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Abstract

For a graph G, its bond-additive indices are defined as
∑

uv∈E(G) β(u, v), where E(G) is the edge set of G and β is a real-
valued function satisfying the property β(u, v) = β(v, u). By atoms-pair-additive indices of a graph G, we mean graph
invariants of the form

∑
u,v∈V (G) α(u, v)/2 , where V (G) is the vertex set of G and α is a real-valued function satisfying

α(u, v) = α(v, u). This paper considers some mathematical aspects of several particular bond-additive indices and atoms-
pair-additive indices.
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1. Introduction

All graphs considered in this study are assumed to be finite and connected. Let G be such a graph. Its vertex set and
edge set are denoted by V (G) and E(G), respectively. In order to avoid trivialities, throughout this paper we assume that
|V (G)| ≥ 3. The edge of G connecting the vertices u, v ∈ V (G) is denoted by uv. By an n-vertex graph, we mean a graph
of order n. The degree and eccentricity of a vertex v ∈ V (G) are denoted by dv(G) and eu(G), respectively. The maximum
and minimum degrees of a graph G are denoted by ∆(G) and δ(G), respectively. For the vertices u, v ∈ V (G), the distance
between u and v is denoted by dG(u, v). The transmissionDG(u) of a vertex u ∈ V (G) is defined byDG(u) =

∑
u∈V (G) dG(u, v)

(see [59, 62]). From the notations dv(G), eu(G), ∆(G), δ(G), dG(u, v), DG(u), we may drop the symbol “G” when there is
no confusion about the graph under consideration. We use the standard graph theoretical terminology; notation and
terminology used in this paper but not defined here can be found in the books [13,14,16,27].

The degree set of a graph G is the set of all different numbers of the degree sequence of G. A graph G is s-regular if
its degree set is {s}. A graph whose degree set consists of at least two elements is usually referred to as a non-regular
graph. By a bidegreed graph, we mean a graph with the degree set having exactly two elements. A semiregular graph G

is a bidegreed bipartite graph in which all vertices of each partite set have the same degrees. A graph is said to be strictly
stepwise irregular if the difference between the degrees of every pair of adjacent vertices is exactly one; these graphs were
recently introduced in [32]. (For every positive integer r, the complete bipartite graphKr,r+1 is a strictly stepwise irregular
graph.) A self-centered graph (also known as an eccentricity-regular graph) is a connected graph, all of which vertices have
the same eccentricity [63]. A transmission-regular graph is the one in which all vertices have the same transmission.

A property of a graph that is opposite to the concept of regularity is known as irregularity; the recent book [4] is fully
devoted to the concept of irregularity in graphs. A graph whose all vertices have pair-wise distinct degrees or transmissions
is known as an irregular graph or transmission-irregular graph, respectively. Although there is no non-trivial irregular
graph [12], there exist transmission-irregular graphs [7]. An n-vertex graph whose degree set consists of n − 1 elements
is known as antiregular graph [3,46,49].

In graph theory, a graph invariant is a function I defined on the set of all graphs such that the codomain of I contains
the extended real numbers and the equation I(G) = I(G′) holds if and only if G is isomorphic to G′. A graph invariant may
be a matrix (for example, the adjacency matrix), a set of numbers (for example, the spectrum), a polynomial (for example,
the characteristic polynomial), a numerical value (for example, order of a graph), etc. In chemical graph theory, numerical
graph invariants are usually referred to as topological indices [68]. The first and second Zagreb indices (denoted by M1

and M2) (see [23,30,35,64,65]), Randić index Ra (see [21,43,52]), hyper Zagreb index HM (see [22,24,61]), sigma index σ
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(see [36,37]), eccentric-connectivity index ECI (see [17,45,51,60,69,72]), Mostar index Mo (see [5,20,25,41]), Albertson
index Al (see [2]) are among the most familiar topological indices.

A topological index TI is said to be a graph irregularity index (or irregularity measure) if TI(G) ≥ 0 and if the equality
TI(G) = 0 holds if and only if graphG is regular (see [1,2,6,11,31,38,47,54–56]). For a graphG, its topological indices of the
form

∑
uv∈E(G) β(u, v) are known as bond-additive indices [67], where β is a real-valued function satisfying the condition

β(u, v) = β(v, u). By atoms-pair-additive indices of a graph G, we mean topological indices of the form
∑

u,v∈V (G) α(u, v)/2 ,
where α is a real-valued function with the property α(u, v) = α(v, u). In this study, we are concerned with the mathematical
aspects of particular bond-additive indices and atoms-pair-additive indices.

2. Preliminary considerations

An edge uv of an n-vertex graph G is said to be a strong, week, or neutral edge, if du + dv > n, du + dv < n, or du + dv = n,
respectively. Based on the definitions of strong, weak, and neutral edges, we define some classes of graphs. A strong graph
is the one that contains at least one strong edge and in which every edge is either strong or neutral. We note that regular
strong graphs consists of only strong edges. A non-regular strong graph, consisting of only strong edges, is referred to
as a non-regular strictly strong graph. A graph containing at least one weak edge, in which every edge is either week or
neutral is known as a weak graph. Evidently, regular weak graphs consist of only week edges. A non-regular weak graph
consisting of only weak edges is referred to as a non-regular strictly weak graph. A graph having at least one week and
at least one strong edge is referred to as a mixed graph. By a neutral graph, we mean a graph consisting of only neutral
edges. Examples of non-regular weak and strong graphs are given in Figure 1: T6, B6 and D6 are weak graphs, U6 is a
strictly weak graph, A5 is a strong graph, and J6 is a strictly strong graph. Additional examples of regular weak, strong,
and neutral graphs are given in Figure 2: GA, GB, and GC are weak graphs, GD is a strong graph, whereas GE is a neutral
graph.

Figure 1: Examples of non-regular weak and strong graphs.

Figure 2: Examples of regular weak, strong and neutral graphs.

Remark 2.1. It is easy to see that an n-vertex non-regular graph is strictly week if its maximum degree is less than n/2 .
Similarly, an n-vertex non-regular graph is strictly strong if its minimum degree is greater than n/2 .

3. On bond-additive indices

Bond-additive indices of a graph G are defined as [67]
∑

uv∈E(G) β(u, v), where β is a real-valued function satisfying the
property β(u, v) = β(v, u); note that β may take negative values as well. Several examples of bond-additive indices can be
found in [10,15,50,53,57,58,66]; most of these can be considered as variants of the first and second Zagreb index (see the
review [24]).
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The first and second Zagreb indices of a graph G are usually denoted by M1(G) and M2(G), and are defined as

M1(G) =
∑

u∈V (G)

(du)
2

=
∑

uv∈E(G)

(du + dv) and M2(G) =
∑

uv∈E(G)

du dv.

The Albertson index (introduced under the name “irregularity of a graph” in [2]) is defined as

Al(G) =
∑

uv∈E(G)

|du − dv| .

Let us consider the following special form of the bond-additive indices

BAI(G) =
∑

uv∈E(G)

W (u, v)F (u, v) (1)

where W and F are non-negative real-valued symmetric functions. (We remark here that if we drop the condition of non-
negativity of W and F in formula (1), then we get an equivalent form of the general bond-additive indices defined in the
first sentence of this section.) We call W the weight function. First, we choose the weight function W (u, v) as du +dv, du dv,
or |du−dv|, and denote the corresponding bond-additive indices in Eq. (1) asBAIA(G), BAIB(G), orBAIC(G), respectively:

BAIA(G) =
∑

uv∈E(G)

(du + dv)F (u, v), (2)

BAIB(G) =
∑

uv∈E(G)

(du dv)F (u, v), (3)

BAIC(G) =
∑

uv∈E(G)

|du − dv|F (u, v). (4)

From the above definitions, the next inequalities follow directly for any non-trivial connected graph G:

2
∑

uv∈E(G)

F (u, v) ≤ 2δ
∑

uv∈E(G)

F (u, v) ≤ BAIA(G) ≤ 2∆
∑

uv∈E(G)

F (u, v) ≤ 2(n− 1)
∑

uv∈E(G)

F (u, v),

∑
uv∈E(G)

F (u, v) ≤ δ2
∑

uv∈E(G)

F (u, v) ≤ BAIB(G) ≤ ∆2
∑

uv∈E(G)

F (u, v) ≤ (n− 1)2
∑

uv∈E(G)

F (u, v),

0 ≤ BAIC(G) ≤ (∆− δ)
∑

uv∈E(G)

F (u, v) ≤ (n− 2)
∑

uv∈E(G)

F (u, v).

From the definition of BAIA(G), one can deduce various variants of the traditional topological indices. Some particular
cases are given as follows:

1. If F (u, v) = |DG(u)−DG(v)|, then EMo(G) =
∑

uv∈E(G) (du + dv) |DG(u)−DG(v)| is the extended Mostar index
(known as additively weighted Mostar index [5]).

2. If F (u, v) = (du − dv)
2, then Eσ(G) =

∑
uv∈E(G) (du + dv) (du − dv)

2 is the extended sigma index of G [36,37].

3. If F (u, v) = 1/
√
du dv, then ERa(G) =

∑
uv∈E(G) (du + dv) (du dv)−1/2 is the extended Randić index of G.

4. If F (u, v) = |du − dv|, then EAL(G) =
∑

uv∈E(G) (du + dv) |du − dv| is the extended Albertson index of G.

5. If F (u, v) = (eu + ev), then EECI(G) =
∑

uv∈E(G) (du + dv) (eu + ev) is the extended eccentric connectivity index of G.

Similarly, the topological index BAIB(G) can be regarded as the extended version of the second Zagreb indexM2(G), while
the index BAIC(G) may be considered as the extended version of the Albertson index Al(G). The Mostar index [5, 20] is
defined as:

Mo(G) =
∑

uv∈E(G)

|nu − nv| (5)

where nu stands for the number of vertices of G closer to u than v, and nv is defined analogously. Based on the known
identity |DG(u)−DG(v)| = |nu − nv|, one obtains that

Mo(G) =
∑

uv∈E(G)

|DG(u)−DG(v)| =
∑

uv∈E(G)

|nu − nv|

and consequently
EMo(G) =

∑
uv∈E(G)

(du + dv) |DG(u)−DG(v)| =
∑

uv∈E(G)

(du + dv) |nu − nv| . (6)

Here, it needs to be mentioned that the graph invariant
∑

uv∈E(G) |DG(u)−DG(v)| was introduced in [59].
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4. Some observations

In this section, we report some simple observations and a few results that are used in our upcoming discussion.

Observation 4.1. Let G be an n-vertex connected graph. Then for any edge uv of G, it holds that

2δ ≤ du + dv ≤ 2∆ ≤ 2(n− 1).

Observation 4.2. Let G be an n-vertex connected r-regular graph. Then for any edge uv of G, it holds that

du + dv = 2r ≤ 2(n− 1)

and equality holds if G is isomorphic to the complete graph Kn.

Remark 4.1. There exist r-regular neutral graphs different from complete bipartite regular graphs Kr,r . As an example,
see the 6-vertex, 3-regular graph GE depicted in Figure 2.

Proposition 4.1. A non-regular connected graph G is a neutral graph if and only if G the complete bipartite graph Kp,q

with p 6= q.

Proof. Since du + dv = p+ q = |V (Kp,q)| for every edge uv ∈ E(Kp,q), the complete bipartite graph Kp,q is a neutral graph.
Conversely, let G be a non-regular connected neutral graph of order n. Then the equation du + dv = n holds for every pair
of adjacent vertices u, v ∈ V (G). Let us consider an arbitrary vertex w ∈ V (G). Then every neighbor of w has degree n−dw
and every neighbor of all neighbors of w has degree dw. Thus, the graph G is bidegreed in which adjacent vertices have
different degrees; namely dw and n− dw.

We claim that G is bipartite. Assume to the contrary that G contains an odd cycle, namely C : v1v2 · · · v2r+1 where
r is a positive integer. Without loss of generality, assume that dv1 = dw then dv2 = dv4 = · · · = dv2r = n − dw and
dv3 = dv5 = · · · = dv2r+1

= dw, which gives a contradiction because because v1 and v2r+1 are adjacent. Thus, G contains no
odd cycle and hence G is bipartite.

Let (V1, V2) be a bipartition of G. It remains to prove that every vertex of V1 is adjacent to all vertices of V2. Let
w1w2 ∈ E(G) be an arbitrary edge, where w1 ∈ V1 and w2 ∈ V2. Then dw1 ≤ |V2| and dw2 ≤ |V1|. Thus, the fact that
dw1

+ dw2
= n = |V1| + |V2| implies that w1 is adjacent to all members of V2 and w2 is adjacent to all members of V1. This

completes the proof.

Lemma 4.1. [14] Let G be an n-vertex connected triangle-free graph. Then for any edge uv of G, the inequality du + dv ≤ n
holds. Consequently, connected triangle-free graphs (including connected bipartite graphs) are weak graphs.

Remark 4.2. It is easy to see that the converse of Lemma 4.1 is not true. There exist graphs containing triangles for which
the inequality du + dv ≤ n is valid. The graph D6 depicted in Figure 1 contains two triangles, however the inequality
du + dv ≤ n = 6 holds for all its edges.

Lemma 4.2. [22,72] Let G be an n-vertex connected graph. Then for any vertex u of G, the inequality d(u, v) ≤ ev ≤ n− dv
holds.

Observation 4.3. [22,72] LetG be an n-vertex connected graph. Then for the vertices u and v ofG, the following inequality
holds

du + dv ≤ 2n− (eu + ev)

where the equality holds for several connected graphs. The smallest graph of such type is the path P4. It follows that if
eu + ev = n holds for any edge uv of G, then the above inequality yields du + dv ≤ n.

Observation 4.4. [3,46,49] Two vertices u and v of a connected n-vertex antiregular graph An are adjacent if and only if
du + dv ≥ n holds for any edge uv in G. From this observation it follows that connected antiregular graphs An belong to the
family of strong graphs. As an example, see the 5-vertex antiregular graph A5 depicted in Figure 1.

5. Upper and lower bounds for some bond-additive indices

Proposition 5.1. If G is either a connected weak graph or a connected triangle-free graph then

BAIA(G) ≤ n
∑

uv∈E(G)

F (u, v). (7)

where equality holds if G contains only neutral edges.
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Proof. If G is a weak graph then du + dv ≤ n for any edge uv ∈ E(G). Also, if G is triangle-free then from Lemma 4.1, it
follows that the inequality du + dv ≤ n holds for any edge uv ∈ E(G). Evidently, equality holds if G contains only neutral
edges, i.e., G is a neutral graph. (Such neutral graphs are the complete bipartite graphs Kp,q.)

Remark 5.1. From Proposition 5.1, it follows that the inequality (7) is valid for any bipartite graph (trees, semiregular and
strictly stepwise irregular graphs). However, there exist weak graphs containing triangles, for which the inequality (7) is
valid; see the graph D6 in Figure 1.

Remark 5.2. Let us define another weighted topological index:

BAID(G) =
∑

uv∈E(G)

1

du + dv
F (u, v).

For a connected weak graph, the inequality 1/(du+dv) ≥ 1/n holds for any edge uv inG. This observation gives the following
lower bound for a connected weak graph G:

BAID(G) ≥ 1

n

∑
uv∈E(G)

F (u, v)

where the equality holds if G is a neutral graph.

Based on Lemma 4.1, we get the following proposition.

Proposition 5.2. If G is an n-vertex non-regular strictly strong graph then G contains at least one triangle.

Proposition 5.3. For every integer k ≥ 3, there exists at least one 3k-vertex bidegreed strictly week graph Gk containing
exactly k triangles.

Figure 3: Strictly week graphs Gk having k triangles for k = 3, 4, 5.

Proof. The graph Gk containing k triangles is constructed from the cycle Ck, as it is demonstrated in Figure 3. It is easy
to check that the inequality

max
uv∈E(Gk)

(du + dv) = 6 < |V (Gk)|

holds.

It is easy to show the fulfillment of the following claims.

Proposition 5.4. Let GR be an n-vertex R-regular graph.

(i). If GR is an R-regular weak graph then

BAIA(GR) < (2R)
∑

uv∈E(GR)

F (u, v).

(ii). If GR is an R-regular strong graph then

BAIA(GR) > (2R)
∑

uv∈E(GR)

F (u, v).

(iii). If GR is an R-regular neutral graph then

BAIA(GR) = (2R)
∑

uv∈E(GR)

F (u, v) = n
∑

uv∈E(GR)

F (u, v).
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Proposition 5.5. Let An be a connected n-vertex antiregular graph. Then

BAIA(An) ≥ n
∑

uv∈E(An)

F (u, v). (8)

Proof. It is known that connected antiregular graphs are non-regular strong graphs [49]. For them du + dv ≥ n holds.

Observation 5.1. Let Jn be the graph obtained from the complete graph Kn by removing an edge where n ≥ 4. The graph
Jn is an non-regular strictly strong graph.

Proof. Observe that du + dv > n for every edge of Jn.

Proposition 5.6. For an n-vertex non-regular strictly strong graph G, it holds that

BAIA(G) > n
∑

uv∈E(G)

F (u, v). (9)

6. Atoms-pair-additive indices

In the previous sections, we restricted our study to the bond-additive indices, defined as the sum of the quantities β(du, dv)

over all edges (bonds) uv of a (chemical) graph. By extending this concept, we now consider the sum of the quantities α(u, v)

over all two-elements sets {u, v} of vertices (atoms) of a (chemical) graph, where α is a real-valued function satisfying the
condition α(u, v) = α(v, u). (It is possible that α takes negative values as well.) We call these graph invariants atoms-pair-
additive indices.

In what follows, we consider the following special type of atoms-pair-additive indices

APA(G) =
∑

{u,v}⊆V (G)

W (u, v)Z(u, v) (10)

where W (u, v) and Z(u, v) are appropriately selected non-negative real-valued symmetric functions. Both are defined on
the set of the two-elements subsets of V (G).

Many special cases of (10) are known in the literature. The majority of these indices are weighted degree-and-distance-
based topological indices. Most of them are considered as the extended versions of the Wiener index W (G); see [1,8,9,18,
19,26,28,29,33,34,39,40,42,44,48,54,70,71]. Some of the special types of APA(G) are discussed in the following.

Class A. LetW (u, v) = 1 and Z(u, v) = |du − dv|. Then APAA(G) = 1
2

∑
u,v∈V (G) |du − dv|. The irregularity index APAA(G)

is known as the total irregularity of G and it was introduced by Abdo et al. in [1].

Class B. If W (u, v) = Z(u, v) = |du − dv|, then APAB(G) = 1
2

∑
u,v∈V (G) (du − dv)

2. This irregularity measure was intro-
duced in [54].

Class C. Let W (u, v) = d(u, v) and Z(u, v) = du + dv. Consider the topological index defined as APAC1(G) = DD(G) =
1
2

∑
u,v∈V (G) (du + dv) d(u, v). It is known as the degree-distance index (see [19,29,42]).

If W (u, v) = d(u, v) and Z(u, v) = du dv then we arrive at the topological index:

APAC2(G) = Gut(G) =
1

2

∑
u,v∈V (G)

(du dv) d(u, v).

It is known as the Gutman index [18,33,34,48,70,71].
If W (u, v) = d(u, v) and Z(u, v) = eu + ev then the corresponding topological index is

APAC3(G) = EDS(G) =
1

2

∑
u,v∈V (G)

(eu + ev) d(u, v) .

It is called the eccentric-distance-sum index [9,28,39,40,44].
For W (u, v) = d(u, v) and Z(u, v) = |eu − ev|, one gets

APAC4(G) = EN(G) =
1

2

∑
u,v∈V (G)

|eu − ev| d(u, v) .

The topological index EN(G) is known as the extended non-centrality number [70]. It is obvious that EN(G) = 0 if and
only if G is a self-centered graph.
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Class D. If W (u, v) = 1/d(u, v), u 6= v, and Z(u, v) = du + dv, then one gets

APAD1(G) = HA(G) =
1

2

∑
u,v∈V (G)

(du + dv)

d(u, v)
,

which is known as the additively weighted Harary index [71].
If W (u, v) = 1/d(u, v), u 6= v and Z(u, v) = du dv, then one gets

APAD2(G) = HM (G) =
1

2

∑
u,v∈V (G)

du dv
d(u, v)

which is the multiplicatively weighted Harary index [71].

7. Relations between weighted topological indices

In [54], it was proven that

APAB(G) =
1

2

∑
u,v∈V (G)

(du − dv)
2

= nM1(G)− 4m2 = n2 V ar(G) (11)

where V ar(G) is the Bell’s degree variance of a graph G of order n and size m, defined as [11]

V ar(G) =
1

n

∑
u∈V (G)

(
du −

2m

n

)2

=
M1(G)

n
− 4m2

n2
.

It is easy to show that for a self-centered connected graph G, where eu = ε(G) for every vertex u ∈ V (G), it holds that

EDS(G) =
∑

u∈V (G)

euDG(u) =
∑

u∈V (G)

ε(G)DG(u) = 2ε(G)W (G).

In [40], it was verified that for an n-vertex connected graph G, the inequality EDS(G) ≤ 2(n− δ)W (G) holds, where the
equality holds if G ∼= C4, G is isomorphic to the 6-vertex 4-regular octahedron graph, or G ∼= Kn. Recently, the following
proposition is proven in [18,33]: If G is a connected graph of order n, with m edges and p pendent vertices, then

DD(G)−Gut(G) ≥W (G)−m+ (n− p− 2)M2(G)− 1

2
(n− p− 3)M1(G)− 1

2
(2m− n)(2m− n+ 1)(n− p− 1).

where M1(G) and M2(G) are the first and second Zagreb indices. In the above formula, equality is attained if and only if
the distance between any two non-pendent vertices in G is at most 2.

In [59], the following general formula (identity) was presented: If G is a connected graph, then for the topological index
DW (G),

DW (G) =
1

2

∑
u,v∈V (G)

[
ω(u) + ω(v)

]
d(u, v) =

∑
u∈V (G)

ω(u)DG(u), (12)

where ω(u) is any quantity associated to (or determined by) the vertex u in G, and DG(u) is the transmission of the vertex
u of G.

Consider now the topological indices DWA(G) and DWB(G) defined by

DWA(G) =
1

2

∑
u,v∈V (G)

[
ωA(u) + ωA(v)

]
d(u, v) =

∑
u∈V (G)

ωA(u)DG(u),

DWB(G) =
1

2

∑
u,v∈V (G)

[
ωB(u) + ωB(v)

]
d(u, v) =

∑
u∈V (G)

ωB(u)DG(u).

Then, we have
DWA(G) +DWB(G) =

∑
u∈V (G)

[
ωA(u) + ωB(u)

]
DG(u). (13)

Based on the above formulas, the following proposition can be obtained.

Proposition 7.1. If G is an n-vertex graph then

DD(G) + EDS(G) =
∑

u∈V (G)

(du + eu)DG(u) ≤ n
∑

u∈V (G)

DG(u) = 2nW (G) (14)

where W (G) is the Wiener index of G.
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Proof. Note that
DD(G) + EDS(G) =

∑
u∈V (G)

duDG(u) +
∑

u∈V (G)

euDG(u).

Also, by Lemma 4.2, du + eu ≤ n holds for any vertex u of G. Consequently, one obtains

DD(G) + EDS(G) =
∑

u∈V (G)

(du + eu)DG(u) ≤ n
∑

u∈V (G)

DG(u) = 2nW (G). (15)

Remark 7.1. In the above formula, equality hold if du + eu = n for any vertex u of G. There are infinitely many connected
graphs for which equality holds in (15). Graphs of such type are the path P4, cycle C4, complete graph K4, the 6-vertex
4-regular octahedron graph, and the infinite sequence of bidegreed graphs Jn ∼= Kn − e for n ≥ 4.

Consider the so-called transmission distance index TD(G) defined as

TD(G) =
1

2

∑
u,v∈V (G)

[
DG(u) +DG(v)

]
d(u, v). (16)

Based on Eq. (12), one obtains the following proposition.

Proposition 7.2. If G is a connected graph then

TD(G) =
∑

u∈V (G)

DG(u)2.

From Eq. (16), the following result is obtained.

Proposition 7.3. Let G be an n-vertex transmission regular graph with k(G) = DG(u) for any vertex u of G. Then

TD(G) =
1

2

∑
u,v∈V (G)

[
DG(u) +DG(v)

]
d(u, v) = nk(G)2.

Proposition 7.4. If G is a connected graph then
1

2

∑
u,v∈V (G)

(du + dv)
2
d(u, v) =

∑
u∈V (G)

d2uDG(u) + 2Gut(G). (17)

Proof. Using Eq. (12), where ω(u) = d2u, one obtains
1

2

∑
u,v∈V (G)

(du + dv)
2
d(u, v) =

1

2

∑
u,v∈V (G)

(
d2u + d2v

)
d(u, v) +

∑
u,v∈V (G)

(du dv) d(u, v) .

Consequently,
1

2

∑
u,v∈V (G)

(du + dv)
2
d(u, v) =

∑
u∈V (G)

d2uDG(u) + 2Gut(G).

In an analogous manner, by choosing ω(u) = d2u, we obtain the next proposition.

Proposition 7.5. If G is a connected graph then
1

2

∑
u,v∈V (G)

(du − dv)
2
d(u, v) =

∑
u∈V (G)

d2uDG(u)− 2Gut(G). (18)

Corollary 7.1. If G is a connected graph then
1

2

∑
u,v∈V (G)

[
(du + dv)

2
+ (du − dv)

2
]
d(u, v) = 2

∑
u∈V (G)

d2uDG(u)

and
1

2

∑
u,v∈V (G)

[
(du + dv)

2 − (du − dv)
2
]
d(u, v) = 4Gut(G).

From Eq. (18) the next corollary follows.

Corollary 7.2. If G is a connected r-regular graph then

Gut(G) =
∑

u∈V (G)

d2uDG(u) = r2W (G).
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[6] A. Ali, E. Milovanović, M. Matejić, I. Milovanović, On the upper bounds for the degree-deviation of graphs, J. Appl. Math. Comput. 62 (2020)

179–187.
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[8] Y. Alizadeh, S. Klavžar, On the relation between degree distance and eccentric connectivity index, MATCH Commun. Math. Comput. Chem. 84

(2020) 647–659.
[9] M. Arockiaraj, J. Clement, D. Paul, K. Balasubramanian, Quantitative structural descriptors of sodalite materials, J. Mol. Struct. 1223 (2021)

#128766.
[10] M. Azari, A. Iranmanesh, Generalized Zagreb index of graphs, Studia Univ. Babes-Bolyai 56 (2011) 59–70,
[11] F. K. Bell, A note on the irregularity of a graph, Linear Algebra Appl.161 (1992) 45–54.
[12] M. Bezhad, G. Chartrand, No graph is perfect, Amer. Math. Monthly 74 (1967) 962–963.
[13] N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1974.
[14] B. Bollobás, Modern Graph Theory, Springer Verlag, New York, 1998.
[15] J. Buragohain, B. Deka, A. Bharali, A generalized ISI index of some chemical structures, J. Mol. Struct. 1208 (2020) #127843.
[16] G. Chartrand, L. Lesniak, P. Zhang, Graphs and Digraphs, CRC Press, Boca Raton, 2016.
[17] K. C. Das, D. W. Lee, A. Graovac, Some properties of the Zagreb eccentricity indices, Ars. Math. Contemp. 6 (2013) 117–125.
[18] K. C. Das, G. Su, L. Xiong, Relation between degree distance and Gutman index of graphs, MATCH Commun. Math. Comput. Chem. 76 (2016)

221–232.
[19] A. A. Dobrynin, A. A. Kochetova, Degree distance of a graph: A degree analogue of the Wiener index, J. Chem. Inf. Comput. Sci. 34 (1994) 1082–1086.
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