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Abstract

We study the uniqueness of a decomposition of a tensor over a field as a sum of rank 1 tensors, when the tensor has low
rank, up to 3. We put this in a more general framework (X-rank) and study two different definitions of decompositions over
a given (not algebraically closed) field.
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1. Introduction

Let K be a field. Let K be the algebraic closure of K. Unless otherwise stated we assume that K is a perfect field. We
just mention that this assumption is satisfied if either K is a finite field or if char(K) = 0. Let X ⊂ Pr be a geometrically
integral subvariety defined over K and such that X(K) is non-degenerate, i.e. no hyperplane of Pr(K) contains X(K).
Recall that for any q ∈ Pr(K) the X(K)-rank rX(K)(q) of q is the minimal cardinality of a finite set A ⊂ X(K) such that
q ∈ 〈A〉K , where 〈 〉K denotes the linear span over K. The solution set S(X(K), q) of q with respect to X(K) is the set of all
finite sets A ⊂ X(K) such that #A = rX(K)(q) and q ∈ 〈A〉K . This definition implies S(X(K), q) 6= ∅. If #S(X(K), q) = 1

we say that q satisfies uniqueness or that it has uniqueness with respect to X(K). Now assume q ∈ Pr(K). There are at
least two very different ways to define the K-rank of q and each of these two ways gives a different definition of solution
set. These definitions may give different ranks (Example 2.1) or the same rank, but different solution sets (Example 2.2).

Definition 1.1. Let rX(K)(q) be the minimal cardinality of a set A ⊆ X(K) such that A spans q with the convention
rX(K)(q) = +∞ if there is no such set A exists, i.e. the set X(K) is contained in a hyperplane not containing q.

Definition 1.2. The (X,K)-rank rX,K(q) of q is the minimal cardinality of a finite set A ⊂ X(K) defined over K and whose
linear span contains q (we do not require that all points of A are defined over q).

If rX(K)(q) < +∞ let S(X(K), q) denote the set of all A ⊆ X(K) spanning q and with #A = rX(K)(q). The integer
rX(K)(q) is often called the X(K)-rank of q.

Call S(X,K, q) the solution set of q for Definition 1.2, i.e., let S(X,K, q) denote the set of all A ⊂ X(K) defined over K
such that #A = rX,K(q) and A spans q.

In the next two theorems X(K) ⊂ Pr(K) is a Segre variety defined over K. In their statements X(K) and X(K) are the
images by the Segre embedding ν of a multiprojective space

YK = Pn1

K × · · · × Pnk

K

and conciseness over K means that there is no proper multiprojective space Y ′(K) ( Y (K) such that q ∈ 〈ν(Y ′(K))〉K .

Theorem 1.1. Assume #K ≥ 5. Take
X(K) ∼= Pn1(K)× · · · × Pnk

with ni > 0 for all i and assume that this decomposition is defined overK. Fix q ∈ Pr(K) such that rX(K)(q) = 2 (respectively
rX,K(q) = 2) and X(K) is concise for q. Then #S(X(K), q) > 1 (respectively #S(X,K, q) > 1) if and only if k = 2 and
n1 = n2 = 1. Moreover, the solution sets are infinite in each of these cases if K is infinite.
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The next result only uses Definition 1.1.

Theorem 1.2. Assume K infinite and char(K) 6= 2, 3. Fix q ∈ Pr(K) which is concise over K, i.e. there is no Segre
variety X ′(K) ( X(K) such that q ∈ 〈X ′(K)〉K . Assume rX(K)(q) = 3. We have #S(X(K), q) > 1 if and only if q and
YK = Pn1

K × · · ·P
nk

K are in one of the following 6 cases (up to a permutation of the factors of Y ):

(1). k = 2 and n+ 1 = n2 = 1;

(2). k = 3, n1 = n2 = n3 = 1 and q is contained in the tangential variety of X(K).

(3). k = 4, n1 = n2 = n3 = n4 = 1;

(4). k = 3, n1 = 2, n2 = n3 = 1;

(5). k = 3, n1 ∈ {1, 2}, n2 ∈ {1, 2}, ni = 1 for all i > 2 and q is represented by a tensor which is the sum of a rank 1 tensor
and a rank 2 tensor equivalent to a 2× 2 matrix.

(6). rX(K)(q) = 2, #S(X(K), q) = 1 and rX(K)(q) = 3.

Moreover, S(X(K), q) is infinite in all these cases.

See Example 5.6 for case (6) of the list (of course, it does not occur for all K: it does not occur if K = K). Case (6) does
not occur for the (X,K)-rank by Lemma 2.1.

The first 5 items of the list are as the ones of [3, Theorem 7.1], except that case 4 covers two cases (case 4 and 5
of [3, Theorem 7.1]), because the integers k and ni are the same and the thesis in both cases is that S(X(K), q) is infinite
(see Example 5.5 for an explanation of the geometry involved). The last one is handled in End of Proof of Theorem 1.2 with
a quotation to Proposition 4.2 proved in section 4.

A key tool for the proof of Theorem 1.1 is [3, Proposition 2.3]. A key tool for the proof of Theorem 1.2 is [3, Theorem 7.1],
which is also listed in the introduction of [3]. To use [3, Proposition 2.3] it will be sufficient to quote it at a key point. The
use of [3, Theorem 7.1] is more complicated, because as any reader of [3] can see it says that a concise tensor q ∈ Pr(K)

such that rX(K)(q) = 3 has #S(X(K), q) > 1 if and only if q is as in 6 listed classes, with some of the classes described with
the parameters of the concise Segre of q, the integer dimS(X(K), q) (which is always > 0) and, sometimes, the additional
words: see Example so and so for a description of q and S(X(K), q). In each case we will give all the details needed for our
proofs over K (Examples 5.1, 5.2, 5.3, 5.4). Then in the end of proof of Theorem 1.2 we will connect the dots and explain
the use of [3, Theorem 7.1] in the other cases, too.

2. Arbitrary X

In this section we only assume thatX ⊂ Pr is a geometrically integral and defined overK and thatX(K) is non-degenerate.
For any q = (a0 : · · · : ar) ∈ Pr(K) let Kq be the subfield of K generated by K and all fractions ai/aj with aj 6= 0. Note
that for all t ∈ K \ {0} (a0 : · · · ; ar) and (ta0 : · · · : tar) give the same ratios with non-zero denominators. The field Kq is
invariant for the action of GL(r + 1,K) and it is often called the field generated by K and q. Since K is algebraic over K,
the field Kq is a finite extension of q.

Let A ⊂ Pr(K) be a finite set. Let K ′A ⊆ K be the subfield generated by ∪q∈AKq. The field K ′A will be called the subfield
of K generated by the points of A. Since K is a perfect field, there is a finite extension K1 of K ′A such that the extension
K1/K is Galois, say with Galois group G. Set H := {g ∈ G | g(A) = A} and KA := KH

1 (the fixed field). The field KA

is called the Galois subfield of K generated by A. If KA = K we say that A is defined over K. Fix any q ∈ Pr(K). The
(X,K)-rank rX,K(q) of q is the minimal cardinality of a finite set A ⊂ Pr(K) defined over K and spanning q. We always
have rX,K(q) < +∞. Obviously

rX(K)(q) ≤ rX,K(q) ≤ rX(K)(q) (1)

Recall that S(X,K, q) denotes the set of all finite sets S ⊂ Y (K) such that S is defined over K (but we are not assuming
that all points of S are defined over q), #S = rX,K(q) and q ∈ 〈ν(S)〉K .

For any field L ⊇ K and any finite set S ⊆ X(L) let 〈S〉L denote the linear span of S in Pr(L). For any q ∈ Pr(K) and
any S ∈ S(X(K), q) there is a finite extension L of K such that q ∈ S(X(L), q). The field L depends on S. If S(X(K), q) is
infinite there should not be, in general, a finite extension L of K such that S(X(K), q) = S(X(L), q) (but it may exist, e.g.
for K = R, we may take as L the field C).

Example 2.1. Take K = R and K = C = R(i). Let C ⊂ P2 be a smooth curve defined over R and with C(R) 6= ∅. All
q ∈ P2(R) \ C(R) have rX(C)(q) = 2, but there are many example in [4, §3] of pairs (X, q) with rC(R)(q) = 3.
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Example 2.2. Take K = R and K = C = R(i). Let C ⊂ P2 be a real smooth conic with C(R) 6= ∅. Up to a real change
of variables we may take C = {x2 + y2 − z2 = 0}, where x, y, z are homogeneous coordinates. Fix q ∈ P2(R) \ C(R). Since
q /∈ C(C), rX(C)(q) = 2. There are 2 tangent lines of C(R) passing through q. Call o1, o2 the points of C(R) whose tangent
lines contain q. For any real line L(R) ⊂ P2(R) containing q and not intersecting {o1, o2} the set L(R) ∩ C(R) is formed by
two distinct points of C(C) and the set L(R)∩C(R) is invariant for the complex conjugation. Thus rX,R(q) = 2 and S(X,R, q)
is a real P1(R) (the real pencil of all lines through q) minus 2 points. Thus topologically S(X,R, q) is the union of 2 disjoint
circles. In the same way rX(C)(q) = 2 and that S(C(C), q) is a complex P1(C) minus 2 points. Let `q : P2(C) \ {q} −→ P1(C)
denote the linear projection from q. Since q /∈ C(C), ` := `q|C(C) : C(C) −→ P1(C) is a degree 2 surjection. Since q ∈ P2(R),
`q and ` are defined over R. The set C(R) is a circle, while C(R) \ {o1, o2} is the union of two disjoint intervals. To see that
S(C(R), q) ( S(C,R, q) for some q it is sufficient to dehomogenize the equation of C and take as q a point outside the circle
{x2 + y2 = 1} ⊂ R2, i.e. to take q = (x : y : 1) with x2 + y2 > 1.

Lemma 2.1. Fix q ∈ Pr(K) such that #S(X(K), q) = 1. Then:

(1). rX,K = rX(K)(q) and S(X(K), q) = S(X,K, q).

(2). If rX(K) = rX,K(q), then S(X(K), q) = S(X(K), q).

Proof. Write S(X(K), q) = {A} for some A ∈ X(K). Since K is perfect, there is a finite Galois extension K ′ of K such that
each point ofA is defined overK ′. CallG the Galois group of the extensionK ′/K. Fix g ∈ G. Since q ∈ Pr(K)∩〈A〉K and g|K
is the identity map, q ∈ 〈g(A)〉K . Thus g(A) = A. Thus A ∈ S(X,K, q) and rX,K(q) = #A. Now assume rX(K) = rX(K)(q).
Since S(X(K), q) 6= ∅, S(X(K), q) = {A}.

Example 2.1 shows that in part (2) of Lemma 2.1 the assumption “ rX(K) = rX,K(q) ” is not always satisfied.

3. Segre varieties: notation and preliminaries

Remember that K is a perfect field. We call Pn
K an n-dimensional projective space defined over K. Note that we impose

in the definition of Pn
K that the degree 1 line bundle is defined over K. For all fields L ⊇ K let Pn(L) denote the set of all

L-points of Pn
K . Fix positive integers k and ni, 1 ≤ i ≤ k and set YK := Pn1

K ×· · ·×Pnk

K (or just Y sinceK is fixed). We impose
that YK splits over K as a product of k projective spaces, each of them defined over K. For any multiprojective space Y let
ν denote its Segre embedding. Thus if Y = Pn1

K × · · · × Pnk

K , ν is an embedding ν : Y −→ Pr
K , r = −1 +

∏k
i=1(ni + 1), defined

over K. For instance, for k = 2 and n1 = n2 = 1 the scheme ν(Y (K)) ⊂ P3(K) is projectively equivalent to the smooth
hyperbolic quadric surface. For many K there are non-hyperbolic smooth quadric surfaces. The non-hyperbolic smooth
quadric surfaces are not counterexamples to many of the statement of this paper, because our assumptions prevent such
objects as subjects of the theorems. See [6] for a description of the Segre varieties over a finite field. For any field L ⊇ K,
ν induces an injective map (denoted with the same symbol) ν : Y (L) −→ Pr(L). The elements of Pr(L) are the equivalence
classes (up to a non-zero multiplicative constant) of tensors of format (n1 + 1) × · · · × (nk + 1) with coefficients in L. Let
πi : Y −→ Pni

K be the projection of Y onto its i-th factor. Set Yi :=
∏

j 6=i P
nj

K and let ηi : Y −→ Yi denote the projection. Thus
for any p = (p1, . . . , pk) ∈ Y , πi(p) = pi is the i-th components of p, while ηi(p) = (p1, . . . , pi−1, pi+1, . . . , pk) deletes the i-th
component of p. These formulas show that πi and ηi are defined overK and that for any field L ⊇ K they induces surjections
(denoted with the same symbols) πi : Y (L) −→ Pni(L) and ηi : Y (L) −→ Yi(L). Since in our definition the decomposition of
Y into k factors Pni

K is defined over K, the Segre variety ν(YK) has k rulings by projective subspaces. For any field L such
that K ⊆ L ⊆ K set X(L) := ν(Y (L)) ⊆ Pr(L).

We fix q ∈ Pr(K) (unless otherwise stated) and call Y ′(K) ⊆ Y (K) the minimal multiprojective space such that q ∈
〈ν(Y ′(K))〉K . We often says that X ′(K) := ν(Y ′(K)) is the concise Segre of q. By Autarky (see [8, Proposition 3.1.3.1])
rX′(K)(q) = rX(K)(q) and S(X ′(K), q) = S(X(K), q) (the proof of [8, Proposition 3.1.3.1] only requires that we can make
limits and the Zariski topology is sufficient over an algebraically closed field).

For any q ∈ Pr(K) we say that a finite set S ⊂ Pr(K) irredundantly spans q if q ∈ 〈S〉K and q /∈ 〈S′〉K for any S′ ( S.
Take any q ∈ Pr(K). We saw that, after fixing the coordinates, we get a field Kq and it is natural to study the notions

of ranks and solutions for q with respect to the field Kq. Of course, if q ∈ Pr(K), then Kq = K and so, as we have seen, the
two notions may be different.

Fix positive integers k and ni, 1 ≤ i ≤ k. Call EX(K) the set of all q ∈ Pr(K) which are concise for X(K), i.e. there is no
multiprojective space Y ′ ( Y (K) with Y ′ defined over K and q ∈ 〈ν(Y ′)〉K . By concision over any algebraically closed field
for each q ∈ EX(K) every A ∈ S(Y (K), q) spans Y (K) (the proof of [8, Proposition 3.1.3.1] only requires that we can make
limits and the Zariski topology is sufficient over an algebraically closed field).
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Definition 3.1. Let A ⊂ Y (K) = Pn1(K) × · · · × Pnk(K), ni > 0 for all i, be a finite set, A 6= ∅. Fix o = (o1, . . . , ok) ∈ A,
an integer i ∈ {1, . . . , k}, a line Li(K) ⊆ Pni(K) such that oi ∈ Li and two points ui, vi ∈ Li(K) \ {oi}, ui 6= vi. Write
u = (a1, . . . , ak) and v = (b1, . . . , bk) with aj = bj = oj for all j 6= i, ai = ui and bi = vi. Set A′ := (A \ {o})∪ {u, v}. The set A′

is said to be obtained from A making an elementary increasing with respect to the i-th factor.

Remark 3.1. Take A, o, u, v and A′ as in Definition 3.1. Obviously #A′ = #A + 1. Take a field K ⊆ K ′ ⊆ K and assume
that the finite set A\{o} is defined overK ′ and {oi, ui, vi} ⊂ Pni(K ′). Then A′ is defined overK ′. If each point of A is defined
over K ′ and {ui, vi} ⊂ Pni(K ′), then each point of A′ is defined over K ′.

Remark 3.2. Take A, o, u, v and A′ as in Definition 3.1 with #A > 1 and such that at least one point a ∈ A \ {o} is not
defined over K. Then for no choice of ui, vi all points of A′ are defined over K.

Remark 3.3. Take S ⊂ Y (K) such that e(S) > 0 and #S ≤ 3. Since ν is an embedding, #S = 3 and e(S) = 1, i.e.
L := 〈ν(S)〉K is a line. Since L contains 3 points of ν(Y (K)) and any Segre variety is cut out by quadrics, L ⊆ Y (K). The
structure of linear subspaces of Y (K) shows that there is i ∈ {1, . . . , k} such that #πh(S) = 1 for all h 6= i, while πi(S) are 3

collinear points.

4. Segre varieties: lemmas and quoted results

We use the following result (see [2, Proposition 5.3]) (alternatively, the reader may just use [1, Theorem 1.1] and do a little
work).

Proposition 4.1. Fix q ∈ Pr(K) such that rX(K)(q) = 2 and take a multiprojective space Y ′(K) ⊆ Y (K) concise for q. Fix
any A ⊂ Y (K) such that ν(A) ∈ S(X(K), q). Fix B ⊂ Y (K) such that #B = 3 and ν(B) irredundantly spans q. and call
Y ′(K) ⊆ Y (K) is the minimal multiprojective space containing B. Then Y ′(K) ∼= (P1(K))s for some s ≥ 2, A ⊂ Y ′(K) and
one of the following cases occurs:

(1). A ∩ B 6= ∅, B is obtained from A making and elementary increasing as in Definition 3.1 and either Y ′(K) = Y (K) or
Y (K) ∼= P2(K)× (P1(K))s−1 or Y (K) ∼= (P1(K))s+1;

(2). A ∩B = ∅; in this case either Y (K) ∼= P2(K)× P1(K) or Y (K) ∼= P1(K)× P1(K) or Y (K) ∼= P1(K)× P1(K)× P1(K).

For Proposition 4.2 the reader is referred to Section 3 for our conventions concerning Segre varieties. For instance (case
k = 2 and n1 = n2 = 1) over many fields, e.g. the real field or a finite field, there are smooth quadric surfaces of P3(K) with
no ruling defined over K, but with K-points.

Proposition 4.2. Take q ∈ Pr(K) such that rX(K)(q) = 2 and#S(X(K), q) > 1. Then rX,K(q) = rX(K)(q) = 2,#S(X,K, q) ≥
#S(X(K), q) > 1, S(X(K), q) is infinite if K is infinite.

Proof. Fix any A ⊂ Y (K) such that ν(A) ∈ S(ν(Y (K)), q). Let Y ′(K) ⊆ Y (K) the minimal multiprojective space containing
A. By Autarky Y ′(K) is the minimal multiprojective space such that q ∈ 〈ν(Y ′(K))〉K . Concision also implies that all
elements of S(X(K), q) are contained in ν(Y ′(K)). By [3, Proposition 2.3] Y ′(K) ∼= P1(K)× P1(K). The structure of Segre
varieties shows that that the isomorphism of Y ′(K) with P1(K)× P1(K) is defined over K (we use that #P1(K) is infinite
if K is infinite and that #P1(K) = #K + 1 ≥ 3 if K is finite). Since Y ′(K) has only 2 factors, the tensor q is basically a
matrix. The classification of rank 2 matrices over K gives the thesis.

Lemma 4.1. Let C ⊂ P3
K be a rational normal curve defined over K. Fix q ∈ P3

K with rC(K)(q) = 3. If K is infinite, then
S(C(K), q) is infinite. If K is finite and rX(K)(q) = 2, then #S(C(K), q) > 1 if and only if #K ≥ 5.

Proof. Since C(K) is a rational normal curve of P3(K), no 3 of its points are collinear. By assumption q /∈ C(K) and q is not
contained in any secant line of C(K). Hence the linear projection `q : P3

K \ {q} −→ P2
K induces an injective map ` : C(K) −→

P2(K) and `(C(K)) is a degree 3 integral and rational plane curve with arithmetic genus 1 and hence with a unique singular
point, o, which is either an ordinary node or an ordinary cusp. In all cases o ∈ P2(K). The point o is an ordinary node if
and only if rX(K)(q) = 2 and this occurs if and only if o /∈ `(C(K)). The assumption rC(K)(q) = 3 is equivalent to assuming
that `(C(K)) has 3 collinear points. Call L a line (necessarily defined over K) such that #(`(C(K)) ∩ L) = 3. Since C is a
rational normal curve over K, C(K) is infinite if K is infinite and #C(K) = #K + 1 if K is finite.

Claim 1. `(C(K))∩L ( `(C(K)), unlessK = F2. If eitherK 6= F3 or o is an ordinary node, there is a ∈ `(C(K))\`(C(K))∩L
such that a 6= o.
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Proof of Claim 1. #`(C(K)) ∩ L = 3, `(C(K)) is infinite if K is infinite, while #`(C(K)) = #K + 1 if K is finite.
(a). Assume thatK is infinite. The setW (K) of all lines R ⊂ P2(K) such that o /∈ R and #(R∩`(C(K))) = 3 is a non-empty
open Zariski open subset of the dual projective space P2(K)∨. The set W is defined over K. Since L ∈ W (K), W (K) 6= ∅.
Since K is infinite, W (K) is Zariski dense in W (K). Thus `(C(K)) has infinitely many trisecant lines.
(b). Assume rX(K)(q) = 2 and K finite. Thus o is an ordinary node and o /∈ `(C(K)). Set x := #K. The set `(C(K)) has
cardinality x+ 1. By Bezout’s theorem each line through o contains at most another point of `(C(K)), for any a ∈ `(C(K))

the tangent line to `(C(K)) does not contain o and no line is quadrisecant to `(C(K)). Thus each line though 2 points of
`(C(K)) either is tangent to `(C(K)) at one of these 2 points or meets a third point of `(C(K)). There are

(
x+1
2

)
subsets of

`(C(K)) with cardinality 2 and at most x + 1 of them are on a secant line of `(C(K)). The union of three collinear points
has 3 subsets with cardinality 2. Thus if

(
x+1
2

)
− x − 1 > 6, i.e. if x ≥ 5, then `(C(K)) has at least 2 trisecant lines. Now

assume x = 4 and that `(C(K)) has 2 trisecant lines, say R and D. Set {a} := L∩D. Since #`(C(K)) = 5, a ∈ `(C(K)) and
`(C(K)) ⊂ R ∪D. Bezout gives that Ta`(C(K)) /∈ {R,D}. Since Ta`(C(K)) is defined over K, it meets `(C(K)) at a point
not in R ∪D, a contradiction. The exclusion of the cases x = 2, 3 is easier, because `(C(K)) has no quadrisecant line.

Proposition 4.3. Take q ∈ Pr(K) such that rX(K)(q) = 2 and #S(X(K), q) = 1. Set {A} := S(X(K), q). Then:

(1). rX,K(q) = 2 and {A} = S(X,K, q).

(2). If rX(K)(q) = 2, then {A} = S(X(K), q).

(3). Assume rX(K)(q) = 3. Then #S(X(K), q) > 1 if and only if either K is infinite or #K ≥ 5.

Proof. Since #S(X(K), q) = 1, k > 2. Parts (1) and (2) follow from Lemma 2.1. Next, assume rX(K)(q) = 3 and take
B ∈ S(X(K), q). Since rX(K)(q) 6= 2, not all points of A are defined over K. Since #A = 2, no point of A is defined over K.
Fix a finite extension L ⊃ K such that each point of A is defined over L, say A = {a, b} ⊂ Y (L). Since K is a perfect field
and each subgroup with index 2 of a finite group is normal, we may take as L a degree 2 Galois extension of K. Call g the
non-zero element of the Galois group G of the extension L/K. Note that g(a) = b and g(b) = a. Remark 3.2 implies that B
is not an elementary increasing of A. Since k > 2, Proposition 4.1 implies that the minimal multiprojective space W over
K containing B is isomorphic to (P1(K))3. We also have A ∩ B = ∅ and A ∪ B is contained in the image of a morphism
f : P1(K) −→ (P1(K))3 whose composition with the projections πi are isomorphisms (see [1, Lemma 5.8]. Thus πi|B is
injective for all i. Write B = {u, v, z}, ui = πi(u), vi = πi(v) and zi = πi(z). Note that {ui, vi, zi} ⊂ P1(K). Fix 3 distinct
points 0, 1,∞ ∈ P1(K). Let fi : P1

K −→ P1
K denote the only isomorphism such that fi(0) = ui, fi(1) = vi and fi(∞) = zi. The

isomorphism fi is defined over K and f = (f1, f2, f3) is an embedding f : P1
K −→ (P1

K)3 such that {u, v, z} ⊂ f(P1(K)). The
curve ν(f((P1)3)) is a degree 3 rational normal curve. Each point of 〈ν(f((P1)3))〉K is in more than one way irredundantly
spanned by 3 points of 〈ν(f((P1)3))〉K if #K ≤ 5. (Lemma 4.1). Thus in this case #S(X(K), q) > 1, unless #K < 5. The
cases with #K < 5 are excluded by Lemma 4.1.

Lemma 4.2. Let C ⊂ P4 be a degree 4 rational normal curve defined over K. Assume the existence of q ∈ P4(K) such that
rC(K)(q) = rC(K)(q) = 3. Assume char(K) 6= 2, 3 and K infinite. Then S(C(K), q) is infinite and Zariski dense in P1(K).

Proof. Take B ⊂ C(K) with B ∈ S(C(K), q). Since char(K) 6= 2, 3 and K infinite we may apply Sylvester’s theorem
(see [7, pp. 36–39]) and get that the set S(C(K), q) is a non-empty open subset of a one-dimensional projective space. The
algebraic variety S(C(K), q) is defined over K and it contains B ⊂ C(K). Thus S(C(K), q) is infinite and Zariski dense in
P1(K).

5. Segre varieties: the main proofs

Let τ(K) ⊆ Pr(K) denote the tangential variety of X(K). We recall the following lemma, part (a) being well-known
(e.g. [5, Table 1, n = 3]) and part (b) be being proved (but not stated) in arbitrary characteristic in [3].

Lemma 5.1. Take Y := (P1
K)3 and hence r = 7.

(a). Over K, σ2(X(K)) = P7(K), EX has 2 orbits, O2 and O3, for the action of Aut(P1(K))3 with O2 = τ(X(K)) ∩ EX and
O3 = P7(K) \ τ(X(K)).

(b). Each q ∈ O3 has rX(K)(q) = 2 and #S(Y (K, q) = 1.

(c). Each q ∈ τ(X(K)) ∩ EX has rX(K)(q) = 3 and dimS(X(K), q) > 0.
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Lemma 5.2. Take Y , O1, O2 and O3 as in Lemma 5.1. Fix q ∈ P7(K) ∩ EX .

(a). If q ∈ O3, then rX,K(q) = 2 and #S(X,K, q) = 1. If rX(K)(q) = 2, then #S(X(K), q) = 1. If rX(K)(q) = 3, then
#S(X(K), q) > 1 if and only if #K ≥ 5 and S(X(K), q) is infinite if K is infinite.

(b). If q ∈ O2, then rX(K)(q) = rX,K(q) = 3, #S(X(K), q) > 1 and S(X(K), q) is infinite if K is infinite.

Proof. Fix q ∈ O3. Part (a) for (X,K) follows from Lemma 2.1 and part (a) of Lemma 5.1. If rX(K)(q) = 2, then
#S(X(K), q) = 1 (Lemma 2.1). Now assume rX(K)(q) = 3. Take A such that {ν(A)} = S(X(K), q). By assumption A

is defined over K, but not all points of A are defined over K. By assumption there is B ⊂ Y (K) such that #B = 3 and
q ∈ 〈ν(B)〉K . By Remark 3.2, Proposition 4.1 and the assumption q ∈ EX , A ∩B = ∅. A key part of the proof of Proposition
4.1 was [1, Theorem 1.1 and Lemma 5.8] which gives the existence of a curve C ⊂ (P1(K)3 such that A∪B ⊂ C and πi|C is
an isomorphism for i = 1, 2, 3. Hence πi|B is injective. Moreover, [1] also studies all such curves (called of tridegree (1, 1, 1)

in [1]). A key point is that C is uniquely determined in a constructive way from B and hence it is uniquely determined by
B. In this way we see that C is defined over K. Since q ∈ 〈ν(B)〉K , q ∈ 〈ν(C)〉K . The curve ν(C) is a degree 3 rational
normal curve in its linear span. Use Lemma 4.1 and the last part of the proof of Proposition 4.3.

Now we prove part (b). Since rX(K)(q) = 3, we have rX(K)(q) ≥ rX,K(q) ≥ 3. Since q ∈ τ(X(K))\X(K), there is a degree
2 connected zero-dimensional scheme v ⊂ Y (K) such that q ∈ 〈ν(v)〉K . Since q ∈ EX ∩ P7(K), it is easy to check as in the
proof of [3, Proposition 2.3] that v is unique. Hence v is defined over K. Thus {o}red is defined over K (here we use that
K is perfect). Write o = (o1, o2, o3) with oi ∈ P1(K). Let vi ⊂ P1(K) connected degree scheme with oi as its reduction. Set
T := η−11 (o1) ∪ η−12 (o2) ∪ η−13 (o3). The set ν(T (K)) is the union of 3 lines through ν(o), each of them defined over K and
dim〈ν(T (K))〉K = 3. Fix e3 ∈ P1(K) \ {o3} (it exists for any K). Let ` : 〈ν(T (K))〉K \ {ν(e3)} −→ P2(K) denote the linear
projection from ν(e3). Since ν(e3) and ν(T ) are defined over K, ` is defined over K. Since q ∈ EX , q 6= ν(o3) and hence
`(q) is a well-defined point of P2(K). The plane P2(K) is spanned by the reducible conic D := ν(η−12 (o2) ∪ η−13 (o3)). Since
`(q) /∈ D, we easily see the existence of more that one (and infinitely many if K is infinite) S ⊂ D(K) such that `(q) ∈ 〈S〉.
Thus rX(K)(q) ≤ 3. Hence rX(K)(q) ≥ rX,K(q) ≥ 3. We also proved that #S(X(K), q) > 1 and S(X(K), q) is infinite if K is
infinite.

Lemma 5.3. Take Y := (P1
K)4 and hence r = 15. We have dimσ3(X(K)) = 14, dimS(Y (K) ≥ 1 for all q with rX(K)(q)) = 3

and dimS(Y (K), q) = 1 for a general q ∈ σ3(X(K)). Take q ∈ P15(K) such that rX(K)(q)) = rX(K)(q)) = 3. If K is infinite,
then S(X(K), q) is infinite.

Proof. The part over K is well-known and written down at least in characteristic 0 in all lists of defective Segre varieties.
In arbitrary characteristic it is essentially proved in the following way, which we also need for later proofs over K. Fix
B ⊂ Y (K) such that #B = 3 and #πi(B) = 3 for all i. Write B = {u, v, z}. Let fi : P1

K −→ P1
K be the only isomorphism such

that fi(0) = πi(u), fi(1) = πi(v) and fi(∞) = πi(z). The morphism f = (f1, f2, f3, f4) : P1(K) −→ P1(K)4 is defined over K
and B ⊆ f(P1(K)). Since ν(f(P1(K))) is a degree 4 rational normal curve in its linear span, we may apply Lemma 4.2.

By assumption rX(K)(q) = 3. Fix B ⊂ Y (K) such that ν(B) ∈ S(X(K), q). We just proved the case “#πi(B) = 3 for all
i ”. Thus we may assume #πi(B) ≤ 2, for at least one index i. Since X(K) is concise for q, #πi(B) = 2. If this is true
for at least two indices i, then we are in case described in Example 5.3 below. Thus we may assume that #πi(B) = 2 for
exactly one index i, say i = 4. Call F ⊂ B the set with #F = 2 and #π4(F ) = 1. Set {a} := π4(B) and H := π−14 (a). H
is a multiprojective space isomorphic to (P1

K)3 and H = (P1
K)3 × {a} is embedded in Y by the inclusion {a} ↪→ P1

K . Since
ν(B) irredundantly spans q, there is a unique q′ ∈ 〈ν(F )〉K such that q ∈ 〈{q′, ν(o)}〉. Now we vary b ∈ (P1

K)4. Take any
o′ ∈ (P1(K))4. The line 〈{q, ν(b)}〉K meets 〈ν(H)〉K at a unique point qb. We take Fb ∈ S(H(K), qb) and set Bb := Fb ∪ {b}.
We need to justify the existence of Fb, i.e. that rH(K)(qb) = 2. For any field L ⊇ K all sets A ⊂ H(L) such that #πi(A) = 2

for all i = 1, 2, 3, form a unique orbit for the action of Aut(P1(L))3. Taking their linear spans we cover all q′′ ∈ 〈ν(Y (L)〉L
with rH(L)(q

′′) = 2. Since K is infinite, we get as qb a Zariski dense subset of the projective space 〈ν(H(K))〉K .

End of the proof of Theorem 1.1: Fix q ∈ Pr(K) such that rX(K)(q) = 2. The case with #S(X(K), q) > 1 is true by Propo-
sition 4.2. Assume #S(X(K), q) = 1. Lemma 2.1 gives rX,K(2) = 2, #S(X,K, q) = 1 and that #S(X(K), q) = 1 if
rX(K)(q) = 2.

Example 5.1. Case 1 of [3, Theorem 7.1] is the case k = 2, i.e. when the tensor T whose equivalence class represent q is a
rank 3 matrix. In this case rX(K)(q) = rX(K), #S(X(K), q) > 1 for any field K and S(X(K), q) is infinite if K is infinite.

Example 5.2. Take q ∈ Pr(K) such that rX(K)(q) = rX,K(q) = 3, X(K) is concise for X(K) and q is as in case 2 of [3,
Theorem 7.1]. Thus k = 3, n1 = n2 = n3 = 1 and q ∈ τ(X(K)). We described this case in Lemma 5.2.
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Example 5.3. Take q ∈ Pr(K) such that rX(K)(q) = rX,K)(q) = 3,X(K) is concise for (K) and q is as in case 6 of [3, Theorem
7.1]. Thus k ≥ 3, ni = 1 for all i ≥ 3, n1 ∈ {1, 2}, n2 ∈ {1, 2} and there is E ∈ S(X(K), q) and F ⊂ E with #F = 2 and
#πi(F ) = 1 for all i ≥ 3. Set {o} := E \ F . Since ν(E) irredundantly spans q, there is a unique q′ ∈ 〈ν(F )〉K such that
q ∈ 〈{q′, ν(o)}〉K . If n1 + n2 + k ≥ 4, we also proved that each E′ ∈ S(X(K), q) contains o and #π(E′ \ {o}) = 1 for all
i ≥ 3. Under these stronger assumptions o is uniquely determined by q and hence it is defined over K. Thus q′ is defined
over k. By the definition of q′ and the description of this case in [3] the minimal multiprojective space Y ′(K) such that
q′ ∈ 〈ν(Y ′(K))〉K is isomorphic to P1(K)2, i.e. q′ is represented by a tensor, which is equivalent to a 2 × 2 rank 2 matrix.
Since q′ is defined over K, the classification of matrices of rank > 1 gives #S(X(K), q′) > 1 and that S(X(K), q′) is infinite.
Adding o we get #S(X(K), q′) > 1 and that S(X(K), q) is infinite if K is infinite. Now assume k = 3 and n1 = n2 = n3 = 1.
Concision and the assumption “rX(K)(q) = 3” give q ∈ τ(X(K)) ∩ EX and we handled this case in Lemma 5.1.

Example 5.4. Take q ∈ Pr(K) such that rX(K)(q) = rX,K)(q) = 3, X(K) is concise for q, and q is as in case 3 of [3, Theorem
7.1]. Thus k = 4, n1 = n2 = n3 = n4 = 1. We described this case in Lemma 5.3.

Example 5.5. Take q ∈ Pr(K) such that rX(K)(q) = rX,K)(q) = 3, X(K) is concise for (K) and q is either as in case 4 or as
in case 5 of [3, Theorem 7.1]. In both cases k = 3, n1 = 2, n2 = n3 = 1 and the 2 cases are distinguished in the following way.
Fix any E ⊂ Y (K) such that ν(E) ∈ S(X(K, q)) and any B ⊂ Y (K) such that ν(B) ∈ S(X(K), q). Write B = {u, v, z}. Since
h0(OY (K)(0, 1, 1)) = 4 and #E = 3, |IE(0, 1, 1)| 6= ∅. It was proved in [3, Proposition 3.8] that |IE(0, 1, 1)| is a singleton,
say |IE(0, 1, 1)| = {G}. The two cases are distinguished as if G is irreducible (case 4) or G is reducible, say G = G1 ∪ G2

with G1 ∈ |OY (K)(0, 1, 0)| and G2 ∈ |OY (K)(0, 0, 1)| (case 5). Each A ⊂ Y (K) such that ν(A) ∈ S(X(K, q)) is contained in G

(see [3, Proposition 3.8]). In particular B ⊂ G and G, being uniquely determined by B, is defined over K. The two cases
are also distinguished according to the injectivity of both π2|E and π2|E .
(a). Assume that G is irreducible and hence πi|B is injective for i = 2, 3. Thus for i = 2, 3 there is a unique isomorphism
fi : P1

K −→ P1
K defined over K such that fi(0) = πi(u), fi(1) = π1(v) and fi(∞) = πi(z). Since q is concise and n1 = 2, π1|B is

injective and π1(B) are 3 points of P2(K) which are not collinear. Thus there is an embedding f1 : P1
K −→ P2

K defined overK,
with f1(0) = π1(u), f1(1) = π1(v), f1(∞) = π1(z) and f1(P1

K) a smooth conic containing π1(B). Set f = (f1, f2, f3) : P1
K −→ YK .

The curve ν(P1
K) is a degree 4 rational normal curve in its linear span. We apply Lemma 4.2 to this rational normal curve.

(b). Assume G = G1 ∪ G2. The Segre variety X(K) is concise for q, B * G1 and B * G2. Exchanging if necessary the
second and the third factor of YK we may assume #(B ∩G1) = 2 and #(B ∩G2) = 1. Set F := B ∩G1, {o} := B \F and use
Example 5.3.

End of the proof of Theorem 1.2: Fix q ∈ Pr(K).
(a). Assume rX(K)(q) = 2 and rX(K)(q) = 3. Use case 3 of Proposition 4.3.
(a1). Assume rX(K)(q) = 3. Since rX(K)(q) = rX(K)(q), Lemma 2.1 gives that #S(X(K), q) = 1 if #S(X(K), q) = 1. Thus it
is sufficient to check all 6 cases listed in [3, Theorem 7.1]. We did it in Examples 5.1, 5.2, 5.3, 5.4 and 5.5.

Example 5.6. Assume that K has a degree 2 extension L. Call σ the generator of the Galois group the extension L/K.
Fix X(K) with YK = (P1

K)k for some k > 2 factors. Take a1, . . . , ak ∈ K1 \K. Using ai and σ(ai) we may constructs a point
u ∈ Y (K1) \ Y (K) such that Y (K) is the minimal multiprojective space containing {u, σ(u)}. The line 〈{ν(u), ν(σ(u))}〉L is
defined over K and hence it corresponds to a line R of Pr(K) containing no point of ν(Y (K)). Fix q ∈ R. Since {u, σ(u)} ∈
S(L), q) and #S(X(K), q) = 1 (see [3, Proposition 2.3]), rX,K(q) = 2 and rX(K)(q) > 2. At least in some cases, e.g. k = 3

and K = R, it is easy to find u and q such that rX(K)(q) = 3.
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