Research Article

Uniqueness of the tensor decomposition for tensors with small ranks over a field

Edoardo Ballico[∗](#page-0-0)

Department of Mathematics, University of Trento, Trento, Italy

(Received: 9 March 2022. Received in revised form: 2 April 2022. Accepted: 4 April 2022. Published online: 9 April 2022.)

© 2022 the author. This is an open access article under the CC BY (International 4.0) license (<www.creativecommons.org/licenses/by/4.0/>).

Abstract

We study the uniqueness of a decomposition of a tensor over a field as a sum of rank 1 tensors, when the tensor has low rank, up to 3. We put this in a more general framework (X-rank) and study two different definitions of decompositions over a given (not algebraically closed) field.

Keywords: Segre variety; tensor decomposition; perfect field.

2020 Mathematics Subject Classification: 14N07, 12F99, 14N05, 15A69.

1. Introduction

Let K be a field. Let \overline{K} be the algebraic closure of K. Unless otherwise stated we assume that K is a perfect field. We just mention that this assumption is satisfied if either K is a finite field or if $char(K) = 0$. Let $X \subset \mathbb{P}^r$ be a geometrically integral subvariety defined over K and such that $X(\overline{K})$ is non-degenerate, i.e. no hyperplane of $\mathbb{P}^r(\overline{K})$ contains $X(\overline{K})$. Recall that for any $q\in \mathbb P^r(\overline K)$ the $X(\overline K)$ -rank $r_{X(\overline K)}(q)$ of q is the minimal cardinality of a finite set $A\subset X(\overline K)$ such that $q \in \langle A \rangle_{\overline{K}}$, where $\langle \ \rangle_{\overline{K}}$ denotes the linear span over \overline{K} . The *solution set* $\mathcal{S}(X(\overline{K}), q)$ of q with respect to $X(\overline{K})$ is the set of all finite sets $A\subset X(K)$ such that $\#A=r_{X(\overline{K})}(q)$ and $q\in\langle A\rangle_{\overline{K}}.$ This definition implies $\mathcal{S}(X(K),q)\neq\emptyset.$ If $\#\mathcal{S}(X(K),q)=1$ we say that q satisfies *uniqueness* or that it has *uniqueness with respect to* $X(\overline{K})$. Now assume $q \in \mathbb{P}^r(K)$. There are at least two very different ways to define the K-rank of q and each of these two ways gives a different definition of solution set. These definitions may give different ranks (Example [2.1\)](#page-1-0) or the same rank, but different solution sets (Example [2.2\)](#page-2-0).

Definition 1.1. Let $r_{X(K)}(q)$ be the minimal cardinality of a set $A \subseteq X(K)$ such that A spans q with the convention $r_{X(K)}(q) = +\infty$ *if there is no such set* A *exists, i.e. the set* $X(K)$ *is contained in a hyperplane not containing q.*

Definition 1.2. *The* (X, K) -rank $r_{X,K}(q)$ of q is the minimal cardinality of a finite set $A \subset X(\overline{K})$ defined over K and whose *linear span contains* q *(we do not require that all points of* A *are defined over* q*).*

If $r_{X(K)}(q) < +\infty$ let $\mathcal{S}(X(K), q)$ denote the set of all $A \subseteq X(K)$ spanning q and with $\#A = r_{X(K)}(q)$. The integer $r_{X(K)}(q)$ is often called the $X(K)$ -rank of q.

Call $\mathcal{S}(X, K, q)$ the solution set of q for Definition [1.2,](#page-0-1) i.e., let $\mathcal{S}(X, K, q)$ denote the set of all $A \subset X(\overline{K})$ defined over K such that $#A = r_{X,K}(q)$ and A spans q.

In the next two theorems $X(\overline{K})\subset\mathbb P^r(\overline{K})$ is a Segre variety defined over $K.$ In their statements $X(\overline{K})$ and $X(K)$ are the images by the Segre embedding ν of a multiprojective space

$$
Y_K = \mathbb{P}_K^{n_1} \times \cdots \times \mathbb{P}_K^{n_k}
$$

and conciseness over \overline{K} means that there is no proper multiprojective space $Y'(\overline{K})\subsetneq Y(\overline{K})$ such that $q\in \langle \nu(Y'(\overline{K}))\rangle_{\overline{K}}.$

Theorem 1.1. *Assume* $#K \geq 5$ *. Take*

$$
X(\overline{K}) \cong \mathbb{P}^{n_1}(\overline{K}) \times \cdots \times \mathbb{P}^{n_k}
$$

with $n_i>0$ for all i and assume that this decomposition is defined over K . Fix $q\in \mathbb P^r(K)$ such that $r_{X(K)}(q)=2$ (respectively $r_{X,K}(q) = 2$ and $X(\overline{K})$ is concise for q. Then $\#S(X(K), q) > 1$ (respectively $\#S(X, K, q) > 1$) if and only if $k = 2$ and $n_1 = n_2 = 1$. Moreover, the solution sets are infinite in each of these cases if K is infinite.

[∗]E-mail address: edoardo.ballico@unitn.it

The next result only uses Definition [1.1.](#page-0-2)

Theorem 1.2. Assume K infinite and $char(K) \neq 2, 3$. Fix $q \in \mathbb{P}^r(K)$ which is concise over \overline{K} , i.e. there is no Segre $variety$ $X'(\overline{K}) \subsetneq X(\overline{K})$ such that $q \in \langle X'(\overline{K}) \rangle_{\overline{K}}$. Assume $r_{X(K)}(q) = 3$. We have $\#S(X(K), q) > 1$ if and only if q and $Y_K = \mathbb{P}^{n_1}_K \times \cdots \mathbb{P}^{n_k}_K$ are in one of the following 6 cases (up to a permutation of the factors of Y):

- **(1).** $k = 2$ *and* $n + 1 = n_2 = 1$ *;*
- **(2).** $k = 3$, $n_1 = n_2 = n_3 = 1$ and q is contained in the tangential variety of $X(\overline{K})$.
- **(3).** $k = 4, n_1 = n_2 = n_3 = n_4 = 1$;
- **(4).** $k = 3, n_1 = 2, n_2 = n_3 = 1;$
- **(5).** $k = 3$, $n_1 \in \{1, 2\}$, $n_2 \in \{1, 2\}$, $n_i = 1$ for all $i > 2$ and q is represented by a tensor which is the sum of a rank 1 tensor *and a rank* 2 *tensor equivalent to a* 2×2 *matrix.*

(6).
$$
r_{X(\overline{K})}(q) = 2
$$
, $\#S(X(\overline{K}), q) = 1$ and $r_{X(K)}(q) = 3$.

Moreover, $S(X(K), q)$ *is infinite in all these cases.*

See Example [5.6](#page-6-0) for case (6) of the list (of course, it does not occur for all K: it does not occur if $K = \overline{K}$). Case (6) does not occur for the (X, K) -rank by Lemma [2.1.](#page-2-1)

The first 5 items of the list are as the ones of [\[3,](#page-6-1) Theorem 7.1], except that case 4 covers two cases (case 4 and 5 of [\[3,](#page-6-1) Theorem 7.1]), because the integers k and n_i are the same and the thesis in both cases is that $\mathcal{S}(X(K), q)$ is infinite (see Example [5.5](#page-6-2) for an explanation of the geometry involved). The last one is handled in End of Proof of Theorem [1.2](#page-1-1) with a quotation to Proposition [4.2](#page-3-0) proved in section [4.](#page-3-1)

A key tool for the proof of Theorem [1.1](#page-0-3) is [\[3,](#page-6-1) Proposition 2.3]. A key tool for the proof of Theorem [1.2](#page-1-1) is [\[3,](#page-6-1) Theorem 7.1], which is also listed in the introduction of [\[3\]](#page-6-1). To use [\[3,](#page-6-1) Proposition 2.3] it will be sufficient to quote it at a key point. The use of [\[3,](#page-6-1) Theorem 7.1] is more complicated, because as any reader of [\[3\]](#page-6-1) can see it says that a concise tensor $q\in\mathbb P^r(\overline{K})$ such that $r_{X(\overline K)}(q)=3$ has $\#\mathcal S(X(K),q)>1$ if and only if q is as in 6 listed classes, with some of the classes described with the parameters of the concise Segre of q, the integer dim $\mathcal{S}(X(\overline{K}), q)$ (which is always > 0) and, sometimes, the additional words: see Example so and so for a description of q and $\mathcal{S}(X(\overline{K}), q)$. In each case we will give all the details needed for our proofs over K (Examples $5.1, 5.2, 5.3, 5.4$ $5.1, 5.2, 5.3, 5.4$ $5.1, 5.2, 5.3, 5.4$ $5.1, 5.2, 5.3, 5.4$ $5.1, 5.2, 5.3, 5.4$ $5.1, 5.2, 5.3, 5.4$). Then in the end of proof of Theorem [1.2](#page-1-1) we will connect the dots and explain the use of [\[3,](#page-6-1) Theorem 7.1] in the other cases, too.

2. Arbitrary X

In this section we only assume that $X\subset \mathbb P^r$ is a geometrically integral and defined over K and that $X(\overline K)$ is non-degenerate. For any $q=(a_0:\cdots:a_r)\in \mathbb P^r(\overline{K})$ let K_q be the subfield of \overline{K} generated by K and all fractions a_i/a_j with $a_j\neq 0.$ Note that for all $t \in \overline{K} \setminus \{0\}$ $(a_0 : \cdots : a_r)$ and $(ta_0 : \cdots : ta_r)$ give the same ratios with non-zero denominators. The field K_q is invariant for the action of $GL(r+1, K)$ and it is often called the field generated by K and q. Since \overline{K} is algebraic over K, the field K_q is a finite extension of q.

Let $A\subset\mathbb P^r(\overline{K})$ be a finite set. Let $K'_A\subseteq\overline{K}$ be the subfield generated by $\cup_{q\in A}K_q.$ The field K'_A will be called the subfield of \overline{K} generated by the points of $A.$ Since K is a perfect field, there is a finite extension K_1 of K'_A such that the extension K_1/K is Galois, say with Galois group G. Set $H := \{g \in G \mid g(A) = A\}$ and $K_A := K_1^H$ (the fixed field). The field K_A is called the Galois subfield of \overline{K} generated by A. If $K_A = K$ we say that A is defined over K. Fix any $q \in \mathbb{P}^r(K)$. The (X, K) -rank $r_{X,K}(q)$ of q is the minimal cardinality of a finite set $A \subset \mathbb{P}^r(\overline{K})$ defined over K and spanning q. We always have $r_{X,K}(q) < +\infty$. Obviously

$$
r_{X(\overline{K})}(q) \le r_{X,K}(q) \le r_{X(K)}(q)
$$
\n⁽¹⁾

Recall that $S(X, K, q)$ denotes the set of all finite sets $S \subset Y(\overline{K})$ such that S is defined over K (but we are not assuming that all points of S are defined over q), $\#S = r_{X,K}(q)$ and $q \in \langle \nu(S) \rangle_{\overline{K}}$.

For any field $L \supseteq K$ and any finite set $S \subseteq X(L)$ let $\langle S \rangle_L$ denote the linear span of S in $\mathbb{P}^r(L)$. For any $q \in \mathbb{P}^r(K)$ and any $S \in \mathcal{S}(X(\overline{K}), q)$ there is a finite extension L of K such that $q \in \mathcal{S}(X(L), q)$. The field L depends on S. If $\mathcal{S}(X(\overline{K}), q)$ is infinite there should not be, in general, a finite extension L of K such that $\mathcal{S}(X(\overline{K}), q) = \mathcal{S}(X(L), q)$ (but it may exist, e.g. for $K = \mathbb{R}$, we may take as L the field \mathbb{C}).

Example 2.1. Take $K = \mathbb{R}$ and $\overline{K} = \mathbb{C} = \mathbb{R}(i)$. Let $C \subset \mathbb{P}^2$ be a smooth curve defined over \mathbb{R} and with $C(\mathbb{R}) \neq \emptyset$. All $q \in \mathbb{P}^2(\mathbb{R}) \setminus C(\mathbb{R})$ have $r_{X(\mathbb{C})}(q) = 2$, but there are many example in [\[4,](#page-6-5) §3] of pairs (X, q) with $r_{C(\mathbb{R})}(q) = 3$.

Example 2.2. Take $K = \mathbb{R}$ and $\overline{K} = \mathbb{C} = \mathbb{R}(i)$. Let $C \subset \mathbb{P}^2$ be a real smooth conic with $C(\mathbb{R}) \neq \emptyset$. Up to a real change of variables we may take $C = \{x^2 + y^2 - z^2 = 0\}$, where x, y, z are homogeneous coordinates. Fix $q \in \mathbb{P}^2(\mathbb{R}) \setminus C(\mathbb{R})$. Since $q \notin C(\mathbb{C}), r_{X(\mathbb{C})}(q) = 2$. There are 2 tangent lines of $C(\mathbb{R})$ passing through q. Call o_1, o_2 the points of $C(\mathbb{R})$ whose tangent lines contain $q.$ For any real line $L(\R)\subset \R^2(\R)$ containing q and not intersecting $\{o_1, o_2\}$ the set $L(\R)\cap C(\R)$ is formed by two distinct points of $C(\mathbb{C})$ and the set $L(\mathbb{R})\cap C(\mathbb{R})$ is invariant for the complex conjugation. Thus $r_{X,\mathbb{R}}(q) = 2$ and $\mathcal{S}(X,\mathbb{R},q)$ is a real $\mathbb{P}^1(\mathbb{R})$ (the real pencil of all lines through q) minus 2 points. Thus topologically $\mathcal{S}(X,\mathbb{R},q)$ is the union of 2 disjoint circles. In the same way $r_{X(\mathbb{C})}(q) = 2$ and that $\mathcal{S}(C(\mathbb{C}), q)$ is a complex $\mathbb{P}^1(\mathbb{C})$ minus 2 points. Let $\ell_q : \mathbb{P}^2(\mathbb{C}) \setminus \{q\} \to \mathbb{P}^1(\mathbb{C})$ denote the linear projection from q. Since $q \notin C(\mathbb{C})$, $\ell := \ell_{q|C(\mathbb{C})}: C(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$ is a degree 2 surjection. Since $q \in \mathbb{P}^2(\mathbb{R})$, ℓ_q and ℓ are defined over R. The set $C(\mathbb{R})$ is a circle, while $C(\mathbb{R}) \setminus \{o_1, o_2\}$ is the union of two disjoint intervals. To see that $\mathcal{S}(C(\mathbb{R}), q) \subsetneq \mathcal{S}(C, \mathbb{R}, q)$ for some q it is sufficient to dehomogenize the equation of C and take as q a point outside the circle ${x² + y² = 1} \subset \mathbb{R}²$, i.e. to take $q = (x : y : 1)$ with $x² + y² > 1$.

Lemma 2.1. *Fix* $q \in \mathbb{P}^r(K)$ *such that* $\#S(X(\overline{K}), q) = 1$ *. Then:*

(1).
$$
r_{X,K} = r_{X(\overline{K})}(q)
$$
 and $\mathcal{S}(X(\overline{K}), q) = \mathcal{S}(X, K, q)$.

(2). *If* $r_{X(K)} = r_{X(K)}(q)$ *, then* $S(X(\overline{K}), q) = S(X(K), q)$ *.*

Proof. Write $\mathcal{S}(X(\overline{K}), q) = \{A\}$ for some $A \in X(\overline{K})$. Since K is perfect, there is a finite Galois extension K' of K such that each point of A is defined over K'. Call G the Galois group of the extension K'/K . Fix $g\in G$. Since $q\in \mathbb P^r(K)\cap \langle A\rangle_{\overline{K}}$ and $g_{|K}$ is the identity map, $q\in \langle g(A)\rangle_{\overline K}.$ Thus $g(A)=A.$ Thus $A\in \mathcal{S}(X, K, q)$ and $r_{X, K}(q)=\# A.$ Now assume $r_{X(K)}=r_{X(\overline K)}(q).$ Since $\mathcal{S}(X(K), q) \neq \emptyset$, $\mathcal{S}(X(K), q) = \{A\}.$ \Box

Example [2.1](#page-2-1) shows that in part (2) of Lemma 2.1 the assumption " $r_{X(K)} = r_{X,K}(q)$ " is not always satisfied.

3. Segre varieties: notation and preliminaries

Remember that K is a perfect field. We call \mathbb{P}^n_K an n -dimensional projective space defined over K. Note that we impose in the definition of \mathbb{P}^n_K that the degree 1 line bundle is defined over $K.$ For all fields $L\supseteq K$ let $\mathbb{P}^n(L)$ denote the set of all *L*-points of \mathbb{P}^n_K . Fix positive integers k and n_i , $1\leq i\leq k$ and set $Y_K:=\mathbb{P}^{n_1}_K\times\cdots\times\mathbb{P}^{n_k}_K$ (or just Y since K is fixed). We impose that Y_K splits over K as a product of k projective spaces, each of them defined over K. For any multiprojective space Y let ν denote its Segre embedding. Thus if $Y=\mathbb{P}^{n_1}_K\times\cdots\times\mathbb{P}^{n_k}_K, \nu$ is an embedding $\nu:Y\to\mathbb{P}^r_K, r=-1+\prod_{i=1}^k(n_i+1),$ defined over K. For instance, for $k = 2$ and $n_1 = n_2 = 1$ the scheme $\nu(Y(K)) \subset \mathbb{P}^3(K)$ is projectively equivalent to the smooth hyperbolic quadric surface. For many K there are non-hyperbolic smooth quadric surfaces. The non-hyperbolic smooth quadric surfaces are not counterexamples to many of the statement of this paper, because our assumptions prevent such objects as subjects of the theorems. See [\[6\]](#page-6-6) for a description of the Segre varieties over a finite field. For any field $L \supseteq K$, v induces an injective map (denoted with the same symbol) $\nu: Y(L) \to \mathbb{P}^r(L)$. The elements of $\mathbb{P}^r(L)$ are the equivalence classes (up to a non-zero multiplicative constant) of tensors of format $(n_1 + 1) \times \cdots \times (n_k + 1)$ with coefficients in L. Let $\pi_i:Y\to \mathbb{P}^{n_i}_K$ be the projection of Y onto its i -th factor. Set $Y_i:=\prod_{j\neq i}\mathbb{P}^{n_j}_K$ and let $\eta_i:Y\to Y_i$ denote the projection. Thus for any $p = (p_1, \ldots, p_k) \in Y$, $\pi_i(p) = p_i$ is the *i*-th components of p, while $\eta_i(p) = (p_1, \ldots, p_{i-1}, p_{i+1}, \ldots, p_k)$ deletes the *i*-th component of p. These formulas show that π_i and η_i are defined over K and that for any field $L \supseteq K$ they induces surjections (denoted with the same symbols) $\pi_i: Y(L) \to \mathbb{P}^{n_i}(L)$ and $\eta_i: Y(L) \to Y_i(L)$. Since in our definition the decomposition of Y into k factors $\mathbb{P}^{n_i}_K$ is defined over K , the Segre variety $\nu(Y_K)$ has k rulings by projective subspaces. For any field L such that $K \subseteq L \subseteq \overline{K}$ set $X(L) := \nu(Y(L)) \subseteq \mathbb{P}^r(L)$.

We fix $q \in \mathbb{P}^r(K)$ (unless otherwise stated) and call $Y'(\overline{K}) \subseteq Y(\overline{K})$ the minimal multiprojective space such that $q \in$ $\langle \nu(Y'(\overline{K}))\rangle_{\overline{K}}$. We often says that $X'(\overline{K}) := \nu(Y'(\overline{K}))$ is the *concise Segre of q*. By Autarky (see [\[8,](#page-6-7) Proposition 3.1.3.1]) $r_{X'(\overline{K})}(q)=r_{X(\overline{K})}(q)$ and $\mathcal{S}(X'(\overline{K}), q)=\mathcal{S}(X(\overline{K}), q)$ (the proof of [\[8,](#page-6-7) Proposition 3.1.3.1] only requires that we can make limits and the Zariski topology is sufficient over an algebraically closed field).

For any $q\in \mathbb P^r(\overline{K})$ we say that a finite set $S\subset \mathbb P^r(\overline{K})$ irredundantly spans q if $q\in \langle S\rangle_{\overline{K}}$ and $q\notin \langle S'\rangle_{\overline{K}}$ for any $S'\subsetneq S.$

Take any $q\in\mathbb P^r(\overline K).$ We saw that, after fixing the coordinates, we get a field K_q and it is natural to study the notions of ranks and solutions for q with respect to the field K_q . Of course, if $q \in \mathbb{P}^r(K)$, then $K_q = K$ and so, as we have seen, the two notions may be different.

Fix positive integers k and $n_i,$ $1\leq i\leq k.$ Call $\mathcal{E}_{X(\overline K)}$ the set of all $q\in \mathbb P^r(\overline K)$ which are concise for $X(\overline K)$, i.e. there is no multiprojective space $Y'\subsetneq Y(\overline{K})$ with Y' defined over \overline{K} and $q\in \langle \nu(Y')\rangle_{\overline{K}}.$ By concision over any algebraically closed field for each $q\in\mathcal{E}_{X(\overline K)}$ every $A\in\mathcal{S}(Y(K),q)$ spans $Y(K)$ (the proof of [\[8,](#page-6-7) Proposition 3.1.3.1] only requires that we can make limits and the Zariski topology is sufficient over an algebraically closed field).

 $\textbf{Definition 3.1.} \ \textit{Let} \ \ A \subset Y(\overline{K})=\mathbb{P}^{n_1}(\overline{K}) \times \cdots \times \mathbb{P}^{n_k}(\overline{K}), \ n_i>0 \ \textit{for all} \ \ i, \ \textit{be a finite set}, \ A \neq \emptyset. \ \ \textit{Fix} \ o=(o_1,\ldots,o_k) \in A,$ ${\it an~integer~} i \,\in\, \{1,\ldots,k\},~\textit{a~line~} L_i(\overline{K}) \,\subseteq\, \mathbb{P}^{n_i}(\overline{K})~\textit{such~that~} o_i \,\in\, L_i~\textit{and~two~points~} u_i, v_i \,\in\, L_i(\overline{K}) \setminus \{o_i\},~u_i \,\neq\, v_i.~~\textit{Write~} i$ $u = (a_1, \ldots, a_k)$ and $v = (b_1, \ldots, b_k)$ with $a_j = b_j = o_j$ for all $j \neq i$, $a_i = u_i$ and $b_i = v_i$. Set $A' := (A \setminus \{o\}) \cup \{u, v\}$. The set A' *is said to be obtained from* A *making an elementary increasing with respect to the* i*-th factor.*

Remark [3.1.](#page-3-2) *Take* A, o, u, v and A' as in Definition 3.1. Obviously $\#A' = \#A + 1$. *Take a field* $K \subseteq K' \subseteq \overline{K}$ and assume t hat the finite set $A\setminus\{o\}$ is defined over K' and $\{o_i,u_i,v_i\}\subset\mathbb P^{n_i}(K')$. Then A' is defined over K' . If each point of A is defined *over* K' and $\{u_i, v_i\} \subset \mathbb{P}^{n_i}(K')$, then each point of A' is defined over K'.

Remark 3.2. *Take* A, o, u, v and A' as in Definition [3.1](#page-3-2) with $#A > 1$ and such that at least one point $a \in A \setminus \{o\}$ is not defined over K. Then for no choice of u_i, v_i all points of A' are defined over K.

Remark 3.3. *Take* $S \subset Y(\overline{K})$ *such that* $e(S) > 0$ *and* $\#S \leq 3$ *. Since* ν *is an embedding,* $\#S = 3$ *and* $e(S) = 1$ *, i.e.* $L := \langle \nu(S) \rangle_{\overline{K}}$ *is a line. Since* L contains 3 points of $\nu(Y(\overline{K}))$ and any Segre variety is cut out by quadrics, $L \subseteq Y(\overline{K})$. The *structure of linear subspaces of* $Y(\overline{K})$ *shows that there is* $i \in \{1, ..., k\}$ *such that* $\#\pi_h(S) = 1$ *for all* $h \neq i$ *, while* $\pi_i(S)$ *are* 3 *collinear points.*

4. Segre varieties: lemmas and quoted results

We use the following result (see [\[2,](#page-6-8) Proposition 5.3]) (alternatively, the reader may just use [\[1,](#page-6-9) Theorem 1.1] and do a little work).

 $\bf{Proposition 4.1.}$ $Fix\ q\in {\mathbb P}^r(\overline{K})$ such that $r_{X(\overline{K})}(q)=2$ and take a multiprojective space $Y'(\overline{K})\subseteq Y(\overline{K})$ concise for $q.$ Fix $any A \subset Y(\overline{K})$ *such that* $\nu(A) \in S(X(\overline{K}), q)$ *. Fix* $B \subset Y(\overline{K})$ *such that* $\#B = 3$ *and* $\nu(B)$ *irredundantly spans* q*. and call* $Y'(\overline{K})\subseteq Y(\overline{K})$ is the minimal multiprojective space containing B. Then $Y'(\overline{K})\cong (\mathbb{P}^1(\overline{K}))^s$ for some $s\geq 2$, $A\subset Y'(\overline{K})$ and *one of the following cases occurs:*

(1). $A ∩ B ≠ ∅$, B is obtained from A making and elementary increasing as in Definition [3.1](#page-3-2) and either $Y'(\overline{K}) = Y(\overline{K})$ or $Y(\overline{K}) \cong \mathbb{P}^2(\overline{K}) \times (\mathbb{P}^1(\overline{K}))^{s-1}$ *or* $Y(\overline{K}) \cong (\mathbb{P}^1(\overline{K}))^{s+1}$ *;*

(2). $A \cap B = \emptyset$; in this case either $Y(\overline{K}) \cong \mathbb{P}^2(\overline{K}) \times \mathbb{P}^1(\overline{K})$ or $Y(\overline{K}) \cong \mathbb{P}^1(\overline{K}) \times \mathbb{P}^1(\overline{K})$ or $Y(\overline{K}) \cong \mathbb{P}^1(\overline{K}) \times \mathbb{P}^1(\overline{K}) \times \mathbb{P}^1(\overline{K})$.

For Proposition [4.2](#page-3-0) the reader is referred to Section [3](#page-2-2) for our conventions concerning Segre varieties. For instance (case $k=2$ and $n_1=n_2=1$) over many fields, e.g. the real field or a finite field, there are smooth quadric surfaces of $\mathbb{P}^3(K)$ with no ruling defined over K , but with K -points.

 $\bf Proposition \ 4.2. \ Take \ } q \in \mathbb{P}^r(K) \ such \ that \ r_{X(\overline{K})}(q) = 2 \ and \ \# \mathcal{S}(X(\overline{K}), q) > 1. \ Then \ r_{X,K}(q) = r_{X(K)}(q) = 2, \ \# \mathcal{S}(X, K, q) \geq 0.$ $\#S(X(K), q) > 1$, $S(X(K), q)$ *is infinite if* K *is infinite.*

Proof. Fix any $A\subset Y(\overline{K})$ such that $\nu(A)\in \mathcal{S}(\nu(Y(\overline{K})), q).$ Let $Y'(\overline{K})\subseteq Y(\overline{K})$ the minimal multiprojective space containing A. By Autarky $Y'(\overline{K})$ is the minimal multiprojective space such that $q \in \langle \nu(Y'(\overline{K})) \rangle_{\overline{K}}$. Concision also implies that all elements of $\mathcal S(X(\overline{K}),q)$ are contained in $\nu(Y'(\overline{K})).$ By [\[3,](#page-6-1) Proposition 2.3] $Y'(\overline{K})\cong \mathbb P^1(\overline{K})\times \mathbb P^1(\overline{K}).$ The structure of Segre varieties shows that that the isomorphism of $Y'(\overline K)$ with $\mathbb{P}^1(\overline K)\times\mathbb{P}^1(\overline K)$ is defined over K (we use that $\#\mathbb{P}^1(K)$ is infinite if K is infinite and that $\# \mathbb{P}^1(K) = \#K + 1 \geq 3$ if K is finite). Since $Y'(\overline{K})$ has only 2 factors, the tensor q is basically a matrix. The classification of rank 2 matrices over K gives the thesis. \Box

Lemma 4.1. Let $C \subset \mathbb{P}^3_K$ be a rational normal curve defined over K. Fix $q \in \mathbb{P}^3_K$ with $r_{C(K)}(q) = 3$. If K is infinite, then $\mathcal{S}(C(K),q)$ is infinite. If K is finite and $r_{X(\overline K)}(q)=2$, then $\#\mathcal{S}(C(K),q)>1$ if and only if $\#K\geq 5$.

Proof. Since $C(\overline{K})$ is a rational normal curve of $\mathbb{P}^3(\overline{K})$, no 3 of its points are collinear. By assumption $q\notin C(K)$ and q is not contained in any secant line of $C(K)$. Hence the linear projection $\ell_q: \mathbb{P}^3_K\setminus\{q\}\to \mathbb{P}^2_K$ induces an injective map $\ell: C(K)\to$ $\mathbb P^2(K)$ and $\ell(C(\overline K))$ is a degree 3 integral and rational plane curve with arithmetic genus 1 and hence with a unique singular point, o, which is either an ordinary node or an ordinary cusp. In all cases $o \in \mathbb{P}^2(K)$. The point o is an ordinary node if and only if $r_{X(\overline{K})}(q)=2$ and this occurs if and only if $o\notin \ell(C(K)).$ The assumption $r_{C(K)}(q)=3$ is equivalent to assuming that $\ell(C(K))$ has 3 collinear points. Call L a line (necessarily defined over K) such that $\#(\ell(C(K)) \cap L) = 3$. Since C is a rational normal curve over K, $C(K)$ is infinite if K is infinite and $\#C(K) = \#K + 1$ if K is finite.

Claim 1. $\ell(C(K)) \cap L \subsetneq \ell(C(K))$, unless $K = \mathbb{F}_2$. If either $K \neq \mathbb{F}_3$ or *o* is an ordinary node, there is $a \in \ell(C(K)) \setminus \ell(C(K)) \cap L$ such that $a \neq o$.

Proof of Claim 1. $\# \ell(C(K)) \cap L = 3$, $\ell(C(K))$ is infinite if K is infinite, while $\# \ell(C(K)) = \#K + 1$ if K is finite.

(a). Assume that K is infinite. The set $W(\overline{K})$ of all lines $R \subset \mathbb{P}^2(\overline{K})$ such that $o \notin R$ and $\#(R \cap \ell(C(\overline{K}))) = 3$ is a non-empty open Zariski open subset of the dual projective space $\mathbb{P}^2(\overline{K})^\vee$. The set W is defined over K . Since $L\in W(K),$ $W(K)\neq\emptyset$. Since K is infinite, $W(K)$ is Zariski dense in $W(\overline{K})$. Thus $\ell(C(K))$ has infinitely many trisecant lines.

(b). Assume $r_{X(\overline{K})}(q)=2$ and K finite. Thus o is an ordinary node and $o\notin \ell(C(K))$. Set $x:=\#K$. The set $\ell(C(K))$ has cardinality $x + 1$. By Bezout's theorem each line through ϕ contains at most another point of $\ell(C(K))$, for any $a \in \ell(C(K))$ the tangent line to $\ell(C(\overline{K}))$ does not contain o and no line is quadrisecant to $\ell(C(K))$. Thus each line though 2 points of $\ell(C(K))$ either is tangent to $\ell(C(\overline{K}))$ at one of these 2 points or meets a third point of $\ell(C(\overline{K}))$. There are $\binom{x+1}{2}$ subsets of $\ell(C(\overline{K}))$ with cardinality 2 and at most $x + 1$ of them are on a secant line of $\ell(C(\overline{K}))$. The union of three collinear points has 3 subsets with cardinality 2. Thus if $\binom{x+1}{2}-x-1>6$, i.e. if $x\geq 5$, then $\ell(C(K))$ has at least 2 trisecant lines. Now assume $x = 4$ and that $\ell(C(K))$ has 2 trisecant lines, say R and D. Set $\{a\} := L \cap D$. Since $\#\ell(C(K)) = 5$, $a \in \ell(C(K))$ and $\ell(C(K)) \subset R \cup D$. Bezout gives that $T_a\ell(C(\overline{K})) \notin \{R, D\}$. Since $T_a\ell(C(\overline{K}))$ is defined over K, it meets $\ell(C(K))$ at a point not in $R \cup D$, a contradiction. The exclusion of the cases $x = 2, 3$ is easier, because $\ell(C(K))$ has no quadrisecant line. \Box

Proposition 4.3. Take $q \in \mathbb{P}^r(K)$ such that $r_{X(\overline{K})}(q) = 2$ and $\#S(X(\overline{K}), q) = 1$. Set $\{A\} := \mathcal{S}(X(\overline{K}), q)$. Then:

- **(1).** $r_{X,K}(q) = 2$ *and* $\{A\} = \mathcal{S}(X, K, q)$ *.*
- **(2).** *If* $r_{X(K)}(q) = 2$ *, then* $\{A\} = S(X(K), q)$ *.*

(3). *Assume* $r_{X(K)}(q) = 3$ *. Then* $\#S(X(K), q) > 1$ *if and only if either* K *is infinite or* $\#K \geq 5$ *.*

Proof. Since $\#\mathcal{S}(X(\overline{K}), q) = 1, k > 2$. Parts (1) and (2) follow from Lemma [2.1.](#page-2-1) Next, assume $r_{X(K)}(q) = 3$ and take $B \in \mathcal{S}(X(K), q)$. Since $r_{X(K)}(q) \neq 2$, not all points of A are defined over K. Since $\#A = 2$, no point of A is defined over K. Fix a finite extension $L \supset K$ such that each point of A is defined over L, say $A = \{a, b\} \subset Y(L)$. Since K is a perfect field and each subgroup with index 2 of a finite group is normal, we may take as L a degree 2 Galois extension of K. Call g the non-zero element of the Galois group G of the extension L/K . Note that $g(a) = b$ and $g(b) = a$. Remark [3.2](#page-3-3) implies that B is not an elementary increasing of A. Since $k > 2$, Proposition [4.1](#page-3-4) implies that the minimal multiprojective space W over \overline{K} containing B is isomorphic to $(\mathbb{P}^1(\overline{K}))^3$. We also have $A \cap B = \emptyset$ and $A \cup B$ is contained in the image of a morphism $f:\mathbb{P}^1(\overline{K})\to (\mathbb{P}^1(\overline{K}))^3$ whose composition with the projections π_i are isomorphisms (see [\[1,](#page-6-9) Lemma 5.8]. Thus $\pi_{i|B}$ is injective for all *i*. Write $B = \{u, v, z\}$, $u_i = \pi_i(u)$, $v_i = \pi_i(v)$ and $z_i = \pi_i(z)$. Note that $\{u_i, v_i, z_i\} \subset \mathbb{P}^1(K)$. Fix 3 distinct points $0,1,\infty\in\mathbb{P}^1(K)$. Let $f_i:\mathbb{P}^1_K\to\mathbb{P}^1_K$ denote the only isomorphism such that $f_i(0)=u_i,$ $f_i(1)=v_i$ and $f_i(\infty)=z_i$. The isomorphism f_i is defined over K and $f = (f_1, f_2, f_3)$ is an embedding $f : \mathbb{P}^1_K \to (\mathbb{P}^1_K)^3$ such that $\{u, v, z\} \subset f(\mathbb{P}^1(K))$. The curve $\nu(f((\mathbb{P}^1)^3))$ is a degree 3 rational normal curve. Each point of $\langle\nu(f((\mathbb{P}^1)^3))\rangle_K$ is in more than one way irredundantly spanned by 3 points of $\langle \nu(f((\mathbb{P}^1)^3)) \rangle_K$ if $\#K \leq 5$. (Lemma [4.1\)](#page-3-5). Thus in this case $\#\mathcal{S}(X(K), q) > 1$, unless $\#K < 5$. The cases with $#K < 5$ are excluded by Lemma [4.1.](#page-3-5) \Box

Lemma 4.2. Let $C \subset \mathbb{P}^4$ be a degree 4 rational normal curve defined over K. Assume the existence of $q \in \mathbb{P}^4(K)$ such that $r_{C(\overline{K})}(q)=r_{C(K)}(q)=3$. Assume $\mathrm{char}(K)\neq 2,3$ and K infinite. Then $\mathcal{S}(C(K),q)$ is infinite and Zariski dense in $\mathbb{P}^1(\overline{K})$.

Proof. Take $B \subset C(K)$ with $B \in \mathcal{S}(C(K), q)$. Since $char(K) \neq 2, 3$ and K infinite we may apply Sylvester's theorem (see [\[7,](#page-6-10) pp. 36–39]) and get that the set $\mathcal{S}(C(\overline{K}), q)$ is a non-empty open subset of a one-dimensional projective space. The algebraic variety $\mathcal{S}(C(\overline{K}), q)$ is defined over K and it contains $B \subset C(K)$. Thus $\mathcal{S}(C(K), q)$ is infinite and Zariski dense in $\mathbb{P}^1(\overline{K}).$ \Box

5. Segre varieties: the main proofs

Let $\tau(\overline{K})\subseteq \mathbb P^r(\overline{K})$ denote the tangential variety of $X(\overline{K})$. We recall the following lemma, part (a) being well-known (e.g. [\[5,](#page-6-11) Table 1, $n = 3$]) and part (b) be being proved (but not stated) in arbitrary characteristic in [\[3\]](#page-6-1).

Lemma 5.1. Take $Y := (\mathbb{P}^1_K)^3$ and hence $r = 7$.

- (a). Over \overline{K} , $\sigma_2(X(\overline{K})) = \mathbb{P}^7(\overline{K})$, \mathcal{E}_X has 2 orbits, O_2 and O_3 , for the action of $\text{Aut}(\mathbb{P}^1(\overline{K}))^3$ with $O_2 = \tau(X(\overline{K})) \cap \mathcal{E}_X$ and $O_3 = \mathbb{P}^7(\overline{K}) \setminus \tau(X(\overline{K})).$
- **(b).** *Each* $q \in O_3$ *has* $r_{X(\overline{K})}(q) = 2$ *and* $\#S(Y(K,q) = 1$ *.*
- (c). *Each* $q \in \tau(X(\overline{K})) \cap \mathcal{E}_X$ *has* $r_{X(\overline{K})}(q) = 3$ *and* dim $\mathcal{S}(X(\overline{K}), q) > 0$.

Lemma 5.2. *Take* Y, O_1 , O_2 *and* O_3 *as in Lemma [5.1.](#page-4-0) Fix* $q \in \mathbb{P}^7(K) \cap \mathcal{E}_X$.

(a). If $q \in O_3$, then $r_{X,K}(q) = 2$ and $\#S(X, K, q) = 1$. If $r_{X(K)}(q) = 2$, then $\#S(X(K), q) = 1$. If $r_{X(K)}(q) = 3$, then $\#S(X(K), q) > 1$ *if and only if* $\#K \geq 5$ *and* $S(X(K), q)$ *is infinite if* K *is infinite.*

(b). *If* $q \in O_2$, then $r_{X(K)}(q) = r_{X(K)}(q) = 3$, $\#S(X(K), q) > 1$ and $S(X(K), q)$ is infinite if K is infinite.

Proof. Fix $q \in O_3$. Part (a) for (X, K) follows from Lemma [2.1](#page-2-1) and part (a) of Lemma [5.1.](#page-4-0) If $r_{X(K)}(q) = 2$, then $\#\mathcal{S}(X(K), q) = 1$ (Lemma [2.1\)](#page-2-1). Now assume $r_{X(K)}(q) = 3$. Take A such that $\{\nu(A)\} = \mathcal{S}(X(\overline{K}), q)$. By assumption A is defined over K, but not all points of A are defined over K. By assumption there is $B \subset Y(K)$ such that $#B = 3$ and $q \in \langle \nu(B) \rangle_K$. By Remark [3.2,](#page-3-3) Proposition [4.1](#page-3-4) and the assumption $q \in \mathcal{E}_X$, $A \cap B = \emptyset$. A key part of the proof of Proposition [4.1](#page-3-4) was [\[1,](#page-6-9) Theorem 1.1 and Lemma 5.8] which gives the existence of a curve $C\subset (\mathbb{P}^1(\overline{K})^3$ such that $A\cup B\subset C$ and $\pi_{i|C}$ is an isomorphism for $i = 1, 2, 3$. Hence $\pi_{i|B}$ is injective. Moreover, [\[1\]](#page-6-9) also studies all such curves (called of tridegree (1, 1, 1) in $[1]$). A key point is that C is uniquely determined in a constructive way from B and hence it is uniquely determined by B. In this way we see that C is defined over K. Since $q \in \langle \nu(B) \rangle_K$, $q \in \langle \nu(C) \rangle_K$. The curve $\nu(C)$ is a degree 3 rational normal curve in its linear span. Use Lemma [4.1](#page-3-5) and the last part of the proof of Proposition [4.3.](#page-4-1)

Now we prove part (b). Since $r_{X(\overline K)}(q)=3,$ we have $r_{X(K)}(q)\ge r_{X,K}(q)\ge 3.$ Since $q\in \tau(X(\overline K))\setminus X(\overline K),$ there is a degree 2 connected zero-dimensional scheme $v\subset Y(\overline{K})$ such that $q\in \langle \nu(v)\rangle_{\overline{K}}.$ Since $q\in \mathcal{E}_X\cap \mathbb{P}^7(K),$ it is easy to check as in the proof of [\[3,](#page-6-1) Proposition 2.3] that v is unique. Hence v is defined over K. Thus $\{o\}_{\text{red}}$ is defined over K (here we use that K is perfect). Write $o = (o_1, o_2, o_3)$ with $o_i \in \mathbb{P}^1(K)$. Let $v_i \subset \mathbb{P}^1(\overline{K})$ connected degree scheme with o_i as its reduction. Set $T:=\eta_1^{-1}(o_1)\cup\eta_2^{-1}(o_2)\cup\eta_3^{-1}(o_3).$ The set $\nu(T(\overline{K}))$ is the union of 3 lines through $\nu(o),$ each of them defined over K and $\dim \langle \nu(T(\overline{K}))\rangle_{\overline{K}} = 3.$ Fix $e_3\in \mathbb{P}^1(K)\setminus \{o_3\}$ (it exists for any K). Let $\ell: \langle \nu(T(\overline{K}))\rangle_{\overline{K}}\setminus \{\nu(e_3)\}\to \mathbb{P}^2(\overline{K})$ denote the linear projection from $\nu(e_3)$. Since $\nu(e_3)$ and $\nu(T)$ are defined over K, ℓ is defined over K. Since $q \in \mathcal{E}_X$, $q \neq \nu(o_3)$ and hence $\ell(q)$ is a well-defined point of $\mathbb{P}^2(K)$. The plane $\mathbb{P}^2(\overline{K})$ is spanned by the reducible conic $D:=\nu(\eta_2^{-1}(o_2)\cup\eta_3^{-1}(o_3)).$ Since $\ell(q) \notin D$, we easily see the existence of more that one (and infinitely many if K is infinite) $S \subset D(K)$ such that $\ell(q) \in \langle S \rangle$. Thus $r_{X(K)}(q) \leq 3$. Hence $r_{X(K)}(q) \geq r_{X(K)}(q) \geq 3$. We also proved that $\#\mathcal{S}(X(K), q) > 1$ and $\mathcal{S}(X(K), q)$ is infinite if K is infinite. П

Lemma 5.3. *Take* $Y := (\mathbb{P}^1_K)^4$ *and hence* $r = 15$ *. We have* $\dim \sigma_3(X(\overline{K})) = 14$ *,* $\dim \mathcal{S}(Y(\overline{K}) \ge 1$ *for all* q *with* $r_{X(\overline{K})}(q)) = 3$ $and\,\dim \mathcal{S}(Y(\overline{K}),q)=1$ for a general $q\in \sigma_3(X(\overline{K})).$ Take $q\in \mathbb{P}^{15}(K)$ such that $r_{X(\overline{K})}(q))=r_{X(K)}(q))=3.$ If K is infinite, *then* $S(X(K), q)$ *is infinite.*

Proof. The part over \overline{K} is well-known and written down at least in characteristic 0 in all lists of defective Segre varieties. In arbitrary characteristic it is essentially proved in the following way, which we also need for later proofs over K . Fix $B\subset Y(K)$ such that $\#B=3$ and $\#\pi_i(B)=3$ for all i. Write $B=\{u,v,z\}$. Let $f_i:\mathbb{P}^1_K\to\mathbb{P}^1_K$ be the only isomorphism such that $f_i(0) = \pi_i(u)$, $f_i(1) = \pi_i(v)$ and $f_i(\infty) = \pi_i(z)$. The morphism $f = (f_1, f_2, f_3, f_4) : \mathbb{P}^1(\overline{K}) \to \mathbb{P}^1(\overline{K})^4$ is defined over K and $B\subseteq f(\mathbb{P}^1(K))$. Since $\nu(f(\mathbb{P}^1(\overline{K})))$ is a degree 4 rational normal curve in its linear span, we may apply Lemma [4.2.](#page-4-2)

By assumption $r_{X(K)}(q) = 3$. Fix $B \subset Y(K)$ such that $\nu(B) \in \mathcal{S}(X(K), q)$. We just proved the case " $\#\pi_i(B) = 3$ for all i". Thus we may assume $\#\pi_i(B) \leq 2$, for at least one index i. Since $X(\overline{K})$ is concise for $q, \#\pi_i(B) = 2$. If this is true for at least two indices i, then we are in case described in Example [5.3](#page-6-3) below. Thus we may assume that $\#\pi_i(B) = 2$ for exactly one index i, say $i = 4$. Call $F \subset B$ the set with $\#F = 2$ and $\# \pi_4(F) = 1$. Set $\{a\} := \pi_4(B)$ and $H := \pi_4^{-1}(a)$. H is a multiprojective space isomorphic to $(\mathbb{P}^1_K)^3$ and $H=(\mathbb{P}^1_K)^3\times\{a\}$ is embedded in Y by the inclusion $\{a\}\hookrightarrow\mathbb{P}^1_K.$ Since $\nu(B)$ irredundantly spans q, there is a unique $q'\in\langle\nu(F)\rangle_K$ such that $q\in\langle\{q',\nu(o)\}\rangle.$ Now we vary $b\in(\mathbb{P}^1_K)^4.$ Take any $o' \in (\mathbb{P}^1(K))^4$. The line $\langle \{q, \nu(b)\} \rangle_K$ meets $\langle \nu(H) \rangle_K$ at a unique point q_b . We take $F_b \in \mathcal{S}(H(K), q_b)$ and set $B_b := F_b \cup \{b\}$. We need to justify the existence of F_b , i.e. that $r_{H(K)}(q_b) = 2$. For any field $L \supseteq K$ all sets $A \subset H(L)$ such that $\# \pi_i(A) = 2$ for all $i=1,2,3$, form a unique orbit for the action of $\mathrm{Aut}(\mathbb{P}^1(L))^3$. Taking their linear spans we cover all $q''\in \langle \nu(Y(L))_L$ with $r_{H(L)}(q'')=2.$ Since K is infinite, we get as q_b a Zariski dense subset of the projective space $\langle \nu(H(\overline{K}))\rangle_{\overline{K}}.$ \Box

 $\emph{\textbf{End of the proof of Theorem 1.1: Fix $q\in\mathbb{P}^r(K)$ such that $r_{X(\overline{K})}(q)=2$. The case with $\# \mathcal{S}(X(\overline{K}),q)>1$ is true by Propo- $s\in\mathbb{P}^r(K)$, where $r\in\mathbb{P}^r(K)$ is a finite number of times.}$ $\emph{\textbf{End of the proof of Theorem 1.1: Fix $q\in\mathbb{P}^r(K)$ such that $r_{X(\overline{K})}(q)=2$. The case with $\# \mathcal{S}(X(\overline{K}),q)>1$ is true by Propo- $s\in\mathbb{P}^r(K)$, where $r\in\mathbb{P}^r(K)$ is a finite number of times.}$ $\emph{\textbf{End of the proof of Theorem 1.1: Fix $q\in\mathbb{P}^r(K)$ such that $r_{X(\overline{K})}(q)=2$. The case with $\# \mathcal{S}(X(\overline{K}),q)>1$ is true by Propo- $s\in\mathbb{P}^r(K)$, where $r\in\mathbb{P}^r(K)$ is a finite number of times.}$$$$ sition [4.2.](#page-3-0) Assume $\#\mathcal{S}(X(\overline{K}), q) = 1$. Lemma [2.1](#page-2-1) gives $r_{X,K}(2) = 2$, $\#\mathcal{S}(X, K, q) = 1$ and that $\#\mathcal{S}(X(K), q) = 1$ if $r_{X(K)}(q) = 2.$ \Box

Example 5.1. Case 1 of [\[3,](#page-6-1) Theorem 7.1] is the case $k = 2$, i.e. when the tensor T whose equivalence class represent q is a rank 3 matrix. In this case $r_{X(K)}(q)=r_{X(\overline{K})},$ $\#\mathcal{S}(X(K),q)>1$ for any field K and $\mathcal{S}(X(K),q)$ is infinite if K is infinite.

Example 5.2. Take $q \in \mathbb{P}^r(K)$ such that $r_{X(\overline{K})}(q) = r_{X,K}(q) = 3$, $X(\overline{K})$ is concise for $X(\overline{K})$ and q is as in case 2 of [\[3,](#page-6-1) Theorem 7.1]. Thus $k = 3$, $n_1 = n_2 = n_3 = 1$ and $q \in \tau(X(\overline{K}))$. We described this case in Lemma [5.2.](#page-5-2)

 $\bf{Example~5.3.}$ Take $q\in \mathbb P^r(K)$ such that $r_{X(\overline K)}(q)=r_{X,K)}(q)=3,$ $X(\overline K)$ is concise for $(\overline K)$ and q is as in case 6 of [\[3,](#page-6-1) Theorem 7.1]. Thus $k \geq 3$, $n_i = 1$ for all $i \geq 3$, $n_1 \in \{1,2\}$, $n_2 \in \{1,2\}$ and there is $E \in \mathcal{S}(X(\overline{K}), q)$ and $F \subset E$ with $\#F = 2$ and $\#\pi_i(F)=1$ for all $i\geq 3$. Set $\{o\}:=E\setminus F.$ Since $\nu(E)$ irredundantly spans q , there is a unique $q'\in \langle\nu(F)\rangle_{\overline{K}}$ such that $q\in \langle\{q',\nu(o)\}\rangle_{\overline{K}}.$ If $n_1+n_2+k\geq 4,$ we also proved that each $E'\in \mathcal{S}(X(\overline{K}),q)$ contains o and $\#\pi(E'\setminus\{o\})=1$ for all $i \geq 3$. Under these stronger assumptions o is uniquely determined by q and hence it is defined over K. Thus q' is defined over k. By the definition of q' and the description of this case in [\[3\]](#page-6-1) the minimal multiprojective space $Y'(\overline{K})$ such that $q'\in \langle \nu(Y'(\overline{K}))\rangle_{\overline{K}}$ is isomorphic to $\mathbb{P}^1(\overline{K})^2$, i.e. q' is represented by a tensor, which is equivalent to a 2×2 rank 2 matrix. Since q' is defined over K, the classification of matrices of rank > 1 gives $\#S(X(K), q') > 1$ and that $S(X(K), q')$ is infinite. Adding o we get $\#\mathcal{S}(X(K), q') > 1$ and that $\mathcal{S}(X(K), q)$ is infinite if K is infinite. Now assume $k = 3$ and $n_1 = n_2 = n_3 = 1$. Concision and the assumption " $r_{X(\overline K)}(q)=3$ " give $q\in \tau(X(K))\cap \mathcal E_X$ and we handled this case in Lemma $5.1.$

Example 5.4. Take $q \in \mathbb{P}^r(K)$ such that $r_{X(\overline{K})}(q) = r_{X,K}(q) = 3,$ $X(\overline{K})$ is concise for q , and q is as in case 3 of [\[3,](#page-6-1) Theorem 7.1]. Thus $k = 4$, $n_1 = n_2 = n_3 = n_4 = 1$. We described this case in Lemma [5.3.](#page-5-3)

Example 5.5. Take $q \in \mathbb{P}^r(K)$ such that $r_{X(\overline{K})}(q) = r_{X,K}(q) = 3,$ $X(\overline{K})$ is concise for (\overline{K}) and q is either as in case 4 or as in case 5 of [\[3,](#page-6-1) Theorem 7.1]. In both cases $k = 3$, $n_1 = 2$, $n_2 = n_3 = 1$ and the 2 cases are distinguished in the following way. Fix any $E \subset Y(\overline{K})$ such that $\nu(E) \in \mathcal{S}(X(\overline{K}, q))$ and any $B \subset Y(K)$ such that $\nu(B) \in \mathcal{S}(X(K), q)$. Write $B = \{u, v, z\}$. Since $h^0(\mathcal{O}_{Y(\overline{K})}(0,1,1)) = 4$ and $\#E = 3$, $|\mathcal{I}_E(0,1,1)| \neq \emptyset$. It was proved in [\[3,](#page-6-1) Proposition 3.8] that $|\mathcal{I}_E(0,1,1)|$ is a singleton, say $|\mathcal{I}_E(0,1,1)| = \{G\}$. The two cases are distinguished as if G is irreducible (case 4) or G is reducible, say $G = G_1 \cup G_2$ with $G_1\in |{\mathcal O}_{Y(\overline{K})}(0,1,0)|$ and $G_2\in |{\mathcal O}_{Y(\overline{K})}(0,0,1)|$ (case 5). Each $A\subset Y(K)$ such that $\nu(A)\in \mathcal{S}(X(K,q))$ is contained in G (see [\[3,](#page-6-1) Proposition 3.8]). In particular $B \subset G$ and G, being uniquely determined by B, is defined over K. The two cases are also distinguished according to the injectivity of both $\pi_{2|E}$ and $\pi_{2|E}$.

(a). Assume that G is irreducible and hence $\pi_{i|B}$ is injective for $i = 2, 3$. Thus for $i = 2, 3$ there is a unique isomorphism $f_i: \mathbb{P}^1_K \to \mathbb{P}^1_K$ defined over K such that $f_i(0) = \pi_i(u)$, $f_i(1) = \pi_1(v)$ and $f_i(\infty) = \pi_i(z)$. Since q is concise and $n_1 = 2$, $\pi_{1|B}$ is injective and $\pi_1(B)$ are 3 points of $\mathbb{P}^2(K)$ which are not collinear. Thus there is an embedding $f_1: \mathbb{P}^1_K \to \mathbb{P}^2_K$ defined over $K,$ with $f_1(0) = \pi_1(u)$, $f_1(1) = \pi_1(v)$, $f_1(\infty) = \pi_1(z)$ and $f_1(\mathbb{P}^1_K)$ a smooth conic containing $\pi_1(B)$. Set $f = (f_1, f_2, f_3) : \mathbb{P}^1_K \to Y_K$. The curve $\nu(\mathbb{P}^1_K)$ is a degree 4 rational normal curve in its linear span. We apply Lemma [4.2](#page-4-2) to this rational normal curve. **(b).** Assume $G = G_1 \cup G_2$. The Segre variety $X(\overline{K})$ is concise for q, $B \nsubseteq G_1$ and $B \nsubseteq G_2$. Exchanging if necessary the

second and the third factor of Y_K we may assume $\#(B \cap G_1) = 2$ and $\#(B \cap G_2) = 1$. Set $F := B \cap G_1$, $\{o\} := B \setminus F$ and use Example [5.3.](#page-6-3)

End of the proof of Theorem [1.2:](#page-1-1) Fix $q \in \mathbb{P}^r(K)$.

(a). Assume $r_{X(\overline{K})}(q) = 2$ and $r_{X(K)}(q) = 3$. Use case 3 of Proposition [4.3.](#page-4-1)

(a1). Assume $r_{X(\overline{K})}(q) = 3$. Since $r_{X(K)}(q) = r_{X(\overline{K})}(q)$, Lemma [2.1](#page-2-1) gives that $\#\mathcal{S}(X(K), q) = 1$ if $\#\mathcal{S}(X(\overline{K}), q) = 1$. Thus it is sufficient to check all 6 cases listed in $[3,$ Theorem 7.1]. We did it in Examples [5.1,](#page-5-0) [5.2,](#page-5-1) [5.3,](#page-6-3) [5.4](#page-6-4) and [5.5.](#page-6-2) \Box

Example 5.6. Assume that K has a degree 2 extension L. Call σ the generator of the Galois group the extension L/K . Fix $X(\overline{K})$ with $Y_K=(\mathbb{P}^1_K)^k$ for some $k>2$ factors. Take $a_1,\ldots,a_k\in K_1\setminus K.$ Using a_i and $\sigma(a_i)$ we may constructs a point $u \in Y(K_1) \setminus Y(K)$ such that $Y(\overline{K})$ is the minimal multiprojective space containing $\{u, \sigma(u)\}\$. The line $\langle {\nu(u), \nu(\sigma(u))}\rangle_L$ is defined over K and hence it corresponds to a line R of $\mathbb{P}^r(K)$ containing no point of $\nu(Y(K))$. Fix $q \in R$. Since $\{u, \sigma(u)\} \in$ $S(\overline{L}), q$ and $\#S(X(\overline{K}), q) = 1$ (see [\[3,](#page-6-1) Proposition 2.3]), $r_{X,K}(q) = 2$ and $r_{X(K)}(q) > 2$. At least in some cases, e.g. $k = 3$ and $K = \mathbb{R}$, it is easy to find u and q such that $r_{X(K)}(q) = 3$.

Acknowledgement

The author is a member of GNSAGA of INdAM, Italy.

References

- [1] E. Ballico, Linear dependent subsets of Segre varieties, *J. Geom.* **111** (2020) #23.
- [2] E. Ballico, Linearly dependent and concise subsets of a Segre variety depending on k factors, *Bull. Korean Math. Soc.* **58** (2021) 253–267.
- [3] E. Ballico, A. Bernardi, P. Santarsiero, Identifiability of rank-3 tensors, *Mediterr. J. Math.* **18** (2021) #174.
- [4] G. Blekherman, R. Sinn, Real rank with respect to varieties, *Linear Algebra Appl.* **505** (2016) 340–360.
- [5] J. D. Hauenstein, L. Oeding, G. Ottaviani, A. J. Sommese, Homotopy techniques for tensor decomposition and perfect identifiability, *J. Reine Angew. Math.* **2019** (2019) 1–22.
- [6] J. W. P. Hirschfeld, J. A. Thas, *General Galois Geometries*, Oxford Mathematical Monographs, Oxford University Press, New York, 1991.
- [7] A. Iarrobino, V. Kanev, *Power Sums, Gorenstein Algebras, and Determinantal Loci*, Lecture Notes in Mathematics 1721, Springer, Berlin, 1999.
- [8] J. M. Landsberg, *Tensors: Geometry and Applications*, Graduate Studies in Mathematics 128, Amer. Math. Soc., Providence, 2012.