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Abstract

A generalized method due to Noor and Waseem is studied for solving nonlinear equations in Banach space. The Noor-Waseem
method is of order three. But, the convergence of this method was shown assuming that the fourth derivative, not on the
method, exists. This constraint is limiting its applicability. Moreover, neither computable error bounds nor results about
the uniqueness of the solution were given. We address all these problems using only the first derivative which only appears
on the method. Hence, we extend the applicability of the method under consideration. Our techniques can be used to obtain
the convergence of other similar higher order methods using assumptions only on the first derivative of the operator involved.
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1. Introduction

A plethora of problems from diverse disciplines are solved using high order iterative methods [1–13]. But there are some
common problems with the applications of these methods. We demonstrate how to overcome these problems. In particular,
Noor and Waseem [9] considered the following third convergence iterative method:

yk = xk − F ′(xk)−1F (xk)

xk+1 = xk − 4A−1k F (xk), (1)

for solving the nonlinear equation
F (x) = 0, (2)

where
Ak = 3F ′

(
2xk + yk

3

)
+ F ′(yk).

Here, F : Ω ⊂ X −→ Y is an operator acting between Banach spaces X and Y with Ω 6= ∅. Throughout the article, we take
U(x0, ρ) = {x ∈ X : ‖x− x0‖ < ρ} and U [x0, ρ] = {x ∈ X : ‖x− x0‖ ≤ ρ} for some ρ > 0.

Our convergence analysis is not based on Taylor expansion (unlike earlier studies [7–13]), so we do not need assumptions
on higher than one order derivatives of the operator involved. For example: Let X = Y = R, Ω = [− 1

2 ,
3
2 ]. Define f on Ω by

f(t) =

{
t3 log t2 + t5 − t4 if t 6= 0

0 if t = 0.

Then, we have f(1) = 0 and f ′′′(t) = 6 log t2 +60t2−24t+22.Obviously f ′′′(t) is not bounded on Ω. So, the convergence of the
Noor-Waseem method is not guaranteed by the analysis in [9]. The same problem exists with other methods [1–8,10–13]
although the method may converge. Other problems have already been reported in the abstract of this study. That is why
it is imporatant to use assumptions only on the derivatives appearing on the method.

The paper contains local convergence analysis in Section 2 and the numerical examples are given in Section 3.
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2. Ball convergence

The convergence is based on some functions and parameters. Let B = [0,∞). Assume

(i) Function ψ0(t) − 1 has a minimal zero R0 ∈ M − {0}, where ψ0 : B −→ B is continuous and nondecreasing. Set
B0 = [0, R0).

(ii) Function ϕ1(t)− 1 has a minimal zero r1 ∈ B0 − {0}, where ψ : B0 −→ B is continuous, nondecresing and

ϕ1(t) =

∫ 1

0
ψ(θt)dθ

1− ψ0(t)
.

(iii) Function q(t)− 1 has a minimal zero R1 ∈ B − {0}, where

q(t) =
1

4

(
3ψ0

(
(2 + ϕ1(t))t

3

)
+ ψ0(t)

)
.

Set R = min{R0, R1}, and B1 = [0, R).

(iv) Function ϕ2(t)− 1 = 0 has a minimal zero r2 ∈ B1 − {0}, where

ϕ2(t) = ϕ1(t) +
p(t)

∫ 1

0
ψ1(θt)dθ

4(1− ψ0(t))(1− q(t))
,

where ψ1 : B1 −→ B is continuous, nondecreasing and

p(t) = 3

(
3ψ0

(
(2 + ϕ1(t))t

3

)
+ ψ0(t)

)
+ ψ0(ϕ1(t)t) + ψ0(t).

The parameter r given by
r = min{ri}, i = 1, 2, (3)

shall be shown to be a radius of convergence for method (1). Let B2 = [0, r). Then, it follows from (3) that for all t ∈ B2

0 ≤ ψ0(t) < 1 (4)
0 ≤ q(t) < 1 (5)
0 ≤ p(t) (6)

and
0 ≤ ϕi(t) < 1. (7)

Assume:

(C1) There exists x∗ ∈ Ω which is a simple solution of (2).

(C2) ‖F ′(x∗)−1(F ′(w)− F ′(x∗))‖ ≤ ψ0(‖w − x∗‖) for all w ∈ Ω. Let Ω0 = U(x∗, R0) ∩ Ω.

(C3) ‖F ′(x∗)−1(F ′(w)− F ′(z))‖ ≤ ψ(‖w − z‖),
‖F ′(x∗)−1F ′(v)‖ ≤ ψ1(‖v − x∗‖) for all w, v ∈ Ω0.

(C4) U [x∗, r] ⊂ Ω.

We now can prove the main local convergence result for method (1) using conditions (C).

Theorem 2.1. Assume conditions (C) hold. Then, sequence {xn} generated by method (1) with starting point x0 ⊂ U(x∗, r)−
{x∗}, is well defined in U(x∗, r), remains in U(x∗, r) for all n = 0, 1, 2, . . . and converges to x∗.

Proof. Mathematical induction is used to show

‖yk − x∗‖ ≤ ϕ1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r (8)

and
‖xk+1 − x∗‖ ≤ ϕ2(‖xk − x∗‖)‖xk − x∗‖ ≤ ‖xn − x∗‖ < r. (9)
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Let z ∈ U(x∗, r). Then, using (C2) one gets in turn that

‖F ′(x∗)−1(F ′(z)− F ′(x∗))‖ ≤ ψ0(‖z − x∗‖) ≤ ψ0(r) < 1.

Hence, the inequality
‖F ′(z)−1F ′(x∗)‖ ≤ 1

1− ψ0(‖v − x∗‖)
(10)

follows from the Banach lemma on invertible operators [10]. By the first substep of method (1) and (10) for z = x0, one has

y0 − x∗ = x0 − x∗ − F ′(x0)−1F (x0)

= F ′(x0)−1
∫ 1

0

[F ′(x0)− F ′(x∗ + θ(x0 − x∗))dθ](x0 − x∗). (11)

By (C2), (10) (for z = x0) and (11), we obtain

‖y0 − x∗‖ ≤
∫ 1

0
ψ(θ‖x0 − x∗‖)dθ

1− ϕ0(‖x0 − x∗‖)
‖x0 − x∗‖ (12)

≤ ϕ1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r.

That is (8) holds for k = 0 and y0 ∈ U(x∗, r). Next, it is shown A−10 ∈ L(Y,X). By (5) and (12), we can write

‖(4F ′(x∗))−1(A0 − F ′(x∗))‖ ≤
1

4

[
3‖F ′(x∗)−1

(
F ′
(

2x0 + y0
3

)
− F ′(x∗)

)
‖

+ ‖F ′(x∗)−1(F ′(y0)− F ′(x∗))‖
]

≤ 1

4

(
3ψ0

(
2‖xn − x∗‖+ ‖y0 − x∗‖

3

)
+ ψ0(‖y0 − x∗‖)

)

≤ 1

4

(
3ψ0

(
(2 + ϕ1(‖xn − x∗‖))‖x0 − x∗‖

3

)
+ ψ0(ϕ1(‖x0 − x∗‖)‖x0 − x∗‖)

= q(‖x0 − x∗‖) < 1. (13)

Hence, we obtain
‖A−10 F ′(x∗)‖ ≤ 1

4(1− p(‖x0 − x∗‖))
. (14)

So, iterate x1 exists by the second substep of method (1) for k = 0. By (C3) the following estimate is obtained

‖F ′(x∗)−1(A0 − 4F ′(xn))‖ ≤
(

3ψ0

(∥∥∥∥2x0 + y0
3

− x∗
∥∥∥∥)+ ψ0(‖x0 − x∗‖)

)
+ψ0(‖y0 − x∗‖) + ψ0(‖x0 − x∗‖)

≤ 3

(
ψ0

(
(2 + ϕ1(‖x0 − x∗‖))‖x0 − x∗‖

3

))
+ ψ0(‖x0 − x∗‖)

+ψ0(ϕ(‖x0 − x∗‖)‖x0 − x∗‖) + ψ0(‖x0 − x∗‖) (15)

= p ‖x0 − x∗‖. (16)

Then, by the second substep of method (1) one has

x1 − x∗ = x0 − x∗ − F ′(x0)−1F (x0) + F ′(x0)−1(A0 − 4F ′(x0))A−10 F (x0). (17)

Using (C3), (7), (10) (for z = x0), (14), (15) and (17)

‖x1 − x∗‖ ≤ ϕ1(‖x0 − x∗‖)‖x0 − x∗‖+ p(‖x0 − x∗‖)
∫ 1

0

ϕ1(θ‖x0 − x∗‖)dθ‖x0 − x∗‖

≤ ϕ2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r. (18)
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So, (9) holds for k = 0 and x1 ∈ U(x∗, r). Replace, x0, y0, x1 by xk, yk, xk+1 in the previous stimulations to complete the
induction for (8) and (9). Then, from the estimation

‖xi+1 − x∗‖ ≤ c‖xi − x∗‖ < r, (19)

where c = ϕ2(‖x0 − x∗‖) ∈ [0, 1), we conclude limk−→∞ xk = x∗ and xk+1 ∈ U(x∗, r).

The uniqueness of the solution is presented in the next proposition.

Proposition 2.1. Assume:

(a) There exists a simple solution x∗ ∈ Ω of equation F (x) = 0.

(b) There exists r̄ ≥ r such that ∫ 1

0

ψ0(θr̄)dθ < 1. (20)

Let Ω1 = Ω ∩ U [x∗, r̄]. Then, x∗ is the only solution of equation F (x) = 0 in the region Ω1.

Proof. Let λ ∈ Ω1 be a solution of equation F (x) = 0. Set

M =

∫ 1

0

F ′(x∗ + t(λ− x∗))dt.

Then, by (C2) and (20), we have in turn that

‖F ′(x∗)−1(M − F ′(x∗))‖ ≤
∫ 1

0

ψ0(θ‖λ− x∗‖)dθ

≤
∫ 1

0

ψ0(θr̄)dθ < 1.

So, λ = x∗ follows from the invertibility of M and the identity 0 = F (λ)− F (x∗) = M(λ− x∗).

3. Numerical examples

We compute the radius of convergence in this section.

Example 3.1. Take ψ0(t) = ψ(t) = 96.6629073t and ψ1(t) = 2. Then, we have

r1 = 0.0069 and r2 = 0.0054 = r.

Example 3.2. Let X = Y = R3, D = B[0, 1], x∗ = (0, 0, 0)T . Define the function F on D for w = (x, y, z)T by

F (w) =

(
ex − 1,

e− 1

2
y2 + y, z

)T

.

Then, we get

F ′(v) =


ex 0 0

0 (e− 1)y + 1 0

0 0 1

 ,
and hence for

ψ0(t) = (e− 1)t, ψ(t) = e
1

e−1 t and ψ1(t) = e
1

e−1 ,

we have
r1 = 0.3827 = r and r2 = 0.6092.
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4. Basins of attractions

The basins of attraction [8], also referred as Fatou sets, of an iterative method are the collection of all initial points from
which the iterative method converges to a solution of a given equation. The complement of Fatou set is known as Julia set.
The following test problems which are systems of polynomials in two variables are considered and the basins of attraction
associated to each root of the corresponding system are displayed in Figure 1.

Example 4.1. The system {
x3 − y = 0

y3 − x = 0

has the solution set {(−1,−1), (0, 0), (1, 1)}.

Example 4.2. The system {
3x2y − y3 = 0

x3 − 3xy2 − 1 = 0

has the solution set
{(
− 1

2 ,−
√
3
2

)
,
(
− 1

2 ,
√
3
2

)
, (1, 0)

}
.

Figure 1: Dynamical plane of Method (1) with basins of attraction for Examples 4.1 and 4.2.

We apply method (1) to obtain the basins of attraction for each test problem and compare the results. For generating
the basin of attraction associated to each root of a given system of nonlinear equations, we consider the rectangular region
R = {(x, y) ∈ R2 : −2 ≤ x ≤ 2,−2 ≤ y ≤ 2} which contains all the roots of test problems. We consider an equidistant grid
of 401 × 401 points in R and we choose these points as the initial guess x0, for the method (1). A fixed tolerance 10−8 and
a maximum of 50 iterations are used for all the cases. A color is being assigned to each attracting basin corresponding to
each root. If we do not obtain the desired tolerance with the fixed iterations, we do not continue and we decide that the
iterative method starting at x0 does not converge to any of the roots and assign black color to those points. In this way, we
distinguish the basins of attraction by their respective colors for distinct roots of each method.

Figure 1 demonstrates the basin of attraction corresponding to each root of the method (1). The Julia set (black region),
which contains all the initial points from which the iterative method does not converge to any of the roots, can easily be
observed in the figure.

The figure presented in this work is generated by a 4-core 64 bit Windows machine with Intel Core i7-3770 processor
using MATLAB programming language.
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