Research Article

Regularity and decay of solutions for the 3D Kuramoto-Sivashinsky equation posed on smooth domains and parallelepipeds

Nikolai A. Larkin*

Departamento de Matemática, Universidade Estadual de Maringá, Av. Colombo 5790: Agência UEM, 87020-900, Maringá, Parana, Brazil
(Received: 5 January 2022. Received in revised form: 4 February 2022. Accepted: 7 February 2022. Published online: 11 February 2022.)
(C) 2022 the author. This is an open access article under the CC BY (International 4.0) license (www. creativecommons.org/licenses/by/4.0/).

Abstract

Initial-boundary value problems for the 3D Kuramoto-Sivashinsky equation posed on smooth domains and parallelepipeds are considered. The existence and uniqueness of global regular and strong solutions as well as their exponential decay are established.

Keywords: Kuramoto-Sivashinsky equation; global solutions; decay in bounded and unbounded domains.
2020 Mathematics Subject Classification: 35Q35, 35Q53.

1. Introduction

This work is concerned with the existence, uniqueness, regularity and exponential decay rates of solutions to initialboundary value problems for the three-dimensional Kuramoto-Sivashinsky (KS) equation:

$$
\begin{equation*}
\phi_{t}+\Delta^{2} \phi+\Delta \phi+\frac{1}{2}|\nabla \phi|^{2}=0 . \tag{1}
\end{equation*}
$$

Here Δ and ∇ are the Laplacian and the gradient in \mathbb{R}^{3}. In [11], Kuramoto studied the turbulent phase waves and Sivashinsky in [21] obtained an asymptotic equation which simulated the evolution of a disturbed plane flame front; see also [8]. Mathematical results on initial and initial-boundary value problems for the one-dimensional KS equation are presented in $[3,5,7,13,15,18,23,25]$ (see references cited there for more information). In [4,5], the initial value problem for multidimensional KS type equations has been considered. Two-dimensional periodic problems for the KS equation and its modifications posed on rectangles were studied in [2,16-18, 20, 25], where some results on the existence of weak solutions and nonlinear stability have been established. In [14], three-dimensional Kuramoto-Sivashinsky-Zakharov-Kuznetsov equation has been studied.

For three dimensions, (x, y, z), Equation (1) can be rewritten in the form of the following system:

$$
\begin{align*}
& u_{t}+\Delta^{2} u+\Delta u+u u_{x}+v v_{x}+w w_{x}=0 \tag{2}\\
& v_{t}+\Delta^{2} v+\Delta v+u u_{y}+v v_{y}+w w_{y}=0 \tag{3}\\
& w_{t}+\Delta^{2} w+\Delta w+u u_{z}+v v_{z}+w w_{z}=0 \tag{4}\\
& u_{y}=v_{x}, u_{z}=w_{x}, v_{z}=w_{y} \tag{5}
\end{align*}
$$

where $u=\phi_{x}, v=\phi_{y}, w=\phi_{z}$. Let Ω be the minimal parallelepiped containing a given smooth domain \bar{D} :

$$
\Omega=\left\{(x, y, z) \in R^{3} ; x \in\left(0, L_{1}\right), y \in\left(0, L_{2}\right), z \in\left(0, L_{3}\right)\right\} .
$$

The first essential problem that arises while one studies either (1) or (2)-(5), is destabilizing effects of $\Delta u, \Delta v, \Delta w$; they may be damped by dissipative terms $\Delta^{2} u, \Delta^{2} v, \Delta^{2} w$ provided that D has some specific properties. Admissible domains called "thin domains" are appeared here naturally, where some L_{i} are sufficiently small while others L_{j} may be arbitrarily large $i, j=1,2,3 ; i \neq j$, (see $[2,10,20]$).

The second essential problem is the presence of semi-linear terms in (2)-(4) which are interconnected. This does not allow to obtain the first estimate independent of u, v, w and leads to a connection between L_{1}, L_{2}, L_{3} and $u(0), v(0), w(0)$. Taking into account these arguments, we study initial-boundary value problems for (2)-(5) posed on smooth domains D,

[^0]where the existence and uniqueness of global regular solutions as well as their exponential decay of the $H^{2}(D)$-norm are established. Moreover, we obtained a "smoothing effect" for solutions with respect to initial data. On the other hand, we also study initial-boundary value problems for (2)-(5) posed on unbounded parallelepipeds and establish the existence and uniqueness of global strong solutions as well as their exponential decay of the $L^{2}(D)$-norm.

This paper has the following structure. Section 1 is the introduction. Section 2 consists of notations and auxiliary facts. In Section 3, formulation of an initial-boundary value problem for (2)-(5) in a smooth bounded domain D is given. The existence and uniqueness of global regular solutions, exponential decay of the $H^{2}(D)$-norm and a "smoothing effect" have been established. In Section 4, an initial-boundary value problem for (2)-(5) posed on a horizontal parallelepiped D_{x} is formulated. The existence, uniqueness and exponential decay of the $L^{2}\left(D_{x}\right)$-norm for global strong solutions are also established in Section 4. (Similar results can be proved for the 3D Kuramoto-Sivashinsky system posed on parallelepiped parallel to axes $0 Y$ and $0 Z$.) Section 5 gives concluding remarks.

2. Notations and auxiliary facts

Let Ω be a sufficiently smooth domain in \mathbb{R}^{3} satisfying the cone condition (see [1]) and $x=\left(x_{1}, x_{2}, x_{3}\right) \in \Omega$. We use the standard notations of Sobolev spaces $W^{k, p}, L^{p}$ and H^{k} for functions and the following notations for the norms [1,6] for scalar functions $f(x, t)$:

$$
\|f\|^{2}=\int_{\Omega}|f|^{2} d \Omega, \quad\|f\|_{L^{p}(\Omega)}^{p}=\int_{\Omega}|f|^{p} d \Omega, \quad\|f\|_{W^{k, p}(\Omega)}^{p}=\sum_{0 \leq \alpha \leq k}\left\|D^{\alpha} f\right\|_{L^{p}(\Omega)}^{p}, \quad\|f\|_{H^{k}(\Omega)}=\|f\|_{W^{k, 2}(\Omega)} .
$$

When $p=2, W^{k, p}(\Omega)=H^{k}(\Omega)$ is a Hilbert space with the scalar product

$$
((u, v))_{H^{k}(\Omega)}=\sum_{|j| \leq k}\left(D^{j} u, D^{j} v\right),\|u\|_{L^{\infty}(\Omega)}=\text { ess } \sup _{\Omega}|u(x)| .
$$

We use the notation $H_{0}^{k}(\Omega)$ to represent the closure of $C_{0}^{\infty}(\Omega)$, the set of all C^{∞} functions with compact support in Ω, with respect to the norm of $H^{k}(\Omega)$.

Lemma 2.1 (Steklov's Inequality [22]). If $v \in H_{0}^{1}(0, L)$ then

$$
\frac{\pi^{2}}{L^{2}}\|v\|^{2}(t) \leq\left\|v_{x}\right\|^{2}(t)
$$

Lemma 2.2 (See [12], Theorem 7.1; [24], Lemma 3.5.). If $v \in H_{0}^{1}(\Omega)$ and $n=3$, then

$$
\|v\|_{L^{4}(\Omega)} \leq 2^{1 / 2}\|v\|^{1 / 4}\|\nabla v\|^{3 / 4}
$$

Lemma 2.3 (Differential form of the Gronwall Inequality). Let $I=\left[t_{0}, t_{1}\right]$. Suppose that the functions $a, b: I \rightarrow \mathbb{R}$ are integrable and the function $a(t)$ is of any sign. Let $u: I \rightarrow \mathbb{R}$ be a differentiable function satisfying

$$
\begin{equation*}
u_{t}(t) \leq a(t) u(t)+b(t), \text { for } t \in I \text { and } u\left(t_{0}\right)=u_{0} \tag{6}
\end{equation*}
$$

then

$$
u(t) \leq u_{0} e^{\int_{t_{0}}^{t} a(t) d t}+\int_{t_{0}}^{t} e^{\int_{t_{0}}^{s} a(r) d r} b(s) d s
$$

Proof. Multiply (6) by the integrating factor $e^{\int_{t_{0}}^{s} a(r) d r}$ and integrate from t_{0} to t.
The next Lemmas will be used in estimates.
Lemma 2.4 (See [1, 9, 19]). Let Ω be a sufficiently smooth bounded domain in \mathbb{R}^{3} satisfying the cone condition. If $v \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$, then

$$
\|v\|_{L^{4}(\Omega)} \leq C_{n}\left(\|v\|_{L^{2}(\Omega)}^{5 / 8}\|\Delta v\|_{L^{2}(\Omega)}^{3 / 8}+\|v\|_{L^{2}(\Omega)}\right)
$$

If $v \in H_{0}^{2}(\Omega)$, then

$$
\|v\|_{L^{4}(\Omega)} \leq C_{n}\|v\|_{L^{2}(\Omega)}^{5 / 8}\|\Delta v\|_{L^{2}(\Omega)}^{3 / 8}
$$

Lemma 2.5 (See [1, 9, 19]). Let Ω be a sufficiently smooth bounded domain in \mathbb{R}^{3} satisfying the cone condition and $v \in H^{4}(\Omega) \cap H_{0}^{1}(\Omega)$, then

$$
\sup _{\Omega}|v(x)| \leq C_{s}\left(\left\|\Delta^{2} v\right\|_{L^{2}(\Omega)}+\|v\|_{L^{2}(\Omega)}\right)
$$

Lemma 2.6. Let $f(t)$ be a continuous positive function such that

$$
\begin{align*}
& f^{\prime}(t)+\left(\alpha-k f^{n}(t)\right) f(t) \leq 0, t>0, n \in \mathbb{N} \tag{7}\\
& \alpha-k f^{n}(0)>0, k>0
\end{align*}
$$

Then $f(t)<f(0)$ for all $t>0$.
Proof. Obviously, $f^{\prime}(0)+\left(\alpha-k f^{n}(0)\right) f^{n}(0) \leq 0$. Since f is continuous, there exists $T>0$ such that $f(t)<f(0)$ for every $t \in[0, T)$. Suppose that $f(0)=f(T)$. Integrating (7), we find

$$
f(T)+\int_{0}^{T}\left(\alpha-k f^{n}(t)\right) f(t) d t \leq f(0)
$$

Since

$$
\int_{0}^{T}\left(\alpha-k f^{n}(t)\right) f(t) d t>0
$$

one gets $f(T)<f(0)$. This contradicts the equation $f(T)=f(0)$. Therefore, $f(t)<f(0)$ for all $t>0$.

3. KS equation posed on smooth domains

Let Ω be the minimal parallelepiped containing a given bounded smooth domain \bar{D} :

$$
\Omega=\left\{(x, y, z) \in R^{3} ; x \in\left(0, L_{1}\right), y \in\left(0, L_{2}\right), z \in\left(0, L_{3}\right)\right\} .
$$

Differentiating (1) with respect to x, y, z and denoting $u=\phi_{x}, v=\phi_{y}, w=\phi_{z}$, we come in $Q_{t}=D \times(0, t)$ to the following initial-boundary value problem:

$$
\begin{align*}
& u_{t}+\Delta^{2} u+\Delta u+u u_{x}+v v_{x}+w w_{x}=0, \tag{8}\\
& v_{t}+\Delta^{2} v+\Delta v+u u_{y}+v v_{y}+w w_{y}=0, \tag{9}\\
& w_{t}+\Delta^{2} w+\Delta w+u u_{z}+v v_{z}+w w_{z}=0, \tag{10}\\
& u_{y}=v_{x}, u_{z}=w_{x}, v_{z}=w_{y} \tag{11}\\
& \left.u\right|_{\partial D}=\left.v\right|_{\partial D}=\left.w\right|_{\partial D}=\left.\Delta u\right|_{\partial D}=\left.\Delta v\right|_{\partial D}=\left.\Delta w\right|_{\partial D}=0, t>0, \tag{12}\\
& u(x, y, z, 0)=u_{0}(x, y, z), v(x, y, z, 0)=v_{0}(x, y, z), \\
& w(x, y, z, 0)=w_{0}(x, y, z) \text { in } D . \tag{13}
\end{align*}
$$

Lemma 3.1. Let $f \in H^{4}(D) \cap H_{0}^{1}(D)$ and $\left.\Delta f\right|_{\partial D}=0$. Then

$$
a\|f\|^{2} \leq\|\nabla f\|^{2}, \quad a^{2}\|f\|^{2} \leq\|\Delta f\|^{2}, \quad a\|\nabla f\|^{2} \leq\|\Delta f\|^{2}, \quad a^{2}\|\Delta f\|^{2} \leq\left\|\Delta^{2} f\right\|^{2}, \text { where } a=\sum_{i=1}^{3} \frac{\pi^{2}}{L_{i}}
$$

Proof. Since

$$
\|\nabla f\|^{2}=\left\|f_{x}\right\|^{2}+\left\|f_{y}\right\|^{2}+\left\|f_{z}\right\|^{2}
$$

define

$$
\tilde{f}(x, t)=\left\{\begin{array}{l}
f(x, t) \text { if } x \in D \\
0 \text { if } x \in \Omega / D
\end{array}\right.
$$

Making use of Steklov's inequalities for $\tilde{f}(x, t)$ and taking into account that $\|\nabla f\|=\|\nabla \tilde{f}\|$, we get

$$
\|\nabla f\|^{2} \geq a\|f\|^{2}, \quad \text { where } a=\sum_{i=1}^{3} \frac{\pi^{2}}{L_{i}^{2}}=\frac{\pi^{2}\left(L_{1}^{2} L_{2}^{2}+L_{1}^{2} L_{3}^{2}+L_{2}^{2} L_{3}^{2}\right)}{L_{1}^{2} L_{2}^{2} L_{3}^{2}}
$$

On the other hand,

$$
a\|f\|^{2} \leq\|\nabla f\|^{2}=-\int_{D} f \Delta f d x d y \leq\|\Delta f\|\|f\|
$$

This implies

$$
a\|f\| \leq\|\Delta f\| \text { and } a^{2}\|f\|^{2} \leq\|\Delta f\|^{2}
$$

Consequently, $a\|\nabla f\|^{2} \leq\|\Delta f\|^{2}$. Similarly,

$$
\|\Delta f\|^{2}=\int_{D} f \Delta^{2} f d x d y \leq\left\|\Delta^{2} f\right\|\|f\| \leq \frac{1}{a}\left\|\Delta^{2} f\right\|\|\Delta f\| .
$$

Hence, $a\|\Delta f\| \leq\left\|\Delta^{2} f\right\|$. Proof of Lemma 3.1 is now complete.
Remark 3.1. Assertions of Lemma 3.1 are true if the function f is replaced respectively by u, v, w.
Definition 3.1. A triplet (u, v, w) of functions

$$
\begin{aligned}
& u, v, w \in L^{\infty}\left(R^{+} ; H^{2}(D) \cap H_{0}^{1}(D)\right) \cap L^{2}\left(R^{+} ; H^{4}(D)\right), \\
& u_{t}, v_{t}, w_{t} \in L^{2}\left(R^{+} ; L^{2}(D)\right)
\end{aligned}
$$

satisfying a.e. in D (8)-(11) and (12) as well as (13) is a regular solution to (8)-(13).
Theorem 3.1 (Special basis). Let

$$
\begin{equation*}
\theta=1-\frac{1}{a}=1-\frac{L_{1}^{2} L_{2}^{2} L_{3}^{2}}{\pi^{2}\left(L_{1}^{2} L_{2}^{2}+L_{1}^{2} L_{3}^{2}+L_{2}^{2} L_{3}^{2}\right)}>0 . \tag{14}
\end{equation*}
$$

Given

$$
u_{0}, v_{0}, w_{0} \in H^{2}(D) \cap H_{0}^{1}(D)
$$

such that

$$
\begin{equation*}
\theta-\frac{C_{1}}{\theta}\left(\left\|u_{0}\right\|^{2}+\left\|v_{0}\right\|^{2}+\left\|w_{0}\right\|^{2}\right)>0 \tag{15}
\end{equation*}
$$

where $C_{1}=4 C_{n}^{4}\left(1+\frac{1}{a^{2}}\right)$. Then there exists a unique triplet (u, v, w) of functions:

$$
\begin{aligned}
& u, v, w \in L^{\infty}\left(R^{+} ; H^{2}(D) \cap H_{0}^{1}(D)\right) \cap L^{2}\left(R^{+} ; H^{4}(D)\right), \\
& u_{t}, v_{t}, w_{t} \in L^{2}\left(R^{+} ; L^{2}(D)\right)
\end{aligned}
$$

which is a regular solution to (8)-(13). Moreover,

$$
\|u\|^{2}(t)+\|v\|^{2}(t)+\|w\|^{2}(t) \leq\left[\left\|u_{0}\right\|^{2}+\left\|v_{0}\right\|^{2}+\left\|w_{0}\right\|^{2}\right] \exp \left\{-\frac{\theta a^{2} t}{2}\right\} .
$$

If in addition,

$$
\begin{equation*}
\theta-\frac{12}{a \theta}\left(1+\frac{1}{a^{4}}\right) C_{s}^{2}\left(\left\|\Delta u_{0}\right\|^{2}+\left\|\Delta v_{0}\right\|^{2}+\left\|\Delta w_{0}\right\|^{2}\right)>0, \tag{16}
\end{equation*}
$$

then

$$
\|\Delta u\|^{2}(t)+\|\Delta v\|^{2}(t)+\|\Delta w\|^{2}(t) \leq\left(\left\|\Delta u_{0}\right\|^{2}+\left\|\Delta v_{0}\right\|^{2}+\left\|\Delta w_{0}\right\|^{2}\right) \exp \left\{-a^{2} \theta / 2 t\right\} .
$$

Remark 3.2. In Theorem 3.1, there are two types of restrictions: the first one is pure geometrical,

$$
1-\frac{1}{a}=1-\frac{L_{1}^{2} L_{2}^{2} L_{3}^{2}}{\pi^{2}\left(L_{1}^{2} L_{2}^{2}+L_{1}^{2} L_{3}^{2}+L_{2}^{2} L_{3}^{2}\right)}>0
$$

which is needed to eliminate destabilizing effects of the terms $\Delta u, \Delta v, \Delta w$ in (8)-(10):

$$
\|\Delta u\|^{2}-\|\nabla u\|^{2}, \quad\|\Delta v\|^{2}-\|\nabla v\|^{2},\|\Delta w\|^{2}-\|\nabla w\|^{2} .
$$

It is clear that

$$
\lim _{L_{1}, L_{2}, L_{3} \rightarrow 0} \frac{L_{1}^{2} L_{2}^{2} L_{3}^{2}}{\pi^{2}\left(L_{1}^{2} L_{2}^{2}+L_{1}^{2} L_{3}^{2}+L_{2}^{2} L_{3}^{2}\right)}=0,
$$

hence to achieve the first restriction (14), it is possible either to decrease L_{2}, L_{3} allowing L_{1} to grow, transforming as a limit domain D into a horizontal unbounded thin domain or to decrease L_{1}, L_{3} allowing L_{2} to grow, or to decrease L_{1}, L_{2} allowing L_{3} to grow transforming respectively as a limit the domain D into unbounded thin domain oriented along the axis OZ. There is a number of various possible combinatios, for example, L_{3} is small while L_{1}, L_{2} may grow etc.
A situation with condition (15) is more complicated: if initial data are not small, then it is possible either to decrease L_{1}, L_{2}, L_{3} to fulfill this condition or for fixed L_{1}, L_{2}, L_{3} to decrease initial data $\left\|u_{0}\right\|,\left\|v_{0}\right\|,\left\|w_{0}\right\|$.
The same approach is valid to fulfill the additional restriction (16)

$$
\theta-\frac{12}{a \theta}\left(1+\frac{1}{a^{4}}\right) C_{s}^{2}\left(\left\|\Delta u_{0}\right\|^{2}+\left\|\Delta v_{0}\right\|^{2}+\left\|\Delta w_{0}\right\|^{2}\right)>0
$$

which guarantees decay of the $H^{2}(D)$-norm.

Proof. It is possible to construct Galerkin's approximations to (8)-(13) by the following way: Let $w_{j}(x, y, z)$ be eigenfunctions of the problem:

$$
\Delta^{2} w_{j}+\lambda_{j} w_{j}=0 \text { in } D ;\left.w_{j}\right|_{\partial D}=\left.\Delta w_{j}\right|_{\partial D}=0, j=1,2, \ldots
$$

Define

$$
u^{N}(x, y, z, t)=\sum_{i=1}^{N} g_{i}^{u}(t) w_{i}(x, y, z), v^{N}(x, y, z, t)=\sum_{i=1}^{N} g_{i}^{v}(t) w_{i}(x, y, z), w^{N}(x, y, z, t)=\sum_{i=1}^{N} g_{i}^{w}(t) w_{i}(x, y, z) .
$$

Unknown functions $g_{i}^{u}(t), g_{i}^{v}(t), g^{w}(t)$ satisfy the following initial problems:

$$
\begin{aligned}
& \frac{d}{d t}\left(u^{N}, w_{j}\right)(t)+\left(\Delta^{2} u^{N}, w_{j}\right)(t)+\left(\Delta u^{N}, w_{j}\right)(t)+\left(u^{N} u_{x}^{N}, w_{j}\right)(t)+\left(v^{N} v_{x}^{N}, w_{j}\right)(t)+\left(w^{N} w_{x}^{N}, w_{j}\right)(t)=0 \\
& \frac{d}{d t}\left(v^{N}, w_{j}\right)(t)+\left(\Delta^{2} v^{N}, w_{j}\right)(t)+\left(\Delta v^{N}, w_{j}\right)(t)+\left(u^{N} u_{y}^{N}, w_{j}\right)(t)+\left(v^{N} v_{y}^{N}, w_{j}\right)(t)+\left(w^{N} w_{y}^{N}, w_{j}\right)(t)=0 \\
& \frac{d}{d t}\left(w^{N}, w_{j}\right)(t)+\left(\Delta^{2} w^{N}, w_{j}\right)(t)+\left(\Delta w^{N}, w_{j}\right)(t)+\left(u^{N} u_{z}^{N}, w_{j}\right)(t)+\left(v^{N} v_{z}^{N}, w_{j}\right)(t)+\left(w^{N} w_{z}^{N}, w_{j}\right)(t)=0 \\
& g_{j}^{u}(0)=g_{0 j}^{u}, \quad g_{j}^{v}(0)=g_{0 j}^{v},, \quad g_{j}^{w}(0)=g_{0 j}^{w}, \quad j=1,2, \ldots
\end{aligned}
$$

The estimates that follow may be established on Gallerkin's approximations (see [5, 7]), but it is more explicitly to prove them on smooth solutions of (8)-(13).
Estimate I: $u \in L^{\infty}\left(\mathbb{R}^{+} ; H\right) \cap L^{2}\left(\mathbb{R}^{+} ; H^{2}(D) \cap H_{0}^{1}(D)\right)$.
Multiply (8) by $2 u$, (9) by $2 v$ and (10) by $2 w$ to obtain

$$
\begin{align*}
& \frac{d}{d t}\|u\|^{2}(t)+2\|\Delta u\|^{2}(t)-2\|\nabla u\|^{2}(t)+2\left(u u_{x}, u\right)(t)+2\left(v v_{x}, u\right)(t)+2\left(w w_{x}, u\right)(t)=0 \tag{17}\\
& \frac{d}{d t}\|v\|^{2}(t)+2\|\Delta v\|^{2}(t)-2\|\nabla v\|^{2}(t)+2\left(u u_{y}, v\right)(t)+2\left(v v_{y}, v\right)(t)+2\left(w w_{y}, v\right)(t)=0 \tag{18}\\
& \frac{d}{d t}\|w\|^{2}(t)+2\|\Delta w\|^{2}(t)-2\|\nabla w\|^{2}(t)+2\left(u u_{z}, w\right)(t)+2\left(v v_{z}, w\right)(t)+2\left(w w_{z}, w\right)(t)=0 \tag{19}
\end{align*}
$$

Making use of (14) and the equalities $\left(u^{2}, u_{x}\right)(t)=\left(v^{2}, v_{y}\right)(t)=\left(w^{2}, w_{z}\right)(t)=0$, we get

$$
\begin{align*}
& \frac{d}{d t}\|u\|^{2}(t)+\theta\|\Delta u\|^{2}(t)+\theta\|\Delta u\|^{2}(t)-\left(v^{2}, u_{x}\right)(t)-\left(w^{2}, u_{x}\right)(t) \leq 0 \tag{20}\\
& \frac{d}{d t}\|v\|^{2}(t)+\theta\|\Delta v\|^{2}(t)+\theta\|\Delta v\|^{2}(t)-\left(u^{2}, v_{y}\right)(t)-\left(w^{2}, v_{y}\right)(t) \leq 0 \tag{21}\\
& \frac{d}{d t}\|w\|^{2}(t)+\theta\|\Delta w\|^{2}(t)+\theta\|\Delta w\|^{2}(t)-\left(u^{2}, w_{z}\right)(t)-\left(v^{2}, w_{z}\right)(t) \leq 0 \tag{22}
\end{align*}
$$

Making use of Lemmas 2.4, 3.1, and the Young inequality, we estimate

$$
\begin{aligned}
I_{1} & =\left(v^{2}, u_{x}\right) \leq \frac{\epsilon}{2}\left\|u_{x}\right\|^{2}+\frac{1}{2 \epsilon}\|v\|_{L^{4}(D)}^{4} \\
& \leq \frac{\epsilon}{2}\left\|u_{x}\right\|^{2}+\frac{1}{2 \epsilon} C_{n}^{4}\left(\|v\|_{L^{2}(D)}^{5 / 8}\|\Delta v\|_{L^{2}(D)}^{3 / 8}+\|v\|_{L^{2}(D)}\right)^{4} \\
& \leq \frac{\epsilon}{2}\left\|u_{x}\right\|^{2}+\frac{2}{\epsilon} C_{n}^{4}\left(\|v\|_{L^{2}(D)}^{5 / 2}\|\Delta v\|_{L^{2}(D)}^{3 / 2}+\|v\|_{L^{2}(D)}^{4}\right) \\
& \leq \frac{\epsilon}{2}\left\|u_{x}\right\|^{2}+\frac{4}{\epsilon} C_{n}^{4}\left(\|v\|_{L^{2}(D)}^{2}\|\Delta v\|_{L^{2}(D)}^{2}+\|v\|_{L^{2}(D)}^{4}\right) \\
& \leq \frac{\epsilon}{2}\left\|u_{x}\right\|^{2}+\frac{4}{\epsilon} C_{n}^{4}\left(\|v\|_{L^{2}(D)}^{2}\|\Delta v\|_{L^{2}(D)}^{2}+\frac{\|v\|_{L^{2}(D)}^{2}}{a^{2}}\|\Delta v\|^{2}\right) \\
& \leq \frac{\epsilon}{2}\left\|u_{x}\right\|^{2}+\frac{4}{\epsilon} C_{n}^{4}\left(1+\frac{1}{a^{2}}\right)\|v\|_{L^{2}(D)}^{2}\|\Delta v\|_{L^{2}(D)}^{2} \\
& \leq \frac{\epsilon}{2 a}\|\Delta u\|^{2}+\frac{1}{\epsilon} C_{1}\|v\|_{L^{2}(D)}^{2}\|\Delta v\|_{L^{2}(D)}^{2},
\end{aligned}
$$

where $C_{1}=4 C_{n}^{4}\left(1+\frac{1}{a^{2}}\right)$. Similarly,

$$
\begin{aligned}
& I_{2}=\left(u_{x}, w^{2}\right) \leq \frac{\epsilon}{2 a}\|\Delta u\|^{2}+\frac{1}{\epsilon} C_{1}\|w\|_{L^{2}(D)}^{2}\|\Delta w\|_{L^{2}(D)}^{2}, \\
& I_{3}=\left(u^{2}, v_{y}\right) \leq \frac{\epsilon}{2 a}\|\Delta v\|^{2}+\frac{1}{\epsilon} C_{1}\|u\|_{L^{2}(D)}^{2}\|\Delta u\|_{L^{2}(D)}^{2}, \\
& I_{4}=\left(w^{2}, v_{y}\right) \leq \frac{\epsilon}{2 a}\|\Delta v\|^{2}+\frac{1}{\epsilon} C_{1}\|w\|_{L^{2}(D)}^{2}\|\Delta w\|_{L^{2}(D)}^{2}, \\
& I_{5}=\left(u^{2}, w_{z}\right) \leq \frac{\epsilon}{2 a}\|\Delta w\|^{2}+\frac{1}{\epsilon} C_{1}\|u\|_{L^{2}(D)}^{2}\|\Delta u\|_{L^{2}(D)}^{2}, \\
& I_{6}=\left(v^{2}, w_{z}\right) \leq \frac{\epsilon}{2 a}\|\Delta w\|^{2}+\frac{1}{\epsilon} C_{1}\|v\|_{L^{2}(D)}^{2}\|\Delta v\|_{L^{2}(D)}^{2}
\end{aligned}
$$

Substituting $I_{1}-I_{6}$ into (20)-(22), taking $2 \epsilon=1$, making use of Lemma 3.1 and summing the results, we find

$$
\begin{align*}
& \frac{d}{d t}\left(\|u\|^{2}(t)+\|v\|^{2}(t)+\|w\|^{2}(t)\right)+\frac{\theta}{2}\left(\|\Delta u\|^{2}(t)+\|\Delta v\|^{2}(t)+\|\Delta w\|^{2}(t)\right) \\
& +\left[\theta-\frac{C_{1}}{\theta}\left(\|u\|^{2}(t)+\|v\|^{2}(t)+\|w\|^{2}(t)\right)\right]\left(\|\Delta u\|^{2}(t)+\|\Delta v\|^{2}(t)+\|\Delta w\|^{2}(t)\right) \leq 0 \tag{23}
\end{align*}
$$

By condition (15) of Theorem 3.1,

$$
\theta-\frac{C_{1}}{\theta}\left(\left\|u_{0}\right\|^{2}+\left\|v_{0}\right\|^{2}+\left\|w_{0}\right\|^{2}\right)>0
$$

Making use of positivity of the second term in (23) and Lemma 2.6, we obtain

$$
\theta-\frac{C_{1}}{\theta}\left(\|u\|^{2}(t)+\left\|\left.v\right|^{2}(t)+\right\| w \|^{2}(t)\right)>0 \text { for a.e. } t>0
$$

Then (23) becomes

$$
\begin{equation*}
\frac{d}{d t}\left(\|u\|^{2}(t)+\|v\|^{2}(t)+\|w\|^{2}(t)\right)+\frac{\theta}{2}\left(\|\Delta u\|^{2}(t)+\|\Delta v\|^{2}(t)+\|\Delta w\|^{2}(t)\right) \leq 0 \tag{24}
\end{equation*}
$$

This implies

$$
\|u\|^{2}(t)+\|v\|^{2}(t)+\|w\|^{2}(t)+\frac{\theta}{2} \int_{0}^{t}\left(\|\Delta u\|^{2}(\tau)+\|\Delta v\|^{2}(\tau)+\|\Delta w\|^{2}(\tau)\right) d \tau \leq\left\|u_{0}\right\|^{2}+\left\|v_{0}\right\|^{2}+\left\|w_{0}\right\|^{2}
$$

On the other hand, by Lemma 3.1, (24) is reduced to the form

$$
\frac{d}{d t}\left(\|u\|^{2}(t)+\|v\|^{2}(t)+\|w\|^{2}(t)\right)+\frac{a^{2} \theta}{2}\left(\|u\|^{2}(t)+\|v\|^{2}(t)+\|w\|^{2}(t)\right) \leq 0
$$

This implies

$$
\|u\|^{2}(t)+\|v\|^{2}(t)+\|w\|^{2}(t) \leq\left[\left\|u_{0}\right\|^{2}+\left\|v_{0}\right\|^{2}+\left\|w_{0}\right\|^{2}\right] e^{-\frac{a^{2} \theta t}{2}}
$$

Estimate II: $u \in L^{\infty}\left(\mathbb{R}^{+} ; H^{2}(D) \cap H_{0}^{1}(D)\right) \cap L^{2}\left(\mathbb{R}^{+} ; H^{4}(D) \cap H_{0}^{1}(D)\right)$.
Multiply (8) by $2 \Delta^{2} u$, (9) by $2 \Delta^{2} v$ and (10) by $2 \Delta^{2} w$ to obtain

$$
\begin{align*}
& \frac{d}{d t}\|\Delta u\|^{2}(t)+2\left\|\Delta^{2} u\right\|^{2}(t)+2\left\|\Delta^{2} u\right\|(t)\|\Delta u\|(t)+2\left(u u_{x}, \Delta^{2} u\right)(t)+2\left(v v_{x}, \Delta^{2} u\right)(t)+2\left(w w_{x}, \Delta^{2} u\right)(t)=0 \tag{25}\\
& \frac{d}{d t}\|\Delta v\|^{2}(t)+2\left\|\Delta^{2} v\right\|^{2}(t)+2\left\|\Delta^{2} v\right\|(t)\|\Delta v\|(t)+2\left(u u_{y}, \Delta^{2} v\right)(t)+2\left(v v_{y}, \Delta^{2} v\right)(t)+2\left(w w_{y}, \Delta^{2} v\right)(t)=0 \tag{26}\\
& \frac{d}{d t}\|\Delta w\|^{2}(t)+2\left\|\Delta^{2} w\right\|^{2}(t)+2\left\|\Delta^{2} w\right\|(t)\|\Delta w\|(t)+2\left(u u_{z}, \Delta^{2} w\right)(t)+2\left(v v_{z}, \Delta^{2} w\right)(t)+2\left(w w_{z}, \Delta^{2} w\right)(t)=0 \tag{27}
\end{align*}
$$

For an arbitrary $\epsilon>0$, making use of (14) and Lemmas 2.5, 3.1, we can write

$$
\begin{aligned}
\frac{d}{d t}\|\Delta u\|^{2}(t)+(2 \theta-3 \epsilon)\left\|\Delta^{2} u\right\|^{2}(t) \leq & \frac{1}{\epsilon}\left[\sup _{D} u^{2}(x, y, z, t)\|\nabla u\|^{2}(t)+\sup _{D} v^{2}(x, y, z, t)\|\nabla v\|^{2}(t)+\sup _{D} w^{2}(x, y, z, t)\|\nabla w\|^{2}(t)\right] \\
\leq & \frac{1}{\epsilon}\left[C_{s}^{2}\left(\left\|\Delta^{2} u\right\|(t)+\|u\|(t)\right)^{2}\|\nabla u\|^{2}(t)+C_{s}^{2}\left(\left\|\Delta^{2} v\right\|(t)+\|v\|(t)\right)^{2}\right. \\
& \left.\times\|\nabla v\|^{2}(t)+C_{s}^{2}\left(\left\|\Delta^{2} w\right\|(t)+\|w\|(t)\right)^{2}\|\nabla w\|^{2}(t)\right]
\end{aligned}
$$

$$
\begin{align*}
\leq & \frac{1}{\epsilon}\left[2 C _ { s } ^ { 2 } \left(\left\|\Delta^{2} u\right\|^{2}(t)\|\nabla u\|^{2}(t)+\left\|\Delta^{2} v\right\|^{2}(t)\|\nabla v\|^{2}(t)\right.\right. \\
& \left.+\left\|\Delta^{2} w\right\|^{2}(t)\|\nabla w\|^{2}(t)\right)+2 C_{s}^{2}\left(\|u\|^{2}(t)\|\nabla u\|^{2}(t)\right. \\
& \left.\left.+\|v\|^{2}(t)\|\nabla v\|^{2}(t)+\|w\|^{2}(t)\|\nabla w\|^{2}(t)\right)\right] \tag{28}
\end{align*}
$$

In a similar way, we obtain

$$
\begin{align*}
\frac{d}{d t}\|\Delta v\|^{2}(t)+(2 \theta-3 \epsilon)\left\|\Delta^{2} v\right\|^{2}(t) \leq & \frac{1}{\epsilon}\left[2 C _ { s } ^ { 2 } \left(\left\|\Delta^{2} u\right\|^{2}(t)\|\nabla u\|^{2}(t)+\left\|\Delta^{2} v\right\|^{2}(t)\|\nabla v\|^{2}(t)\right.\right. \\
& \left.+\left\|\Delta^{2} w\right\|^{2}(t)\|\nabla w\|^{2}(t)\right)+2 C_{s}^{2}\left(\|u\|^{2}(t)\|\nabla u\|^{2}(t)\right. \\
& \left.\left.+\|v\|^{2}(t)\|\nabla v\|^{2}(t)+\|w\|^{2}(t)\|\nabla w\|^{2}(t)\right)\right] \tag{29}\\
\frac{d}{d t}\|\Delta w\|^{2}(t)+(2 \theta-3 \epsilon)\left\|\Delta^{2} w\right\|^{2}(t) \leq & \frac{1}{\epsilon}\left[2 C _ { s } ^ { 2 } \left(\left\|\Delta^{2} u\right\|^{2}(t)\|\nabla u\|^{2}(t)+\left\|\Delta^{2} v\right\|^{2}(t)\|\nabla v\|^{2}(t)\right.\right. \\
& \left.+\left\|\Delta^{2} w\right\|^{2}(t)\|\nabla w\|^{2}(t)\right)+2 C_{s}^{2}\left(\|u\|^{2}(t)\|\nabla u\|^{2}(t)\right. \\
& \left.\left.+\|v\|^{2}(t)\|\nabla v\|^{2}(t)+\|w\|^{2}(t)\|\nabla w\|^{2}(t)\right)\right] . \tag{30}
\end{align*}
$$

Taking $\epsilon=\frac{\theta}{6}$ and making use of Lemma 3.1, we rewrite (28)-(30) in the form:

$$
\begin{aligned}
& \frac{d}{d t}\left(\|\Delta u\|^{2}(t)+\|\Delta v\|^{2}(t)+\|\Delta w\|^{2}(t)\right)+\frac{\theta}{2}\left(\left\|\Delta^{2} u\right\|(t)+\left\|\Delta^{2} v\right\|^{2}(t)+\left\|\Delta^{2} w\right\|^{2}(t)\right)+\theta\left(\left\|\Delta^{2} u\right\|(t)+\left\|\Delta^{2} v\right\|^{2}(t)+\left\|\Delta^{2} w\right\|^{2}(t)\right) \\
& -\frac{12}{a \theta} C_{s}^{2}\left[\left\|\Delta^{2} u\right\|^{2}(t)\|\Delta u\|^{2}(t)+\left\|\Delta^{2} v\right\|^{2}(t)\|\Delta v\|^{2}(t)+\left\|\Delta^{2} w\right\|^{2}(t)\|\Delta w\|^{2}(t)\right. \\
& \left.+\frac{1}{a^{2}}\left(\|u\|^{2}(t)\left\|\Delta^{2} u\right\|^{2}(t)+\|v\|^{2}(t)\left\|\Delta^{2} v\right\|^{2}(t)+\|w\|^{2}(t)\left\|\Delta^{2} w\right\|^{2}(t)\right)\right] \leq 0
\end{aligned}
$$

Since, by Lemma 3.1, $a^{2}\|f\|^{2} \leq\|\Delta f\|^{2}$; we can rewrite it in a more convenient form:

$$
\begin{align*}
& \frac{d}{d t}\left(\|\Delta u\|^{2}(t)+\|\Delta v\|^{2}(t)+\|\Delta w\|^{2}(t)\right)+\frac{\theta}{2}\left(\left\|\Delta^{2} u\right\|(t)+\left\|\Delta^{2} v\right\|^{2}(t)+\left\|\Delta^{2} w\right\|^{2}(t)\right) \\
& +\left[\theta-\frac{12}{a \theta}\left(1+\frac{1}{a^{4}}\right) C_{s}^{2}\left(\|\Delta u\|^{2}(t)+\|\Delta v\|^{2}(t)+\|\Delta w\|^{2}(t)\right)\right]\left[\Delta^{2} u\left\|^{2}(t)+\right\| \Delta^{2} v\left\|^{2}(t)+\right\| \Delta^{2} v \|^{2}(t)\right] \leq 0 \tag{31}
\end{align*}
$$

Condition (16) and Lemma 2.6 guarantee that

$$
\theta-\frac{12}{a \theta}\left(1+\frac{1}{a^{4}}\right) C_{s}^{2}\left(\|\Delta u\|^{2}(t)+\|\Delta v\|^{2}(t)+\|\Delta w\|^{2}(t)\right)>0, t>0
$$

Hence, (31) can be rewritten as

$$
\begin{equation*}
\frac{d}{d t}\left(\|\Delta u\|^{2}(t)+\|\Delta v\|^{2}(t)+\|\Delta w\|^{2}(t)\right)+\frac{a^{2} \theta}{2}\left(\|\Delta u\|(t)+\|\Delta v\|^{2}(t)+\|\Delta w\|^{2}(t)\right) \leq 0 \tag{32}
\end{equation*}
$$

By integrating, we get

$$
\begin{equation*}
\|\Delta u\|^{2}(t)+\|\Delta v\|^{2}(t)+\|\Delta w\|^{2}(t) \leq\left(\left\|\Delta u_{0}\right\|^{2}+\left\|\Delta v_{0}\right\|^{2}+\left\|\Delta w_{0}\right\|^{2}\right) e^{\left(-a^{2} \theta / 2 t\right)} \tag{33}
\end{equation*}
$$

Returning to (32), we find

$$
\begin{equation*}
\|\Delta u\|^{2}(t)+\|\Delta v\|^{2}(t)+\|\Delta w\|^{2}(t)+\int_{0}^{t}\left(\left\|\Delta^{2} u\right\|^{2}(\tau)+\left\|\Delta^{2} v\right\|^{2}(\tau)+\left\|\Delta^{2} w\right\|^{2}(\tau)\right) d \tau \leq C\left(\left\|\Delta u_{0}\right\|^{2}+\left\|\Delta v_{0}\right\|^{2}+\left\|\Delta w_{0}\right\|^{2}\right) \tag{34}
\end{equation*}
$$

Finally, directly from (8)-(10), we obtain $u_{t}, v_{t}, w_{t} \in L^{2}\left(\mathbb{R}^{+} ; L^{2}(D)\right)$.
This completes the proof of the existence part of Theorem 3.1.
Lemma 3.2. A regular solution of Theorem 3.1 is uniquely defined.
Proof. Let u_{1}, v_{1}, w_{1} and u_{2}, v_{2}, w_{2} be two distinct solutions to (8)-(13). Denoting $p=u_{1}-u_{2}, q=v_{1}-v_{2}, r=w_{1}-w_{2}$, we come to the following system:

$$
\begin{equation*}
p_{t}+\Delta^{2} p+\Delta p+\frac{1}{2}\left(u_{1}^{2}-u_{2}^{2}\right)_{x}+\frac{1}{2}\left(v_{1}^{2}-v_{2}^{2}\right)_{x}+\left(w_{1}^{2}-w_{2}^{2}\right)_{x}=0 \tag{35}
\end{equation*}
$$

$$
\begin{align*}
& q_{t}+\Delta^{2} q+\Delta q+\frac{1}{2}\left(u_{1}^{2}-u_{2}^{2}\right)_{y}+\frac{1}{2}\left(v_{1}^{2}-v_{2}^{2}\right)_{y}+\left(w_{1}^{2}-w_{2}^{2}\right)_{y}=0 \tag{36}\\
& r_{t}+\Delta^{2} r+\Delta r+\frac{1}{2}\left(u_{1}^{2}-u_{2}^{2}\right)_{z}+\frac{1}{2}\left(v_{1}^{2}-v_{2}^{2}\right)_{z}+\left(w_{1}^{2}-w_{2}^{2}\right)_{z}=0 \tag{37}\\
& p_{y}=q_{x}, p_{z}=r_{x}, q_{z}=r_{y} \tag{38}\\
& \left.p\right|_{\partial D}=\left.q\right|_{\partial D}=\left.r\right|_{\partial D}=\left.\Delta p\right|_{\partial D}=\left.\Delta q\right|_{\partial D}=\left.\Delta r\right|_{\partial D}=0, t>0 \tag{39}\\
& p(x, y, z, 0)=q(x, y, z, 0)=r(x, y, z, 0)=0 \text { in } D \tag{40}
\end{align*}
$$

Multiply (35) by $2 p$, (36) by $2 q$ and (37) by $2 r$ to obtain

$$
\begin{align*}
& \frac{d}{d t}\|p\|^{2}(t)+2\|\Delta p\|^{2}(t)-2\|\nabla p\|^{2}(t)-\left(\left\{u_{1}+u_{2}\right\} p, p_{x}\right)(t)-\left(\left\{v_{1}+v_{2}\right\} q, p_{x}\right)(t)-\left(\left\{w_{1}+w_{2}\right\} r, p_{x}\right)(t)=0 \tag{41}\\
& \frac{d}{d t}\|q\|^{2}(t)+2\|\Delta q\|^{2}(t)-2\|\nabla q\|^{2}(t)-\left(\left\{u_{1}+u_{2}\right\} p, q_{y}\right)(t)-\left(\left\{v_{1}+v_{2}\right\} q, q_{y}\right)(t)-\left(\left\{w_{1}+w_{2}\right\} r, q_{y}\right)(t)=0 \tag{42}\\
& \frac{d}{d t}\|r\|^{2}(t)+2\|\Delta r\|^{2}(t)-2\|\nabla r\|^{2}(t)-\left(\left\{u_{1}+u_{2}\right\} p, r_{z}\right)(t)-\left(\left\{v_{1}+v_{2}\right\} q, r_{z}\right)(t)-\left(\left\{w_{1}+w_{2}\right\} r, r_{z}\right)(t)=0 \tag{43}
\end{align*}
$$

We estimate

$$
\begin{aligned}
I_{1} & =\left(\left\{u_{1}+u_{2}\right\} p, p_{x}\right) \leq \frac{\epsilon}{2}\left\|p_{x}\right\|^{2}+\frac{1}{\epsilon}\left(\left\{u_{1}^{2}+u_{2}^{2}\right\}, p^{2}\right) \\
& \leq \frac{\epsilon}{2 a}\|\Delta p\|^{2}+\frac{1}{\epsilon} \sup _{D}\left(u_{1}^{2}(x, y, z, t)+u_{2}^{2}(x, y, z, t)\right)\|p\|^{2} \\
& \leq \frac{\epsilon}{2 a}\|\Delta p\|^{2}+\frac{2 C_{s}^{2}}{\epsilon}\left\{\left\|\Delta^{2} u_{1}\right\|^{2}+\left\|\Delta^{2} u_{2}\right\|^{2}+\left\|u_{1}\right\|^{2}(t)+\left\|u_{2}\right\|^{2}(t)\right\}\|p\|^{2} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& I_{2}=\left(\left\{v_{1}+v_{2}\right\} q, p_{x}\right) \leq \frac{\epsilon}{2 a}\|\Delta p\|^{2}+\frac{2 C_{s}^{2}}{\epsilon}\left\{\left\|\Delta^{2} v_{1}\right\|^{2}+\left\|\Delta^{2} v_{2}\right\|^{2}+\left\|v_{1}\right\|^{2}(t)+\left\|v_{2}\right\|^{2}(t)\right\}\|q\|^{2}, \\
& I_{3}=\left(\left\{w_{1}+w_{2}\right\} r, p_{x}\right) \leq \frac{\epsilon}{2 a}\|\Delta p\|^{2}+\frac{2 C_{s}^{2}}{\epsilon}\left\{\left\|\Delta^{2} w_{1}\right\|^{2}+\left\|\Delta^{2} w_{2}\right\|^{2}+\left\|w_{1}\right\|^{2}(t)+\left\|w_{2}\right\|^{2}(t)\right\}\|r\|^{2}, \\
& I_{4}=\left(\left\{u_{1}+u_{2}\right\} p, q_{y}\right) \leq \frac{\epsilon}{2 a}\|\Delta q\|^{2}+\frac{2 C_{s}^{2}}{\epsilon}\left\{\left\|\Delta^{2} u_{1}\right\|^{2}+\left\|\Delta^{2} u_{2}\right\|^{2}+\left\|u_{1}\right\|^{2}(t)+\left\|u_{2}\right\|^{2}(t)\right\}\|p\|^{2}, \\
& I_{5}=\left(\left\{v_{1}+v_{2}\right\} q, q_{y}\right) \leq \frac{\epsilon}{2 a}\|\Delta q\|^{2}+\frac{2 C_{s}^{2}}{\epsilon}\left\{\left\|\Delta^{2} v_{1}\right\|^{2}+\left\|\Delta^{2} v_{2}\right\|^{2}+\left\|v_{1}\right\|^{2}(t)+\left\|v_{2}\right\|^{2}(t)\right\}\|q\|^{2}, \\
& I_{6}=\left(\left\{w_{1}+w_{2}\right\} r, q_{y}\right) \leq \frac{\epsilon}{2 a}\|\Delta q\|^{2}+\frac{2 C_{s}^{2}}{\epsilon}\left\{\left\|\Delta^{2} w_{1}\right\|^{2}+\left\|\Delta^{2} w_{2}\right\|^{2}+\left\|w_{1}\right\|^{2}(t)+\left\|w_{2}\right\|^{2}(t)\right\}\|r\|^{2}, \\
& I_{7}=\left(\left\{u_{1}+u_{2}\right\} p, r_{z}\right) \leq \frac{\epsilon}{2 a}\|\Delta r\|^{2}+\frac{2 C_{s}^{2}}{\epsilon}\left\{\left\|\Delta^{2} u_{1}\right\|^{2}+\left\|\Delta^{2} u_{2}\right\|^{2}+\left\|u_{1}\right\|^{2}(t)+\left\|u_{2}\right\|^{2}(t)\right\}\|p\|^{2}, \\
& I_{8}=\left(\left\{v_{1}+v_{2}\right\} q, r_{z}\right) \leq \frac{\epsilon}{2 a}\|\Delta r\|^{2}+\frac{2 C_{s}^{2}}{\epsilon}\left\{\left\|\Delta^{2} v_{1}\right\|^{2}+\left\|\Delta^{2} v_{2}\right\|^{2}+\left\|v_{1}\right\|^{2}(t)+\left\|v_{2}\right\|^{2}(t)\right\}\|q\|^{2}, \\
& I_{9}=\left(\left\{w_{1}+w_{2}\right\} r, r_{z}\right) \leq \frac{\epsilon}{2 a}\|\Delta r\|^{2}+\frac{2 C_{s}^{2}}{\epsilon}\left\{\left\|\Delta^{2} w_{1}\right\|^{2}+\left\|\Delta^{2} w_{2}\right\|^{2}+\left\|w_{1}\right\|^{2}(t)+\left\|w_{2}\right\|^{2}(t)\right\}\|r\|^{2},
\end{aligned}
$$

Substituting $I_{1}-I_{9}$ into (41)-(43), we get

$$
\begin{align*}
\frac{d}{d t}\|p\|^{2}(t)+\left(2-\frac{1}{a}-\frac{3 \epsilon}{a}\right)\|\Delta p\|^{2}(t) \leq & 2 \frac{C_{s}^{2}}{\epsilon}\left[\left(\left\|\Delta^{2} u_{1}\right\|^{2}(t)+\left\|\Delta^{2} u_{2}\right\|^{2}(t)+\left\|u_{1}\right\|^{2}(t)+\left\|u_{2}\right\|^{2}(t)\right)\|p\|^{2}(t)\right. \\
& +\left(\left\|\Delta^{2} v_{1}\right\|^{2}(t)+\left\|\Delta^{2} v_{2}\right\|^{2}(t)+\left\|v_{1}\right\|^{2}(t)+\left\|v_{2}\right\|^{2}(t)\right)\|q\|^{2}(t) \\
& \left.+\left(\left\|\Delta^{2} w_{1}\right\|^{2}(t)+\left\|\Delta^{2} w_{2}\right\|^{2}(t)+\left\|w_{1}\right\|^{2}(t)+\left\|w_{2}\right\|^{2}(t)\right)\|r\|^{2}(t)\right] \tag{44}\\
\frac{d}{d t}\|q\|^{2}(t)+\left(2-\frac{1}{a}-\frac{3 \epsilon}{a}\right)\|\Delta q\|^{2}(t) \leq & 2 \frac{C_{s}^{2}}{\epsilon}\left[\left(\left\|\Delta^{2} u_{1}\right\|^{2}(t)+\left\|\Delta^{2} u_{2}\right\|^{2}(t)+\left\|u_{1}\right\|^{2}(t)+\left\|u_{2}\right\|^{2}(t)\right)\|p\|^{2}(t)\right.
\end{align*}
$$

$$
\begin{align*}
& +\left(\left\|\Delta^{2} v_{1}\right\|^{2}(t)+\left\|\Delta^{2} v_{2}\right\|^{2}(t)+\left\|v_{1}\right\|^{2}(t)+\left\|v_{2}\right\|^{2}(t)\right)\|q\|^{2}(t) \\
& \left.+\left(\left\|\Delta^{2} w_{1}\right\|^{2}(t)+\left\|\Delta^{2} w_{2}\right\|^{2}(t)+\left\|w_{1}\right\|^{2}(t)+\left\|w_{2}\right\|^{2}(t)\right)\|r\|^{2}(t)\right], \tag{45}\\
\frac{d}{d t}\|r\|^{2}(t)+\left(2-\frac{1}{a}-\frac{3 \epsilon}{a}\right)\|\Delta r\|^{2}(t) \leq & 2 \frac{C_{s}^{2}}{\epsilon}\left[\left(\left\|\Delta^{2} u_{1}\right\|^{2}(t)+\left\|\Delta^{2} u_{2}\right\|^{2}(t)+\left\|u_{1}\right\|^{2}(t)+\left\|u_{2}\right\|^{2}(t)\right)\|p\|^{2}(t)\right. \\
& +\left(\left\|\Delta^{2} v_{1}\right\|^{2}(t)+\left\|\Delta^{2} v_{2}\right\|^{2}(t)+\left\|v_{1}\right\|^{2}(t)+\left\|v_{2}\right\|^{2}(t)\right)\|q\|^{2}(t) \\
& \left.+\left(\left\|\Delta^{2} w_{1}\right\|^{2}(t)+\left\|\Delta^{2} w_{2}\right\|^{2}(t)+\left\|w_{1}\right\|^{2}(t)+\left\|w_{2}\right\|^{2}(t)\right)\|r\|^{2}(t)\right] . \tag{46}
\end{align*}
$$

By taking $\epsilon=\frac{1}{3}$, we transform (44)-(46) as follows:

$$
\begin{aligned}
\frac{d}{d t}\left(\|p\|^{2}(t)+\|q\|^{2}(t)+\|r\|^{2}(t)\right) \leq & C\left(\left\|\Delta^{2} u_{1}\right\|^{2}(t)+\left\|\Delta^{2} u_{2}\right\|^{2}(t)+\left\|\Delta^{2} v_{1}\right\|^{2}(t)+\left\|\Delta^{2} v_{2}\right\|^{2}(t)\right. \\
& +\left\|\Delta^{2} w_{1}\right\|^{2}(t)+\left\|\Delta^{2} w_{2}\right\|^{2}(t)+\left\|u_{1}\right\|^{2}(t)+\left\|u_{2}\right\|^{2}(t)+\left\|v_{1}\right\|^{2}(t) \\
& \left.+\left\|v_{2}\right\|^{2}(t)+\left\|w_{1}\right\|^{2}(t)+\left\|w_{2}\right\|^{2}(t)\right)\left\{\|p\|^{2}(t)+\|q\|^{2}(t)+\|r\|^{2}(t)\right\} .
\end{aligned}
$$

Since by (34) and Lemma 3.1,

$$
\left\|\Delta^{2} u_{i}\right\|^{2}(t),\left\|\Delta^{2} v_{i}\right\|^{2}(t),\left\|\Delta^{2} w_{i}\right\|^{2}(t), \in L^{1}\left(\mathbb{R}^{+}\right)
$$

and

$$
\left\|u_{i}\right\|(t),\left\|v_{i}\right\|^{2}(t),\left\|w_{i}\right\|^{2}(t) \in L^{1}\left(\mathbb{R}^{+}\right), i=1,2,
$$

hence by (40) and Lemma 2.3,

$$
\|p\|^{2}(t)+\|q\|^{2}(t)+\|r\|(t) \equiv 0 \text { for all } t>0
$$

Thus,

$$
u_{1}(x, y, z, t) \equiv u_{2}(x, y, z, t) ; \quad v_{1}(x, y, z, t) \equiv v_{2}(x, y, z, t) ; \quad w_{1}(x, y, z, t) \equiv w_{2}(x, y, z, t) .
$$

This completes the proof of Lemma 3.2, and consequently, of Theorem 3.1.

4. KS system posed on unbounded parallelepipeds

Define

$$
D_{x}=\left\{(x, y, z) \in \mathbb{R}^{3} ; x \in(0,+\infty), y \in\left(0, L_{2},\right), z \in\left(0, L_{3}\right)\right\}, Q_{x t}=(0, t) \times D_{x},\|f\|^{2}=\|f\|_{L^{2}\left(D_{x}\right)}^{2} .
$$

Assertions of Lemma 3.1 are true also for D_{x} provided that

$$
a, \theta \text { are replaced by } a_{x}=\lim _{L_{1} \rightarrow+\infty} a=\sum_{i=2}^{3} \frac{\pi^{2}}{L_{i}^{2}}, \theta_{x}=1-\frac{1}{a_{x}} .
$$

In $Q_{x t}$, consider the following initial-boundary value problem:

$$
\begin{align*}
& u_{t}+\Delta^{2} u+\Delta u+u u_{x}+v v_{x}+w w_{x}=0, \tag{47}\\
& v_{t}+\Delta^{2} v+\Delta v+u u_{y}+v v_{y}+w w_{y}=0, \tag{48}\\
& w_{t}+\Delta^{2} w+\Delta w+u u_{z}+v v_{z}+w w_{z}=0, \tag{49}\\
& u_{y}=v_{x}, u_{z}=w_{x}, v_{z}=w_{y}, \tag{50}\\
& \left.u\right|_{\partial D_{x}}=\left.v\right|_{\partial D_{x}}=\left.w\right|_{\partial D_{x}}=\left.\frac{\partial}{\partial N} u\right|_{\partial D_{x}}=\left.\frac{\partial}{\partial N} v\right|_{\partial D_{x}} \tag{51}\\
& =\left.\frac{\partial}{\partial N} w\right|_{\partial D_{x}}=0, t>0, \tag{52}\\
& u(x, y, z, 0)=u_{0}(x, y, z), v(x, y, z, 0)=v_{0}(x, y, z), \\
& w(x, y, z, 0)=w_{0}(x, y, z) \text { in } D_{x} . \tag{53}
\end{align*}
$$

where $\frac{\partial}{\partial N}$ is an exterior normal derivative on ∂D_{x}.

Definition 4.1. A triplet

$$
\begin{gathered}
u, v, w \in L^{\infty}\left(\mathbb{R}^{+} ; H_{0}^{2}\left(D_{x}\right)\right), \Delta^{2} u, \Delta^{2} v, \Delta^{2} w \in L^{\infty}\left(\mathbb{R}^{+} ; L^{2}\left(D_{x}\right)\right), \\
u_{t}, v_{t}, w_{t} \in L^{\infty}\left(\mathbb{R}^{+} ; L^{2}\left(D_{x}\right)\right) \cap L^{2}\left(\mathbb{R}^{+} ; H_{0}^{2}\left(D_{x}\right)\right.
\end{gathered}
$$

satisfying (51)-(53) and the following identities:

$$
\begin{align*}
& \left(u_{t}, \phi\right)(t)+(\Delta u, \Delta \phi)(t)+(\Delta u, \phi)(t)+\left(u u_{x}, \phi\right)(t)+\left(v v_{x}, \phi\right)(t)+\left(w w_{x}, \phi\right)(t)=0, t>0 \tag{54}\\
& \left(v_{t}, \phi\right)(t)+(\Delta v, \Delta \phi)(t)+(\Delta v, \phi)(t)+\left(u u_{y}, \phi\right)(t)+\left(v v_{y}, \phi\right)(t)+\left(w w_{y}, \phi\right)(t)=0, t>0 \tag{55}\\
& \left(w_{t}, \phi\right)(t)+(\Delta w, \Delta \phi)(t)+(\Delta w, \phi)(t)+\left(u u_{z}, \phi\right)(t)+\left(v v_{z}, \phi\right)(t)+\left(w w_{z}, \phi\right)(t)=0, t>0 \tag{56}
\end{align*}
$$

where $\phi(x, y)$ is an arbitrary function from $H_{0}^{2}\left(D_{x}\right)$, is a strong solution to the problem (47)-(53).
Theorem 4.1. Let

$$
\begin{equation*}
a_{x}=\lim _{L_{1} \rightarrow+\infty} a=\sum_{i=2}^{3} \frac{\pi^{2}}{L_{i}^{2}}, \theta_{x}=1-\frac{1}{a_{x}}>0 \tag{57}
\end{equation*}
$$

Given $u_{0}, v_{0}, w_{0} \in H^{4}\left(D_{x}\right) \cap H_{0}^{2}\left(D_{x}\right)$ such that

$$
\begin{equation*}
\theta_{x}>\frac{24}{\theta_{x} a_{x}^{3 / 2}}\left(\left\|u_{0}\right\|^{2}+\left\|v_{0}\right\|^{2}+\left\|w_{0}\right\|^{2}\right) . \tag{58}
\end{equation*}
$$

Then the problem (47)-(52) has a unique strong solution

$$
\begin{gathered}
u, v, w \in L^{\infty}\left(\mathbb{R}^{+} ; H_{0}^{2}\left(D_{x}\right)\right), \Delta^{2} u, \Delta^{2} v, \Delta^{2} w \in L^{\infty}\left(\mathbb{R}^{+} ; L^{2}\left(D_{x}\right)\right), \\
u_{t}, v_{t}, w_{t} \in L^{\infty}\left(\mathbb{R}^{+} ; L^{2}\left(D_{x}\right)\right) \cap L^{2}\left(\mathbb{R}^{+} ; H_{0}^{2}\left(D_{x}\right)\right.
\end{gathered}
$$

Moreover, u, v, w satisfy the following inequalities:

$$
\begin{gather*}
\|u\|^{2}(t)+\|v\|^{2}(t)+\|w\|^{2}(t)+\frac{\theta_{x}}{2} \int_{0}^{t}\left(\|\Delta u\|^{2}(\tau)+\|\Delta v\|^{2}(\tau)+\|\Delta w\|^{2}(\tau)\right) d \tau \leq\left\|u_{0}\right\|^{2}+\left\|v_{0}\right\|^{2}+\left\|w_{0}\right\|^{2} \tag{59}\\
\|u\|^{2}(t)+\|v\|^{2}(t)+\|w\|^{2}(t) \leq\left[\left\|u_{0}\right\|^{2}+\left\|v_{0}\right\|^{2}+\left\|w_{0}\right\|^{2}\right] \exp \left\{-\frac{a_{x}^{2} \theta_{x} t}{2}\right\} \tag{60}\\
\left\|u_{t}\right\|^{2}(t)+\left\|v_{t}\right\|^{2}(t)+\left\|w_{t}\right\|^{2}(t) \leq\left(\left\|u_{t}\right\|^{2}(0)+\left\|v_{t}\right\|^{2}(0)+\left\|w_{t}\right\|^{2}(0)\right) \exp \left\{-\frac{a_{x}^{2} \theta_{x} t}{2}\right\} \tag{61}
\end{gather*}
$$

$$
\begin{equation*}
\left\|u_{t}\right\|^{2}(t)+\left\|v_{t}\right\|^{2}(t)+\left\|w_{t}\right\|^{2}(t)+\frac{\theta_{x}}{2} \int_{0}^{t}\left(\left\|\Delta u_{\tau}\right\|^{2}(\tau)+\left\|\Delta v_{\tau}\right\|^{2}(\tau)+\left\|\Delta w_{\tau}\right\|^{2}(\tau)\right) d \tau \leq\left\|u_{t}\right\|^{2}(0)+\left\|v_{t}\right\|^{2}(0)+\left\|w_{t}\right\|^{2}(0) \tag{62}
\end{equation*}
$$

Proof. Define the space $W=H^{4}\left(D_{x}\right) \cap H_{0}^{2}\left(D_{x}\right)$ and let $\left\{w_{i}(x, y, z), i \in \mathbb{N}\right\}$ be a countable dense set in W. We construct approximate solutions to (47)-(52) in the form

$$
u^{N}(x, y, z, t)=\sum_{i=1}^{N} g_{i}^{u}(t) w_{i}(x, y, z) ; \quad v^{N}(x, y, z, t)=\sum_{i=1}^{N} g_{i}^{v}(t) w_{i}(x, y, z) ; \quad w^{N}(x, y, z, t)=\sum_{i=1}^{N} g_{i}^{w}(t) w_{i}(x, y, z)
$$

The unknown functions $g_{i}^{u}(t), g_{i}^{v}(t), g_{i}^{w}(t)$ satisfy the following initial problems:

$$
\begin{align*}
& \frac{d}{d t}\left(u^{N}, w_{j}\right)(t)+\left(\Delta u^{N}, \Delta w_{j}\right)(t)-\left(\nabla u^{N}, \nabla w_{j}\right)(t)+\left(u^{N} u_{x}^{N}, w_{j}\right)(t)+\left(v^{N} v_{x}^{N}, w_{j}\right)(t)+\left(w^{N} w_{x}^{N}, w_{j}\right)(t)=0 \tag{63}\\
& \frac{d}{d t}\left(v^{N}, w_{j}\right)(t)+\left(\Delta v^{N}, \Delta w_{j}\right)(t)-\left(\nabla v^{N}, \nabla w_{j}\right)(t)+\left(u^{N} u_{y}^{N}, w_{j}\right)(t)+\left(v^{N} v_{y}^{N}, w_{j}\right)(t)+\left(w^{N} w_{y}^{N}, w_{j}\right)(t)=0 \tag{64}\\
& \frac{d}{d t}\left(w^{N}, w_{j}\right)(t)+\left(\Delta w^{N}, \Delta w_{j}\right)(t)-\left(\nabla w^{N}, \nabla w_{j}\right)(t)+\left(u^{N} u_{z}^{N}, w_{j}\right)(t)+\left(v^{N} v_{z}^{N}, w_{j}\right)(t)+\left(w^{N} w_{z}^{N}, w_{j}\right)(t)=0 \tag{65}\\
& g_{j}^{u}(0)=g_{0 j}^{u}, \quad g_{j}^{v}(0)=g_{0 j}^{v}, \quad g_{j}^{w}(0)=g_{0 j}^{w}, \quad j=1,2, \ldots \tag{66}
\end{align*}
$$

Estimate I. Dropping indices N, j, multiply (47) by $2 u$, (48) by $2 v$ and (49) by $2 w$ to obtain

$$
\begin{equation*}
\frac{d}{d t}\|u\|^{2}(t)+2\|\Delta u\|^{2}(t)-2\|\nabla u\|^{2}(t)+2\left(u u_{x}, u\right)(t)+2\left(v v_{x}, u\right)(t)+2\left(w w_{x}, u\right)(t)=0 \tag{67}
\end{equation*}
$$

$$
\begin{align*}
& \frac{d}{d t}\|v\|^{2}(t)+2\|\Delta v\|^{2}(t)-2\|\nabla v\|^{2}(t)+2\left(u u_{y}, v\right)(t)+2\left(v v_{y}, v\right)(t)+2\left(w w_{y}, v\right)(t)=0 \tag{68}\\
& \frac{d}{d t}\|w\|^{2}(t)+2\|\Delta w\|^{2}(t)-2\|\nabla w\|^{2}(t)+2\left(u u_{z}, w\right)(t)+2\left(v v_{z}, w\right)(t)+2\left(w w_{z}, w\right)(t)=0 \tag{69}
\end{align*}
$$

Since

$$
\left(u^{2}, u_{x}\right)(t)=\left(v^{2}, v_{y}\right)(t)=\left(w^{2}, w_{z}\right)(t)=0
$$

we get

$$
\begin{align*}
& \frac{d}{d t}\|u\|^{2}(t)+\theta\|\Delta u\|^{2}(t)+\theta\|\Delta u\|^{2}(t)-\left(v^{2}, u_{x}\right)(t)-\left(w^{2}, u_{x}\right)(t) \leq 0 \tag{70}\\
& \frac{d}{d t}\|v\|^{2}(t)+\theta\|\Delta v\|^{2}(t)+\theta\|\Delta v\|^{2}(t)-\left(u^{2}, v_{y}\right)(t)-\left(w^{2}, v_{y}\right)(t) \leq 0 \tag{71}\\
& \frac{d}{d t}\|w\|^{2}(t)+\theta\|\Delta w\|^{2}(t)+\theta\|\Delta w\|^{2}(t)-\left(u^{2}, w_{z}\right)(t)-\left(v^{2}, w_{z}\right)(t) \leq 0 \tag{72}
\end{align*}
$$

Making use of Lemmas 2.2 and 3.1, we estimate

$$
\begin{aligned}
I_{1} & =\left(v^{2}, u_{x}\right) \leq\left\|u_{x}\right\|_{L^{4}\left(D_{x}\right)}\|v\|_{L^{4}\left(D_{x}\right)}\|v\| \\
& \leq 2\|v\|\|v\|^{1 / 4}\|\nabla v\|^{3 / 4}\left\|u_{x}\right\|^{1 / 4}\left\|\nabla u_{x}\right\|^{3 / 4} \\
& \leq \frac{2}{a_{x}^{1 / 4}}\|v\|\|\nabla v\|\|\Delta u\| \leq \epsilon\|\Delta u\|^{2}+\frac{1}{\epsilon a_{x}^{3 / 2}}\|v\|^{2}\|\Delta v\|^{2} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& I_{2}=\left(w^{2}, u_{x}\right) \leq \epsilon\|\Delta u\|^{2}+\frac{1}{\epsilon a_{x}^{3 / 2}}\|w\|^{2}\|\Delta w\|^{2} \\
& I_{3}=\left(u^{2}, v_{y}\right) \leq \epsilon\|\Delta v\|^{2}+\frac{1}{\epsilon a_{x}^{3 / 2}}\|u\|^{2}\|\Delta u\|^{2} \\
& I_{4}=\left(w^{2}, v_{y}\right) \leq \epsilon\|\Delta v\|^{2}+\frac{1}{\epsilon a_{x}^{3 / 2}}\|w\|^{2}\|\Delta w\|^{2} \\
& I_{5}=\left(u^{2}, w_{z}\right) \leq \epsilon\|\Delta w\|^{2}+\frac{1}{\epsilon a_{x}^{3 / 2}}\|u\|^{2}\|\Delta u\|^{2} \\
& I_{6}=\left(v^{2}, w_{z}\right) \leq \epsilon\|\Delta w\|^{2}+\frac{1}{\epsilon a_{x}^{3 / 2}}\|v\|^{2}\|\Delta v\|^{2}
\end{aligned}
$$

Substituting $I_{1}-I_{6}$ into (70)-(72), choosing $4 \epsilon=\theta_{x}$ and taking into account (53), we get

$$
\begin{align*}
& \frac{d}{d t}\left(\|u\|^{2}(t)+\|v\|^{2}(t)+\|w\|^{2}(t)\right)+\frac{\theta_{x}}{2}\left(\|\Delta u\|^{2}(t)+\|\Delta v\|^{2}(t)+\|\Delta w\|^{2}(t)\right) \\
& +\left[\theta_{x}-\frac{4}{\theta_{x} a_{x}^{3 / 2}}\left(\|u\|^{2}(t)+\|v\|^{2}(t)+\|w\|^{2}(t)\right)\right]\left(\|\Delta u\|^{2}(t)+\|\Delta v\|^{2}(t)+\|\Delta w\|^{2}(t)\right)<0 \tag{73}
\end{align*}
$$

Making use of (54) and Lemma 2.6, we obtain

$$
\begin{equation*}
\frac{d}{d t}\left(\|u\|^{2}(t)+\|v\|^{2}(t)+\|w\|^{2}(t)\right)+\frac{\theta_{x}}{2}\left(\|\Delta u\|^{2}(t)+\|\Delta v\|^{2}(t)+\|\Delta w\|^{2}(t)\right) \leq 0 \tag{74}
\end{equation*}
$$

This implies

$$
\begin{equation*}
\|u\|^{2}(t)+\|v\|^{2}(t)+\|w\|^{2}(t)+\frac{\theta_{x}}{2} \int_{0}^{t}\left(\|\Delta u\|^{2}(\tau)+\|\Delta v\|^{2}(\tau)+\|\Delta w\|^{2}(\tau)\right) d \tau \leq\left\|u_{0}\right\|^{2}+\left\|v_{0}\right\|^{2}+\left\|w_{0}\right\|^{2} \tag{75}
\end{equation*}
$$

On the other hand, by Lemma 3.1, (71) can be rewritten as

$$
\frac{d}{d t}\left(\|u\|^{2}(t)+\|v\|^{2}(t)+\|w\|^{2}(t)\right)+\frac{a_{x}^{2} \theta_{x}}{2}\left(\|u\|^{2}(t)+\|v\|^{2}(t)+\|w\|^{2}(t)\right) \leq 0
$$

that gives

$$
\begin{equation*}
\|u\|^{2}(t)+\|v\|^{2}(t)+\|w\|^{2}(t) \leq\left[\left\|u_{0}\right\|^{2}+\left\|v_{0}\right\|^{2}+\left\|w_{0}\right\|^{2}\right] e^{\left(-\frac{a_{x}^{2} \theta_{x} t}{2}\right)} \tag{76}
\end{equation*}
$$

Estimate II. Differentiate (47), (48), (49) with respect to t, then multiply the results respectively by $2 u_{t}, 2 v_{t}, 2 w_{t}$ to get

$$
\begin{align*}
& \frac{d}{d t}\left\|u_{t}\right\|^{2}(t)+2\left\|\Delta u_{t}\right\|^{2}(t)-2\left\|\nabla u_{t}\right\|^{2}(t)=2\left(u u_{t}, u_{x t}\right)(t)+2\left(v v_{t}, u_{x t}\right)(t)+2\left(w w_{t}, u_{x t}\right)(t) \tag{77}\\
& \frac{d}{d t}\left\|v_{t}\right\|^{2}(t)+2\left\|\Delta v_{t}\right\|^{2}(t)-2\left\|\nabla v_{t}\right\|^{2}(t)=2\left(u u_{t}, v_{y t}\right)(t)+2\left(v v_{t}, v_{y t}\right)(t)+2\left(w w_{t}, v_{y t}\right)(t) \tag{78}\\
& \frac{d}{d t}\left\|w_{t}\right\|^{2}(t)+2\left\|\Delta w_{t}\right\|^{2}(t)-2\left\|\nabla v_{t}\right\|^{2}(t)=2\left(u u_{t}, w_{z t}\right)(t)+2\left(v v_{t}, w_{z t}\right)(t)+2\left(w w_{t}, w_{z t}\right)(t) \tag{79}
\end{align*}
$$

Making use of Lemmas 2.2 and 3.1, we estimate

$$
\begin{aligned}
I_{1} & =2\left(u u_{t}, u_{x t}\right)(t) \leq 2\|u\|(t)\left\|u_{t}\right\|_{L^{4}\left(D_{X}\right)}(t)\left\|\nabla u_{t}\right\|_{L^{4}\left(D_{x}\right)}(t) \\
& \leq 4\|u\|(t)\left\|u_{t}\right\|^{1 / 4}(t)\left\|\nabla u_{t}\right\|^{3 / 4}(t)\left\|\nabla u_{t}\right\|^{1 / 4}(t)\left\|\Delta u_{t}\right\|^{3 / 4}(t) \\
& \leq \frac{4}{a_{x}^{1 / 4}}\|u\|(t)\left\|\nabla u_{t}\right\|(t)\left\|\Delta u_{t}\right\|(t) \leq \epsilon\left\|\Delta u_{t}\right\|^{2}(t)+\frac{4}{a_{x}^{3 / 2} \epsilon}\|u\|^{2}(t)\left\|\Delta u_{t}\right\|^{2}(t),
\end{aligned}
$$

where ϵ is an arbitrary positive number. Similarly,

$$
\begin{aligned}
& I_{2}=2\left(v v_{t}, u_{x t}\right)(t) \leq \epsilon\left\|\Delta u_{t}\right\|^{2}(t)+\frac{4}{a_{x}^{1 / 2} \epsilon}\|v\|^{2}(t)\left\|\Delta v_{t}\right\|^{2}(t), \\
& I_{3}=2\left(w w_{t}, u_{x t}\right)(t) \leq \epsilon\left\|\Delta u_{t}\right\|^{2}(t)+\frac{4}{a_{x}^{3 / 2} \epsilon}\|w\|^{2}(t)\left\|\Delta w_{t}\right\|^{2}(t), \\
& I_{4}=2\left(u u_{t}, v_{y t}\right)(t) \leq \epsilon\left\|\Delta v_{t}\right\|^{2}(t)+\frac{4}{a_{x}^{3 / 2} \epsilon}\|u\|^{2}(t)\left\|\Delta u_{t}\right\|^{2}(t), \\
& I_{5}=2\left(v v_{t}, v_{y t}\right)(t) \leq \epsilon\left\|\Delta v_{t}\right\|^{2}(t)+\frac{4}{a_{x}^{3 / 2} \epsilon}\|v\|^{2}(t)\left\|\Delta v_{t}\right\|^{2}(t), \\
& I_{6}=2\left(w w_{t}, v_{y t}\right)(t) \leq \epsilon\left\|\Delta v_{t}\right\|^{2}(t)+\frac{4}{a_{x}^{3 / 2} \epsilon}\|w\|^{2}(t)\left\|\Delta w_{t}\right\|^{2}(t), \\
& I_{7}=2\left(u u_{t}, w_{z t}\right)(t) \leq \epsilon\left\|\Delta w_{t}\right\|^{2}(t)+\frac{4}{a_{x}^{3 / 2} \epsilon}\|u\|^{2}(t)\left\|\Delta u_{t}\right\|^{2}(t), \\
& I_{8}=2\left(v v_{t}, w_{z t}\right)(t) \leq \epsilon\left\|\Delta w_{t}\right\|^{2}(t)+\frac{4}{a_{x}^{3 / 2} \epsilon}\|v\|^{2}(t)\left\|\Delta v_{t}\right\|^{2}(t), \\
& I_{9}=2\left(w w_{t}, w_{z t}\right)(t) \leq \epsilon\left\|\Delta w_{t}\right\|^{2}(t)+\frac{4}{a_{x}^{3 / 2} \epsilon}\|w\|^{2}(t)\left\|\Delta w_{t}\right\|^{2}(t) .
\end{aligned}
$$

Taking into account that

$$
\begin{aligned}
& 2\left\|\Delta u_{t}\right\|^{2}(t)-2\left\|\nabla u_{t}\right\|^{2}(t)>2 \theta_{x}\left\|\Delta u_{t}\right\|^{2}(t) \\
& 2\left\|\Delta v_{t}\right\|^{2}(t)-2\left\|\nabla v_{t}\right\|^{2}(t)>2 \theta_{x}\left\|\Delta v_{t}\right\|^{2}(t) \\
& 2\left\|\Delta w_{t}\right\|^{2}(t)-2\left\|\nabla w_{t}\right\|^{2}(t)>2 \theta_{x}\left\|\Delta w_{t}\right\|^{2}(t)
\end{aligned}
$$

and choosing $6 \epsilon=\theta_{x}$, we get

$$
\begin{align*}
& \frac{d}{d t}\left(\left\|u_{t}\right\|^{2}(t)+\left\|v_{t}\right\|^{2}(t)+\left\|w_{t}\right\|^{2}(t)\right)+\frac{\theta_{x}}{2}\left(\left\|\Delta u_{t}\right\|^{2}(t)+\left\|\Delta v_{t}\right\|^{2}(t)+\left\|\Delta w_{t}\right\|^{2}(t)\right) \\
& +\left[\theta_{x}-\frac{24}{a_{x}^{3 / 2} \theta_{x}}\left(\|u\|^{2}(t)+\|v\|^{2}(t)+\|w\|^{2}(t)\right)\right]\left(\left\|\Delta u_{t}\right\|^{2}(t)+\left\|\Delta v_{t}\right\|^{2}(t)+\left\|\Delta w_{t}\right\|^{2}(t)\right)<0 . \tag{80}
\end{align*}
$$

Taking into account (53), (54), we obtain

$$
\begin{equation*}
\frac{d}{d t}\left(\left\|u_{t}\right\|^{2}(t)+\left\|v_{t}\right\|^{2}(t)+\left\|w_{t}\right\|^{2}(t)\right)+\frac{\theta_{x}}{2}\left(\left\|\Delta u_{t}\right\|^{2}(t)+\left\|\Delta v_{t}\right\|^{2}(t)+\left\|\Delta w_{t}\right\|^{2}(t)\right)<0 \tag{81}
\end{equation*}
$$

By making use of Lemma 3.1, this can be rewritten as

$$
\begin{equation*}
\frac{d}{d t}\left(\left\|u_{t}\right\|^{2}(t)+\left\|v_{t}\right\|^{2}(t)+\left\|w_{t}\right\|^{2}(t)\right)+\frac{a_{x}^{2} \theta_{x}}{2}\left(\left\|u_{t}\right\|^{2}(t)+\left\|v_{t}\right\|^{2}(t)+\left\|w_{t}\right\|^{2}(t)\right)<0 \tag{82}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\left\|u_{t}\right\|^{2}(t)+\left\|v_{t}\right\|^{2}(t)+\left\|w_{t}\right\|^{2}(t) \leq\left(\left\|u_{t}\right\|^{2}(0)+\left\|v_{t}\right\|^{2}(0)+\left\|w_{t}\right\|^{2}(0)\right) \exp \left(-\frac{a_{x}^{2} \theta_{x} t}{2}\right) \tag{83}
\end{equation*}
$$

Returning to (78), we find that

$$
\begin{equation*}
\left\|u_{t}\right\|^{2}(t)+\left\|v_{t}\right\|^{2}(t)+\left\|w_{t}\right\|^{2}(t)+\frac{\theta_{x}}{2} \int_{0}^{t}\left(\left\|\Delta u_{\tau}\right\|^{2}(\tau)+\left\|\Delta v_{\tau}\right\|^{2}(\tau)+\left\|\Delta w_{\tau}\right\|^{2}(\tau)\right) d \tau \leq\left\|u_{t}\right\|^{2}(0)+\left\|v_{t}\right\|^{2}(0)+\left\|w_{t}\right\|^{2}(0) \tag{84}
\end{equation*}
$$

Here,

$$
\left\|u_{t}\right\|^{2}(0) \leq C\left(\left\|u_{0}\right\|_{W}\right),\left\|v_{t}\right\|^{2}(0) \leq C\left(\left\|v_{0}\right\|_{W}\right),\left\|w_{t}\right\|^{2}(0) \leq C\left(\left\|w_{0}\right\|_{W}\right)
$$

Jointly, (72) and (81) imply that

$$
\begin{align*}
& u, v, w \in L^{\infty}\left(\mathbb{R}^{+} ; H_{0}^{2}\left(D_{x}\right)\right), \\
& u_{t}, v_{t}, w_{t} \in L^{\infty}\left(\mathbb{R}^{+} ; L^{2}\left(D_{x}\right)\right) \cap L^{2}\left(\mathbb{R}^{+} ; H_{0}^{2}\left(D_{x}\right)\right) . \tag{85}
\end{align*}
$$

These inequalities guarantee the existence of strong solutions to (47)-(52), $u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)$ satisfying (82) and the following identities:

$$
\begin{align*}
& \left(u_{t}, \phi\right)(t)+(\Delta u, \Delta \phi)(t)+(\Delta u, \phi)(t)+\left(u u_{x}, \phi\right)(t)+\left(v v_{x}, \phi\right)(t)+\left(w w_{x}, \phi\right)(t)=0, t>0 \tag{86}\\
& \left(v_{t}, \phi\right)(t)+(\Delta v, \Delta \phi)(t)+(\Delta v, \phi)(t)+\left(u u_{y}, \phi\right)(t)+\left(v v_{y}, \phi\right)(t)+\left(w w_{y}, \phi\right)(t)=0, t>0 \tag{87}\\
& \left(w_{t}, \phi\right)(t)+(\Delta w, \Delta \phi)(t)+(\Delta w, \phi)(t)+\left(u u_{z}, \phi\right)(t)+\left(v v_{z}, \phi\right)(t)+\left(w w_{z}, \phi\right)(t)=0, t>0 \tag{88}
\end{align*}
$$

where $\phi(x, y)$ is an arbitrary function from $H_{0}^{2}\left(D_{x}\right)$.
We can rewrite (83)-(85) in the form

$$
\begin{aligned}
& (\Delta u, \Delta \phi)(t)=-\left(u_{t}+\Delta u+u u_{x}+v v_{x}+w w_{x}, \phi\right)(t) \\
& (\Delta v, \Delta \phi)(t)=-\left(v_{t}+\Delta v+u u_{y}+v v_{y}+w w_{y}, \phi\right)(t) \\
& (\Delta w, \Delta \phi)(t)=-\left(w_{t}+\Delta w+u u_{z}+v v_{z}+w w_{z}, \phi\right)(t)
\end{aligned}
$$

It follows from here and (82) that

$$
\Delta^{2} u, \Delta^{2} v, \Delta^{2} w \in L^{\infty}\left(\mathbb{R}^{+} ; L^{2}\left(D_{x}\right)\right)
$$

These jointly with (79) prove the existence part of Theorem 4.1.
Lemma 4.1. A strong solution of Theorem 4.1 is uniquely defined.
Proof. Let u_{1}, v_{1}, w_{1} and u_{2}, v_{2}, w_{2} be two distinct solutions to (47)-(52). Denoting $p=u_{1}-u_{2}, q=v_{1}-v_{2}, r=w_{1}-w_{2}$ and acting as by the proof of Lemma 3.2, we come to the following system:

$$
\begin{align*}
& \frac{d}{d t}\|p\|^{2}(t)+2\|\Delta p\|^{2}(t)-2\|\nabla p\|^{2}(t)-\left(\left\{u_{1}+u_{2}\right\} p, p_{x}\right)(t)-\left(\left\{v_{1}+v_{2}\right\} q, p_{x}\right)(t)-\left(\left\{w_{1}+w_{2}\right\} r, p_{x}\right)(t)=0 \tag{89}\\
& \frac{d}{d t}\|q\|^{2}(t)+2\|\Delta q\|^{2}(t)-2\|\nabla q\|^{2}(t)-\left(\left\{u_{1}+u_{2}\right\} p, q_{y}\right)(t)-\left(\left\{v_{1}+v_{2}\right\} q, q_{y}\right)(t)-\left(\left\{w_{1}+w_{2}\right\} r, q_{y}\right)(t)=0 \tag{90}\\
& \frac{d}{d t}\|r\|^{2}(t)+2\|\Delta r\|^{2}(t)-2\|\nabla r\|^{2}(t)-\left(\left\{u_{1}+u_{2}\right\} p, r_{z}\right)(t)-\left(\left\{v_{1}+v_{2}\right\} q, r_{z}\right)(t)-\left(\left\{w_{1}+w_{2}\right\} r, r_{z}\right)(t)=0 \tag{91}\\
& p_{y}=q_{x}, p_{z}=r_{x}, q_{z}=r w_{y} \tag{92}\\
& \left.p\right|_{\partial D}=\left.q\right|_{\partial D}=\left.r\right|_{\partial D}=\left.\frac{\partial}{\partial N} p\right|_{\partial D}=\left.\frac{\partial}{\partial N} q\right|_{\partial D}=\left.\frac{\partial}{\partial N} r\right|_{\partial D}=0, t>0 \tag{93}\\
& p(x, y, z, 0)=q(x, y, z, 0)=r(x, y, z, 0)=0 . \tag{94}
\end{align*}
$$

We estimate

$$
\begin{aligned}
I_{1} & =\left(\left\{u_{1}+u_{2}\right\} p, p_{x}\right) \leq\left\|p_{x}\right\|_{L^{4}\left(D_{x}\right)}\|p\|\left\|u_{1}+u_{2}\right\|_{L^{4}\left(D_{x}\right)} \\
& \leq 4\left\|p_{x}\right\|^{1 / 4}\left\|\nabla p_{x}\right\|^{3 / 4}\|p\|\left\|u_{1}+u_{2}\right\|^{1 / 4}\left\|\nabla\left(u_{1}+u_{2}\right)\right\|^{3 / 4}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{4}{a_{x}^{1 / 4}}\|p\|\|\Delta p\|\left\|\nabla\left(u_{1}+u_{2}\right)\right\| \leq \frac{4}{a_{x}^{1 / 4}}\|p\|\|\Delta p\|\left(\left\|\nabla u_{1}\right\|+\left\|\nabla u_{2}\right\|\right) \\
& \leq \epsilon\|\Delta p\|^{2}+\frac{C}{\epsilon}\left(\left\|\nabla u_{1}\right\|^{2}+\left\|\nabla u_{2}\right\|^{2}\right)\|p\|^{2} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& I_{2}=\left(\left\{v_{1}+v_{2}\right\} q, p_{x}\right) \leq \epsilon\|\Delta p\|^{2}+\frac{C}{\epsilon}\left(\left\|\nabla v_{1}\right\|^{2}+\left\|\nabla v_{2}\right\|^{2}\right)\|q\|^{2}, \\
& I_{3}=\left(\left\{w_{1}+w_{2}\right\} r, p_{x}\right) \leq \epsilon\|\Delta p\|^{2}+\frac{C}{\epsilon}\left(\left\|\nabla w_{1}\right\|^{2}+\left\|\nabla w_{2}\right\|^{2}\right)\|r\|^{2}, \\
& I_{4}=\left(\left\{u_{1}+u_{2}\right\} p, q_{y}\right) \leq \epsilon\|\Delta q\|^{2}+\frac{C}{\epsilon}\left(\left\|\nabla u_{1}\right\|^{2}+\left\|\nabla u_{2}\right\|^{2}\right)\|p\|^{2}, \\
& I_{5}=\left(\left\{v_{1}+v_{2}\right\} q, q_{y}\right) \leq \epsilon\|\Delta q\|^{2}+\frac{C}{\epsilon}\left(\left\|\nabla v_{1}\right\|^{2}+\left\|\nabla v_{2}\right\|^{2}\right)\|q\|^{2}, \\
& I_{6}=\left(\left\{w_{1}+w_{2}\right\} r, q_{y}\right) \leq \epsilon\|\Delta q\|^{2}+\frac{C}{\epsilon}\left(\left\|\nabla w_{1}\right\|^{2}+\left\|\nabla w_{2}\right\|^{2}\right) \|\left. r\right|^{2}, \\
& I_{7}=\left(\left\{u_{1}+u_{2}\right\} p, r_{z}\right) \leq \epsilon\|\Delta r\|^{2}+\frac{C}{\epsilon}\left(\left\|\nabla u_{1}\right\|^{2}+\left\|\nabla u_{2}\right\|^{2}\right)\|p\|^{2}, \\
& I_{8}=\left(\left\{v_{1}+v_{2}\right\} q, r_{z}\right) \leq \epsilon\|\Delta r\|^{2}+\frac{C}{\epsilon}\left(\left\|\nabla v_{1}\right\|^{2}+\left\|\nabla v_{2}\right\|^{2}\right)\|q\|^{2}, \\
& I_{9}=\left(\left\{w_{1}+w_{2}\right\} r, r_{z}\right) \leq \epsilon\|\Delta r\|^{2}+\frac{C}{\epsilon}\left(\left\|\nabla w_{1}\right\|^{2}+\left\|\nabla w_{2}\right\|^{2}\right)\|r\|^{2} .
\end{aligned}
$$

Substituting $I_{1}-I_{9}$ into (86)-(88) and taking $6 \epsilon=\theta_{x}$, we come to the following inequality:

$$
\begin{aligned}
\frac{d}{d t}\left(\|p\|^{2}(t)+\|q\|^{2}(t)+\|r\|^{2}(t)\right) \leq & C\left(\left\|\nabla u_{1}\right\|^{2}(t)+\left\|\nabla u_{2}\right\|^{2}(t)+\left\|\nabla v_{1}\right\|^{2}(t)+\left\|\nabla v_{2}\right\|^{2}(t)+\left\|\nabla w_{1}\right\|^{2}(t)+\left\|\nabla w_{2}\right\|^{2}(t)\right) \\
& \times\left\{\|p\|^{2}(t)+\|q\|^{2}(t)+\|r\|^{2}(t)\right\} .
\end{aligned}
$$

Making use of (82) and Lemma 3.1, we get

$$
\left\|\nabla u_{1}\right\|^{2}(t)+\left\|\nabla u_{2}\right\|^{2}(t)+\left\|\nabla v_{1}\right\|^{2}(t)+\left\|\nabla v_{2}\right\|^{2}(t)+\left\|\nabla w_{1}\right\|^{2}(t)+\left\|\nabla w_{2}\right\|^{2}(t) \in L^{1}\left(\mathbb{R}^{+}\right) .
$$

Also, by Lemma 2.3,

$$
\|p\|^{2}(t)+\|q\|^{2}(t)+\|r\|(t) \equiv 0 \text { for all } t>0
$$

Hence,

$$
u_{1}(x, y, z, t) \equiv u_{2}(x, y, z, t) ; \quad v_{1}(x, y, z, t) \equiv v_{2}(x, y, z, t) ; \quad w_{2}(x, y, z, t) \equiv w_{2}(x, y, z, t)
$$

This completes the proof of Lemma 4.1 and consequently of Theorem 4.1.
Results similar to the ones presented in Theorem 4.1, can be established for the Kuramoto-Sivashinsky system (47)-(50) posed on unbounded parallelepipeds D_{y} and D_{z}, where

$$
\begin{aligned}
D_{y} & =\left\{(x, y, z) \in \mathbb{R}^{3} ; x \in\left(0, L_{1}\right), y \in(0,+\infty), z \in\left(0, L_{3}\right)\right\} \\
D_{z} & =\left\{(x, y, z) \in \mathbb{R}^{3} ; x \in\left(0, L_{1}\right), y \in\left(0, L_{2},\right), z \in(0,+\infty)\right\}
\end{aligned}
$$

Assertions of Lemma 3.1 are true also for D_{y} provided that

$$
a, \theta \text { are replaced by } a_{y}=\lim _{L_{2} \rightarrow+\infty} a=\sum_{i=1,3} \frac{\pi^{2}}{L_{i}^{2}}, \theta_{y}=1-\frac{1}{a_{y}}
$$

and for D_{z} provided that
a, θ are replaced by $a_{z}=\lim _{L_{3} \rightarrow+\infty} a=\sum_{i=2}^{3} \frac{\pi^{2}}{L_{i}^{2}}, \theta_{z}=1-\frac{1}{a_{z}}$.

5. Conclusions

This work is concerned with the formulation and solvability of initial-boundary value problems for the three-dimensional Kuramoto-Sivashinsky system (8)-(11) posed on smooth bounded domains and on unbounded parallelepipeds parallel to the principal axes $0 X, 0 Y, 0 Z$. Theorem 3.1 contains results on the existence and uniqueness of global regular solutions as well as exponential decay of the $H^{2}(D)$-norm, where D is a smooth bounded 3D domain. We define a set of admissible domains, where destabilizing effects of terms $\Delta u, \Delta v, \Delta w$ are damped by dissipativity of $\Delta^{2} u, \Delta^{2} v, \Delta^{2} w$ due to condition (14). This set contains "thin domains" (see [10,17]), where some dimensions of D are small while others may be arbitrary large. The limiting cases of "thin domains" are unbounded parallelepipeds and they are presented in Section 4, where the existence and uniqueness of global strong solutions as well as exponential decay of the L^{2}-norms are also established. Since the initial-boundary value problems studied in this paper do not admit the a priori estimate independent of t, u, v, w, in order to prove the existence of global regular solutions, we put conditions (15) connecting geometrical properties of D with initial data u_{0}, v_{0}, w_{0}. Additionally, condition (16) guarantees exponential decay of the $H^{2}(D)$-norm. Moreover, Theorem 3.1 provides a "smoothing effect": initial data $u_{0}, v_{0}, w_{0} \in H^{2}(D) \cap H_{0}^{1}(D)$ imply that $u, v, w \in L^{2}\left(\mathbb{R} ; H^{4}(D)\right)$.

Acknowledgement

The author greatly appreciates concrete and useful comments of the anonymous reviewers.

References

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[2] S. Benachour, I. Kukavica, W. Rusin, M. Ziane, Anisotropic estimates for the two-dimensional Kuramoto-Sivashinsky equation, J. Dynam. Diff. Equations 26 (2014) 461-476.
[3] H. A. Biagioni, J. L. Bona, J. R. J. Iorio, M. Scialom, On the Korteweg de Vries-Kuramoto-Sivashinsky equation, Adv. Differential Equations 1 (1996) 1-20.
[4] H. A. Biagioni, T. Gramchev, Multidimensional Kuramoto-Sivashinsky type equations: Singular initial data and analytic regularity, Mat. Contemp. 15 (1998) 21-42.
[5] G. Boling, The existence and nonexistence of a global solution for the initial value problem of generalized Kuramoto-Sivashinsky type equations, J. Math. Res. Expo. 11 (1991) 57-69.
[6] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.
[7] A. T. Cousin, N. A. Larkin, Kuramoto-Sivashinsky equation in domains with moving boundaries, Port. Math. 59 (2002) 335-349.
[8] M. C. Cross, Pattern formation outside of equilibrium, Rev. Modern Phys. 65 (1993) 851-1086.
[9] A. Friedman, Partial Differential Equations, Dover, New York, 1997.
[10] D. Iftimie, G. Raugel, Some results on the Navier-Stokes equations in thin 3D domains, J. Differential Equations 169 (2001) $281-331$.
[11] Y. Kuramoto, T. Tsuzuki, On the formation of dissipative structures in reaction-diffusion systems, Prog. Theor. Phys. 54 (1975) $687-699$.
[12] O. A. Ladyzhenskaya, The Boundary Value problems of Mathematical Physics, Springer, New York, 1985.
[13] N. A. Larkin, Korteweg-de Vries and Kuramoto-Sivashinsky equations in bounded domains. J. Math. Anal. Appl. 297 (2004) $169-185$.
[14] N. A. Larkin, Existence and decay of global solutions for the three-dimensional Kuramoto-Sivashinsky-Zakharov-Kuznetsov equation, J. Math. Anal. Appl., DOI: 10.1016/j.jmaa.2022.126046, In press.
[15] J. Li, B. Y. Zhang, Z. Zhang, A nonhomogeneous boundary value problem for the Kuramoto-Sivashinsky equation in a quarter plane, Math. Methods Appl. Sci. 40 (2017) 5619-5641.
[16] D. Massatt, On the well-posedness of the anisotropically-reduced two-dimensional Kuramoto-Sivashinsky equation, Discrete Contin. Dyn. Syst. Ser. B, DOI: $10.3934 /$ dcdsb. 2021305 , In press.
[17] L. Molinet, Local dissipativity in L^{2} for the Kuramoto-Sivashinsky equation in spatial dimension 2, J. Dynam. Differential Equations 12 (2000) 533-556.
[18] B. Nicolaenko, B. Scheurer, R. Temam, Some global dynamical properties of the Kuramoto-Sivashinsky equations: nonlinear stability and attractors, Phys. D 16 (1985) 155-183.
[19] L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. 13 (1959) 115-162.
[20] G. R. Sell, M. Taboada, Local dissipativity and attractors for the Kuramoto-Sivashinsky equation in thin 2D domains, Nonlinear Anal. 18 (1992) 671-687.
[21] G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames-1: Derivation of basic equations, Acta Astronauica 4 (1977) 1177-1206.
[22] A. V. Steklov, The problem of cooling of an heterogeneous rigid rod, Commun. Kharkov Math. Soc. 5 (1896) 136-181.
[23] E. Tadmor, The well-posedness of the Kuramoto-Sivashinsky equation, SIAM J. Math. Anal. 17 (1986) 884-893.
[24] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Noth-Holland, Amsterdam, 1977.
[25] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988.

[^0]: *E-mail address: nlarkine@uem.br

