(\mathbb{C})$, $r_{X,C}(q) = 2$. There are 2 tangent lines of $C(\mathbb{R})$ passing through q. Call α_1, α_2 the points of $C(\mathbb{R})$ whose tangent lines contain q. For any real line $L(\mathbb{R}) \subset \mathbb{P}^2(\mathbb{R})$ containing q and not intersecting $\{\alpha_1, \alpha_2\}$ the set $L(\mathbb{R}) \cap C(\mathbb{R})$ is formed by two distinct points of $C(\mathbb{R})$ and the set $L(\mathbb{R}) \cap C(\mathbb{C})$ is the complex conjugation. Thus $r_{X,R}(q) = 2$ and $S(X,R,q)$ is a real $\mathbb{P}^1(\mathbb{R})$ (the real pencil of all lines through q) minus 2 points. Thus topologically $S(X,R,q)$ is the union of 2 disjoint circles. In the same way $r_{X,C}(q) = 2$ and that $S(C,C,q)$ is a complex $\mathbb{P}^1(\mathbb{C})$ minus 2 points. Let $\ell_q : \mathbb{P}^2(\mathbb{C}) \setminus \{q\} \to \mathbb{P}^1(\mathbb{C})$ denote the linear projection from q. Since $q \notin C(\mathbb{C})$, $\ell := \ell_{q,C}(C) : C(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$ is a degree 2 surjection. Since $q \in \mathbb{P}^2(\mathbb{R})$, ℓ_q and ℓ are defined over \mathbb{R}. The set $C(\mathbb{R})$ is a circle, while $C(\mathbb{R}) \setminus \{\alpha_1, \alpha_2\}$ is the union of two disjoint intervals. To see that $S(C,C,q) \subset S(C,\mathbb{R},q)$ for some q it is sufficient to dehomogenize the equation of C and take as q a point outside the circle $\{x^2 + y^2 = 1\} \subset \mathbb{R}^2$, i.e. to take $q = (x : y : 1)$ with $x^2 + y^2 > 1$.

Lemma 2.1. Fix $q \in \mathbb{P}^r(K)$ such that $\#S(X,K) = 1$. Then:

1. $r_{X,K} = r_{X,K}(q)$ and $S(X,K,q) = S(X,K,q)$.

2. If $r_{X,K} = r_{X,K}(q)$, then $S(X,K,q) = S(X,K,q)$.

Proof. Write $S(X,K,q) = \{A\}$ for some $A \in X(K)$. Since K is perfect, there is a finite Galois extension K' of K such that each point of A is defined over K'. Call G the Galois group of the extension K'/K. Fix $g \in G$. Since $q \in \mathbb{P}^r(K) \cap (A)_K$ and g is the identity map, $q \in (g(A))_K$. Thus $g(A) = A$. Thus $A \in S(X,K,q)$ and $r_{X,K}(q) = \#A$. Now assume $r_{X,K} = r_{X,K}(q)$. Since $S(X,K,q) \neq \emptyset$, $S(X,K,q) = \{A\}$.

Example 2.1 shows that in part (2) of Lemma 2.1 the assumption “$r_{X,K} = r_{X,K}(q)$” is not always satisfied.

3. Segre varieties: notation and preliminaries

Remember that K is a perfect field. We call \mathbb{P}^n_K an n-dimensional projective space defined over K. Note that we impose in the definition of \mathbb{P}^n_K that the degree 1 line bundle is defined over K. For all fields $L \supseteq K$ we denote the set of all L-points of \mathbb{P}^n_K. Fix positive integers k and n_i, $1 \leq i \leq k$ and set $Y_K := \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_k}$ (or just Y since K is fixed). We impose that Y_K splits over K as a product of k projective spaces, each of them defined over K. For any multiprojective space Y let ν denote its Segre embedding. Thus if $Y = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_k}$, ν is an embedding $\nu : Y \to \mathbb{P}^r$, $r = -1 + \sum_{i=1}^k(n_i + 1)$, defined over K. For instance, for $k = 2$ and $n_1 = n_2 = 1$ the scheme $\nu(Y(K)) \subset \mathbb{P}^3$ is projectively equivalent to the smooth hyperbolic quadric surface. For many K there are non-hyperbolic smooth quadric surfaces. The non-hyperbolic smooth quadric surfaces are not counterexamples to many of the statement of this paper, because our assumptions prevent such objects as subjects of the theorems. See [6] for a description of the Segre varieties over a finite field. For any field $L \supseteq K$, ν induces an injective map (denoted with the same symbol) $\nu : Y(L) \to \mathbb{P}^r(L)$. The elements of $\mathbb{P}^r(L)$ are the equivalence classes (up to a non-zero multiplicative constant) of tensors of format $(n_1 + 1) \times \cdots \times (n_k + 1)$ with coefficients in L. Let $\pi_i : Y \to \mathbb{P}^{n_i}_K$ be the projection of Y onto its i-th factor. Set $Y_i := \prod_{j \neq i} \mathbb{P}^{n_j}_K$ and let $\eta_i : Y_i \to Y_i$ denote the projection. Thus for any $p = (p_1, \ldots, p_k) \in Y$, $\pi_i(p) = p_i$ is the i-th component of p, while $\eta_i(p) = (p_1, \ldots, p_{i-1}, p_{i+1}, \ldots, p_k)$ deletes the i-th component of p. These formulas show that π_i and η_i are defined over K and that for any field $L \supseteq K$ they induces surjections (denoted with the same symbols) $\pi_i : Y(L) \to \mathbb{P}^{n_i}(L)$ and $\eta_i : Y(L) \to Y_i(L)$. Since in our definition the decomposition of Y into k factors $\mathbb{P}^{n_i}_K$ is defined over K, the Segre variety $\nu(Y_K)$ has k rulings by projective subspaces. For any field L such that $K \subseteq L \subseteq K$ set $X(L) := \nu(Y(L)) \subseteq \mathbb{P}^r(L)$.

We fix $q \in \mathbb{P}^r(K)$ (unless otherwise stated) and call $Y' \subseteq Y(K)$ the minimal multiprojective space such that $q \in \langle \nu(Y'(K)) \rangle$. We often says that $X'(K) := \nu(Y'(K))$ is the concise Segre of q. By Autarky (see [8, Proposition 3.1.3.1]) $r_{X'(K)}(q) = r_{X,K}(q)$ and $S(X',K,q) = S(X,K,q)$ (the proof of [8, Proposition 3.1.3.1] only requires that we can make limits and the Zariski topology is sufficient over an algebraically closed field).

For any $q \in \mathbb{P}^r(K)$ we say that a finite set $S \subset \mathbb{P}^r(K)$ irredundantly spans q if $q \in \langle S \rangle$ and $q \notin \langle S' \rangle$ for any $S' \subset S$.

Take any $q \in \mathbb{P}^r(K)$. We saw that, after fixing the coordinates, we get a field K_q and it is natural to study the notions of ranks and solutions for q with respect to the field K_q. Of course, if $q \in \mathbb{P}^r(K)$, then $K_q = K$ and so, as we have seen, the two notions may be different.

Fix positive integers k and n_i, $1 \leq i \leq k$. Call $E_{X,K}$ the set of all $q \in \mathbb{P}^r(K)$ which are concise for $X(K)$, i.e. there is no multiprojective space $Y' \subset Y(K)$ with Y' defined over K and $q \in \langle \nu(Y') \rangle$. By concision over any algebraically closed field for each $q \in E_{X,K}$, every $A \in S(Y(K),q)$ spans $Y(K)$ (the proof of [8, Proposition 3.1.3.1] only requires that we can make limits and the Zariski topology is sufficient over an algebraically closed field).
Definition 3.1. Let $A \subseteq Y(K) = \mathbb{P}^{n_1}(K) \times \cdots \times \mathbb{P}^{n_k}(K)$, $n_i > 0$ for all i, be a finite set, $A \neq \emptyset$. Fix $o = (o_1, \ldots, o_k) \in A$, an integer $i \in \{1, \ldots, k\}$, a line $L_i(K) \subseteq \mathbb{P}^{n_i}(K)$ such that $o_i \in L_i$, and two points $u_i, v_i \in L_i(K) \setminus \{o_i\}$, $u_i \neq v_i$. Write $u = (a_1, \ldots, a_k)$ and $v = (b_1, \ldots, b_k)$ with $a_j = b_j = o_j$ for all $j \neq i$, $a_i = u_i$ and $b_i = v_i$. Set $A' := (A \setminus \{o\}) \cup \{u, v\}$. The set A' is said to be obtained from A making an elementary increasing with respect to the i-th factor.

Remark 3.1. Take A, o, u, v and A' as in Definition 3.1. Obviously $\#A' = \#A + 1$. Take a field $K \subseteq K' \subseteq K$ and assume that the finite set $A \setminus \{o\}$ is defined over K' and $\{o_i, u_i, v_i\} \subseteq \mathbb{P}^{n_i}(K')$. Then A' is defined over K'. If each point of A is defined over K' and $\{u_i, v_i\} \subseteq \mathbb{P}^{n_i}(K')$, then each point of A' is defined over K'.

Remark 3.2. Take A, o, u, v and A' as in Definition 3.1 with $\#A > 1$ and such that at least one point $a \in A \setminus \{o\}$ is not defined over K. Then for no choice of u_i, v_i all points of A' are defined over K.

Remark 3.3. Take $S \subseteq Y(K)$ such that $\nu(S) > 0$ and $\#S \leq 3$. Since ν is an embedding, $\#S = 3$ and $\nu(S) = 1$, i.e. $L := \langle \nu(S) \rangle_K$ is a line. Since L contains 3 points of $\nu(Y(K))$ and any Segre variety is cut out by quadrics, $L \subseteq Y(K)$. The structure of linear subspaces of $Y(K)$ shows that there is $i \in \{1, \ldots, k\}$ such that $\#\pi_i(S) = 1$ for all $h \neq i$, while $\pi_i(S)$ are 3 collinear points.

4. Segre varieties: lemmas and quoted results

We use the following result (see [2, Proposition 5.3]) (alternatively, the reader may just use [1, Theorem 1.1] and do a little work).

Proposition 4.1. Fix $q \in \mathbb{P}^r(K)$ such that $r_{X(K)}(q) = 2$ and take a multiprojective space $Y'(K) \subseteq Y(K)$ concise for q. Fix any $A \subseteq Y(K)$ such that $\nu(A) \in S(X(K), q)$. Fix $B \subseteq Y(K)$ such that $\#B = 3$ and $\nu(B)$ irredundantly spans q, and call $Y'(K) \subseteq Y(K)$ the minimal multiprojective space containing B. Then $Y'(K) \cong (\mathbb{P}^{1}(K))^s$ for some $s \geq 2$, $A \subseteq Y'(K)$ and one of the following cases occurs:

1. $A \cap B \neq \emptyset$, B is obtained from A making and elementary increasing as in Definition 3.1 and either $Y'(K) = Y(K)$ or $Y'(K) \cong \mathbb{P}^2(K) \times (\mathbb{P}^{1}(K))^s-1$ or $Y'(K) \cong (\mathbb{P}^{1}(K))^s+1$;

2. $A \cap B = \emptyset$; in this case either $Y'(K) \cong \mathbb{P}^2(K) \times \mathbb{P}^{1}(K)$ or $Y'(K) \cong \mathbb{P}^1(K) \times \mathbb{P}^{1}(K)$ or $Y'(K) \cong \mathbb{P}^1(K) \times \mathbb{P}^{1}(K) \times \mathbb{P}^{1}(K)$.

For Proposition 4.2 the reader is referred to Section 3 for our conventions concerning Segre varieties. For instance (case $k = 2$ and $n_1 = n_2 = 1$) over many fields, e.g. the real field or a finite field, there are smooth quadric surfaces of $\mathbb{P}^3(K)$ with no ruling defined over K, but with K-points.

Proposition 4.2. Take $q \in \mathbb{P}^r(K)$ such that $r_{X(K)}(q) = 2$ and $\#S(X(K), q) > 1$. Then $r_{X,K}(q) = r_{X(K)}(q) = 2$, $\#S(X, K, q) \geq \#S(X(K), q) > 1$, $S(X(K), q)$ is infinite if K is infinite.

Proof. Fix any $A \subseteq Y(K)$ such that $\nu(A) \in S(\nu(Y(K)), q)$. Let $Y'(K) \subseteq Y(K)$ the minimal multiprojective space containing A. By Autarky $Y'(K)$ is the minimal multiprojective space such that $q \in (\nu(Y'(K)))_K$. Concision also implies that all elements of $S(X(K), q)$ are contained in $\nu(Y'(K))$. By [3, Proposition 2.3] $Y'(K) \cong \mathbb{P}^2(K) \times \mathbb{P}^{1}(K)$. The structure of Segre varieties shows that that the isomorphism of $Y'(K)$ with $\mathbb{P}^2(K) \times \mathbb{P}^{1}(K)$ is defined over K (we use that $\#\mathbb{P}^1(K)$ is infinite if K is infinite and that $\#\mathbb{P}^1(K) = \#K + 1 \geq 3$ if K is finite). Since $Y'(K)$ has only 2 factors, the tensor q is basically a matrix. The classification of rank 2 matrices over K gives the thesis.

Lemma 4.1. Let $C \subseteq \mathbb{P}^3_K$ be a rational normal curve defined over K. Fix $q \in \mathbb{P}^3_K$ with $\nu(C(K)) = 3$. If K is infinite, then $S(C(K), q)$ is infinite. If K is finite and $r_{X(K)}(q) = 2$, then $\#S(C(K), q) > 1$ if and only if $\#K \geq 5$.

Proof. Since $C(K)$ is a rational normal curve of $\mathbb{P}^3(K)$, no 3 of its points are collinear. By assumption $q \notin C(K)$ and q is not contained in any secant line of $C(K)$. Hence the linear projection $\ell_q : \mathbb{P}^3_K \setminus \{q\} \to \mathbb{P}^2_K$ induces an injective map $\ell : C(K) \to \mathbb{P}^2(K)$ and $\ell_C(K)$ is a degree 3 integral and rational plane curve with arithmetic genus 1 and hence with a unique singular point, o, which is either an ordinary node or an ordinary cusp. In all cases $o \in \mathbb{P}^2(K)$. The point o is an ordinary node if and only if $r_{X(K)}(q) = 2$ and this occurs if and only if $o \notin \ell(C(K))$. The assumption $r_{C(K)}(q) = 3$ is equivalent to assuming that $\ell(C(K))$ has 3 collinear points. Call L a line (necessarily defined over K) such that $\#(\ell(C(K)) \cap L) = 3$. Since C is a rational normal curve over K, $C(K)$ is infinite if K is infinite and $\#C(K) = \#K + 1$ if K is finite.

Claim 1. $\ell(C(K)) \cap L \subseteq \ell(C(K))$, unless $K = \mathbb{F}_2$. If either $K \neq \mathbb{F}_3$ or o is an ordinary node, there is $a \in \ell(C(K)) \setminus \ell(C(K)) \cap L$ such that $a \neq o$.

Proof of Claim 1. Let $\ell (C(K)) \cap L = 3$, $\ell (C(K))$ is infinite if K is infinite, while $\# \ell (C(K)) = \# K + 1$ if K is finite.

(a). Assume that K is infinite. The set $W(K)$ of all lines $R \subset \mathbb{P}^2(K)$ such that $0 \not\in R$ and $\# (R \cap \ell (C(K))) = 3$ is a non-empty open Zariski open subset of the dual projective space $\mathbb{P}^2(K)$. The set W is defined over K. Since $L \in W(K)$, $W(K)$ is infinite if K is infinite, $W(K)$ is Zariski dense in $W(K)$. Thus $\ell (C(K))$ has infinitely many trisecant lines.

(b). Assume $r_X(\mathbb{P}^1(K)) = 2$ and K finite. Thus σ is an ordinary node and $0 \not\in \ell (C(K))$. Set $x := \# K$. The set $\ell (C(K))$ has cardinality $x + 1$. By Bezout’s theorem each line through o contains at most another point of $\ell (C(K))$, for any $a \in \ell (C(K))$ the tangent line to $\ell (C(K))$ does not contain a and no line is trisecant to $\ell (C(K))$. Thus each line through 2 points of $\ell (C(K))$ either is tangent to $\ell (C(K))$ at one of these two points or meets a third point of $\ell (C(K))$. There are $\binom{r + 1}{3}$ subsets of $\ell (C(K))$ with cardinality 2 and at most $x + 1$ of them are on a secant line of $\ell (C(K))$. The union of three collinear points has 3 subsets with cardinality 2. Thus if $\binom{r + 1}{3} - x - 1 > 6$, i.e. if $x \geq 5$, then $\ell (C(K))$ has at least 2 trisecant lines. Now assume $x = 4$ and that $\ell (C(K))$ has 2 trisecant lines, say R and D. Set $\{a\} := L \cap 2 \ell (C(K))$ and $\ell (C(K)) \cap R \cup D$. Bezout’s theorem implies that $\ell (C(K)) \not\in \{R, D\}$. Since $\ell (C(K))$ is defined over K, it meets $\ell (C(K))$ at a point not in $R \cup D$, a contradiction. The exclusion of the cases $x = 2, 3$ is easier, because $\ell (C(K))$ has no quadrisecant line.

Proposition 4.3. Take $q \in \mathbb{P}^r(K)$ such that $r_X(\mathbb{P}^1(K)) = 2$ and $\# S(X(\mathbb{P}^1(K)), q) = 1$. Set $\{A\} := S(X(\mathbb{P}^1(K)), q)$. Then:

1. $r_X(K) = 2$ and $\{A\} = S(X, K)$.

2. If $r_X(K) = 2$, then $\{A\} = S(X, K)$.

3. If $r_X(K) = 3$, then $\# S(X(K), q) > 1$ if and only if either K is infinite or K has at least one point.

Proof. Since $\# S(X(K), q) = 1$, K is infinite if $\# S(X(K), q) = 2$, not all points of A are defined over K. Since $\# A = 2$, not all points of A are defined over K. Fix a finite extension $L \supset K$ such that each point of A is defined over L, say $K = \{a, b\} \subseteq Y(L)$. Since K is a perfect field and each subgroup with index 2 of a finite group is normal, we may take as L a degree 2 Galois extension of K. Call g the non-zero element of the Galois group G of the extension K. Note that $q(a) = b$ and $q(b) = a$. Remark 3.2 implies that B is an element of $\mathbb{P}^r(K)$, which is a non-empty open subset of a one-dimensional projective space if $\mathbb{P}^r(K)$ is 2-dimensional. Now $\ell (C(K))$ is a degree 3 rational normal curve. Each point of $\langle \nu (f(\langle \mathbb{P}^1(K) \rangle)^3) \rangle \cap K$ is more than one way irredundantly spanned by 3 points of $\langle \nu (f(\langle \mathbb{P}^1(K) \rangle)^3) \rangle \cap K$ if $\# K \leq 5$. (Lemma 4.1). Thus in this case $\# S(X(K), q) > 1$, unless $\# K < 5$. The cases with $\# K < 5$ are excluded by Lemma 4.1.

Lemma 4.2. Let $C \subset \mathbb{P}^4$ be a degree 4 rational normal curve defined over K. Assume the existence of $q \in \mathbb{P}^4(K)$ such that $r_C(\mathbb{P}^1(K)) = 3$. Assume $\# C(K) = 2$, and K infinite. Then $S(C(K), q)$ is infinite and Zariski dense in $\mathbb{P}^1(K)$.

Proof. Take $B \subset C(K)$ with $B \subset S(C(K), q)$. Since $\# C(K) = 2$, and K infinite we may apply Sylvester’s theorem (see [7, pp. 36–39]) and get that the set $S(C(K), q)$ is a non-empty open subset of a one-dimensional projective space. The algebraic variety $S(C(K), q)$ is defined over K and it contains $B \subset C(K)$. Thus $S(C(K), q)$ is infinite and Zariski dense in $\mathbb{P}^1(K)$.

5. Segre varieties: the main proofs

Let $\tau(\mathbb{P}^1(K)) := (\mathbb{P}^1(K))^3$ and hence $r = 7$.

(a). Over \mathbb{K}, $\mathcal{O}_X(\mathbb{P}^1(K)) = \mathbb{P}^1(K)$, \mathcal{E}_X has 2 orbits, O_2 and O_3, for the action of $\text{Aut}(\mathbb{P}^1(K))^3$ with $O_2 = \tau(\mathbb{P}^1(K)) \cap \mathcal{E}_X$ and $O_3 = \mathbb{P}^1(K) \setminus \tau(\mathbb{P}^1(K))$.

(b). Each $q \in O_3$ has $r_X(\mathbb{P}^1(K)) = 2$ and $\# S(\mathbb{P}^1(K), q) = 1$.

(c). Each $q \in \tau(\mathbb{P}^1(K)) \cap \mathcal{E}_X$ has $r_X(\mathbb{P}^1(K)) = 3$ and $\# S(\mathbb{P}^1(K), q) > 0$.

Lemma 5.2. Take Y, O_1, O_2 and O_3 as in Lemma 5.1. Fix $q \in \mathbb{P}^7(K) \cap \mathcal{E}_X$.

(a). If $q \in O_3$, then $r_{X,K}(q) = 2$ and $\#S(X,K,q) = 1$. If $r_{X(K)}(q) = 2$, then $\#S(X,K,q) = 1$. If $r_{X(K)}(q) = 3$, then $\#S(X,K,q) > 1$ if and only if $K \geq 5$ and $S(X,K,q)$ is infinite if K is infinite.

(b). If $q \in O_2$, then $r_{X,K}(q) = r_{X,K}(q) = 3$, $\#S(X,K,q) > 1$ and $S(X,K,q)$ is infinite if K is infinite.

Proof: Fix $q \in O_3$. Part (a) for (X,K) follows from Lemma 2.1 and part (a) of Lemma 5.1. If $r_{X(K)}(q) = 2$, then $\#S(X,K,q) = 1$ (Lemma 2.1). Now assume $r_{X,K}(q) = 3$. Take A such that $\{v(A)\} = S(X,K,q)$. By assumption A is defined over K, but not all points of A are defined over K. By assumption there is $B \subset Y(K)$ such that $\#B = 3$ and $q \in \nu(B)$. By Remark 3.2, Proposition 4.1 and the assumption $q \in \mathcal{E}_X$, $A \cap B = \emptyset$. A key part of the proof of Proposition 4.1 was [1, Theorem 1.1 and Lemma 5.8] which gives the existence of a curve $C \subset \mathbb{P}^1(K)$ such that $A \cup B \subset C$ and $\nu(C)$ is an isomorphism for $i = 1, 2, 3$. Hence $\nu_{|B}$ is injective. Moreover, [1] also studies all such curves (called of tridegree $(1,1,1)$ in [1]). A key point is that C is uniquely determined in a constructive way from B and hence it is uniquely determined by B. In this way we see that C is defined over K. Since $q \in \nu(B) \cap \mathcal{E}_X$, $\nu(C)_K$ is a degree 3 rational normal curve in its linear span. Use Lemma 4.1 and the last part of the proof of Proposition 4.3.

Now we prove part (b). Since $r_{X(K)}(q) = 3$, we have $r_{X,K}(q) \geq r_{X,K}(q) \geq 3$. Since $q \in \tau(X(K)) \setminus X(K)$, there is a degree 2 connected zero-dimensional scheme $v \subset Y(K)$ such that $q \in \nu(v)$. Since $q \in X \cap \mathbb{P}^7(K)$, it is easy to check as in the proof of [3, Proposition 2.3] that v is unique. Hence v is defined over K. Thus ν_{v} fixed is defined over K (here we use that K is perfect). Write $v = (o_1, o_2, o_3)$ with $o_i \in \mathbb{P}^1(K)$. Let $v_1 \subset \mathbb{P}^1(K)$ connected degree scheme with o_i as its reduction. Set $T := \eta_1^{-1}(v_1) \cup \eta_2^{-1}(o_2) \cup \eta_3^{-1}(o_3)$. The set $\nu(T) \subset \mathbb{P}^1(K)$ is the union of 3 lines through $\nu(o)$, each of them defined over K and dim($\nu(T)$) $= 3$. Fix $e_3 \in \mathbb{P}^1(K) \setminus \{o_1\}$ (it exists for any K). Let t : $\nu(T(K)) \setminus \{e_3\}$ $\to \mathbb{P}^2(K)$ denote the linear projection from e_3. Since $\nu(e_3)$ and $\nu(T)$ are defined over K, t is defined over K. Since $q \in X, q \not\in \nu(o)$ and hence $\nu(T)$ is a well-defined point of $\mathbb{P}^2(K)$. The plane $\mathbb{P}^2(K)$ is spanned by the reducible conic $D := \nu(\eta_2^{-1}(o_2) \cup \eta_3^{-1}(o_3))$. Since $\nu(T)$ is a degree 3 rational normal curve in its linear span, we may apply Lemma 4.2.

Lemma 5.3. Take $Y := (\mathbb{P}_1)^4$ and hence $r = 15$. We have $\dim S_3(X(K)) = 14$, $\dim S(Y(K)) = 1$ for all q with $r_{X,K}(q) = 3$ and $\dim S(Y(K)) = 1$ for a general $q \in S_3(X(K))$. Take $q \in \mathbb{P}^1(K)$ such that $r_{X,K}(q) = r_{X,K}(q) = 3$. If K is infinite, then $S(X,K,q)$ is infinite.

Proof: The part over K is well-known and written down at least in characteristic 0 in all lists of defective Segre varieties. In arbitrary characteristic it is essentially proved in the following way, which we also need for later proofs over K. Fix $B \subset Y(K)$ such that $\#B = 3$ and $\#_B(V) = 3$ for all i. Write $B = \{u, v, z\}$. Let $f_1 : \mathbb{P}_1 \to \mathbb{P}_1$ be the only isomorphism such that $f_i(0) = \pi_i(u)$, $f_i(1) = \pi_i(v)$ and $f_i(\infty) = \pi_i(z)$. The morphism $f_i = (f_i, f_2, f_3, f_4) : \mathbb{P}_1 \to \mathbb{P}_1$ is defined over K and $B \subset f(\mathbb{P}_1)$. Since $\nu(f(\mathbb{P}_1))$ is a degree 4 rational normal curve in its linear span, we may apply Lemma 4.2.

By assumption $r_{X,K}(q) = 3$. Fix $B \subset Y(K)$ such that $\nu(B) \in S(X(K), q)$. We just proved the case $\#\pi_i(B) = 3$ for all i. Thus we may assume $\#\pi_i(B) \leq 2$, for at least one index i. Since $\nu(X(K))$ is concise for q, $\#\pi_i(B) = 2$. If this is true for at least two indices i, then we are in case described in Example 5.3 below. Thus we may assume that $\#\pi_i(B) = 2$ for exactly one index i, say $i = 4$. Call $F \subset B$ the set with $\#F = 2$ and $\#_F(4) = 1$. Set $\{a\} := \pi_i(B)$ and $H := \pi_i^{-1}(a)$. H is a multiprojective space isomorphic to \mathbb{P}_1^3 and $H = \mathbb{P}^1_1 \times \{a\}$ is embedded in Y by the inclusion $\{a\} \to \mathbb{P}^1_1$. Since $\nu(B)$ irredundantly spans q, there is a unique $q' \in \nu(F)_K$ such that $q \in \{q', \nu(o)\}$. Now we vary $b \in \mathbb{P}_1^3$. Take any $a' \in \mathbb{P}_1^3$. The line $\{q, \nu(b)\}_K$ meets $\nu(H)_K$ at a unique point q_0. We take $F_0 \in S(H(K), q_0)$ and set $R_0 := F_0 \cup \{b\}$. We need to justify the existence of F_0, i.e. that $r_{H(K)}(q_0) = 2$. For any field $L \supset K$ all sets $A \subset H(L)$ such that $\#_A(B) = 2$ for all $i = 1, 2, 3$, form a unique orbit for the action of $\text{Aut}(\mathbb{P}^1(L))^3$. Taking their linear spans we cover all $q' \in \nu(Y)_L$ with $r_{H(L)}(q') = 2$. Since K is infinite, we get as q_0 a Zariski dense subset of the projective space $\nu(H)_K$.

End of the proof of Theorem 1.1: Fix $q \in \mathbb{P}^1(K)$ such that $r_{X(K)}(q) = 2$. The case with $\#S(X(K), q) > 1$ true by Proposition 4.2. Assume $\#S(X(K), q) = 1$. Lemma 2.1 gives $r_{X,K}(q) = 2$, $\#S(X,K,q) = 1$ and that $\#S(X,K,q) = 1$ if $r_{X,K}(q) = 2$.

Example 5.1. Case 1 of [3, Theorem 7.1] is the case $k = 2$, i.e. when the tensor T whose equivalence class represent q is a rank 3 matrix. In this case $r_{X(K)}(q) = r_{X,K}(q) = 3$, $\#S(X(K), q)$ is concise for $X(K)$ and q is as case 2 of [3, Theorem 7.1]. Thus $K = 3, n_1 = n_2 = n_3 = 1$ and $q \in \tau(X(K))$. We described this case in Lemma 5.2.
Example 5.3. Take $q \in P^r(K)$ such that $r_{X(K)}(q) = r_{X(K)}(q) = 3$, $X(K)$ is concise for K and q is in case 6 of [3, Theorem 7.1]. Thus $k \geq 3$, $n_1 = 1$ for all $i \geq 3$, $n_1 \in \{1, 2\}$, $n_2 \in \{1, 2\}$ and there is $E \in S(X(K), q)$ and $F \subseteq E$ with $\#F = 2$ and $\#\pi(F) = 1$ for all $i \geq 3$. Set $\{a\} := E \setminus F$. Since $\nu(E)$ irredundantly spans q, there is a unique $q' \in \{\nu(E)\}$ such that $q \in \{\nu(q'), \nu(o)\}$. If $n_1 + n_2 + k \geq 4$, we also proved that each $E' \in S(X(K), q)$ contains o and $\#\pi(E' \setminus \{a\}) = 1$ for all $i \geq 3$. Under these stronger assumptions o is uniquely determined by q and hence it is defined over K. Thus q' is defined over K. By the definition of q' and the problem $X(K)$ is the minimal multiprojective space $\nu(X(K))$ such that $\nu \subset \{\nu(Y(K))\}$ is isomorphic to $P^1(K)^2$, i.e. q' is represented by a tensor, which is equivalent to a 2×2 rank 2 matrix. Since q' is defined over K, the classification of matrices of rank 1 is as case 1. Thus $S(X(K), q') > 1$ and that $S(X(K), q')$ is finite. Now assume $k = n_1 = n_2 = 3$. Concision and the assumption $r_{X(K)}(q) = 3$ give $q \in \tau(X(K)) \cap E_K$ and we handled this case in Lemma 5.1.

Example 5.4. Take $q \in P^r(K)$ such that $r_{X(K)}(q) = r_{X(K)}(q) = 3$, $X(K)$ is concise for q, and q is as in case 3 of [3, Theorem 7.1]. Thus $k = 4$, $n_1 = n_2 = n_3 = 4$. We described this case in Lemma 5.3.

Example 5.5. Take $q \in P^r(K)$ such that $r_{X(K)}(q) = r_{X(K)}(q) = 3$, $X(K)$ is concise for K and q is either as in case 4 or as in case 5 of [3, Theorem 7.1]. In both cases $k = 3$, $n_1 = 2$, $n_2 = n_3 = 1$ and the 2 cases are distinguished in the following way. Fix any $E \subset Y(K)$ such that $\nu(E) \in S(X(K), q)$ and any $B \subset Y(K)$ such that $\nu(B) \in S(X(K), q)$. Write $B = \{u, v, z\}$. Since $k^0(C_{X(K)}(0, 1, 1)) = 4$ and $\#E = 3$, $|E(0, 1, 1)| \neq 0$. It was proved in [3, Proposition 3.8] that $|E(0, 1, 1)|$ is a singleton, say $|E(0, 1, 1)| = \{G\}$. The two cases are distinguished as if G is irreducible (case 4) or G is reducible, say $G = G_1 \cup G_2$ with $G_1 \subseteq C_{X(K)}(0, 1, 0)$ and $G_2 \subseteq C_{X(K)}(0, 1, 0)$ (case 5). Each $A \subset Y(K)$ such that $\nu(A) \in S(X(K), q)$ is contained in G (see [3, Proposition 3.8]). In particular $B \subset G$ and G, being uniquely determined, is defined over K. The two cases are also distinguished according to the injectivity of both $\pi_{2|E}$ and $\pi_{2|E}$.

(a). Assume that G is irreducible and hence $\pi_{i|B}$ is injective for $i = 2, 3$. Thus $r_{X(K)}(q) = 2$ and $r_{X(K)}(q) = 3$. Use case 3 of Proposition 4.3.

Example 5.6. Assume that K has a degree 2 extension L. Call σ the generator of the Galois group the extension L/K. Fix $X(K)$ with $Y_K = (P^1_K)^k$ for some $k > 2$ factors. Take $a_1, \ldots, a_k \in K_1 \setminus K$. Using a_i and $\sigma(a_i)$ we may construct a points $p \in Y(K_1) \setminus Y(K)$ such that $Y(K)$ is the minimal multiprojective space containing $\{u, \sigma(u)\}$. The line $\langle\nu(u), \nu(\sigma(u))\rangle$ is defined over K and hence it corresponds to a line R of $P^r(K)$ containing no point of $\nu(Y(K))$. Fix R. Since $\nu(\sigma(u)) \in S(T, q)$ and $\#S(X(K), q) = 1$ (see [3, Proposition 2.3]), $r_{X(K)}(q) = 2$ and $r_{X(K)}(q) > 2$. At least in some cases, e.g. $k = 3$ and $K = \mathbb{R}$, it is easy to find u and q such that $r_{X(K)}(q) = 3$.

Acknowledgement

The author is a member of GNSAGA of INdAM, Italy.

References