Research Article

Cubic binomial Fibonacci sums

Kunle Adegoke ${ }^{1, *}$, Adenike Olatinwo ${ }^{1}$, Sourangshu Ghosh ${ }^{2}$

${ }^{1}$ Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife, Nigeria
${ }^{2}$ Department of Civil Engineering, Indian Institute of Technology, Kharagpur, India
(Received: 22 November 2021. Received in revised form: 23 December 2021. Accepted: 27 December 2021. Published online: 30 December 2021.)
© 2021 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

As there is a paucity of cubic Fibonacci and Lucas identities in the existing literature, this paper is devoted to evaluating some cubic binomial Fibonacci and Lucas sums.

Keywords: Fibonacci number; Lucas number; summation identity; binomial coefficient; cubic Fibonacci identity.
2020 Mathematics Subject Classification: 11B39, 11B37.

1. Introduction

The Fibonacci numbers, F_{j}, and the Lucas numbers, L_{j}, are defined, for $j \in \mathbb{Z}$, through the following recurrence relations:

$$
F_{j}=F_{j-1}+F_{j-2},(j \geq 2), \quad F_{0}=0, F_{1}=1
$$

and

$$
L_{j}=L_{j-1}+L_{j-2},(j \geq 2), \quad L_{0}=2, L_{1}=1
$$

with

$$
F_{-j}=(-1)^{j-1} F_{j}, \quad L_{-j}=(-1)^{j} L_{j} .
$$

Details about the Fibonacci and Lucas numbers can be found in the excellent books written by Koshy [2] and Vajda [6].
Throughout this paper, we denote the golden ratio, $(1+\sqrt{5}) / 2$, by α and write

$$
\beta=\frac{1-\sqrt{5}}{2}=-\frac{1}{\alpha}
$$

so that $\alpha \beta=-1$ and $\alpha+\beta=1$. Explicit formulas (Binet formulas) for the Fibonacci and Lucas numbers in terms of α and β are given as

$$
F_{j}=\frac{\alpha^{j}-\beta^{j}}{\alpha-\beta}, \quad L_{j}=\alpha^{j}+\beta^{j}, \quad j \in \mathbb{Z}
$$

Nagy et al. [4] noted that there is a dearth of cubic Fibonacci and Lucas identities in the existing literature. Some cubic Fibonacci identities with binomial coefficients were derived recently by Kronenburg [3]. The main goal of the present paper is to evaluate the following sums:

$$
\begin{gathered}
\sum_{k=0}^{n}\binom{n}{k} F_{k+s}^{3}, \quad \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} F_{k+s}^{3}, \quad \sum_{k=0}^{n} 2^{k}\binom{n}{k} F_{k+s}^{3} \\
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} 2^{n-k} F_{k+s}^{3}, \quad \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} 3^{k} F_{k+s}^{3}, \quad \sum_{k=0}^{n}\binom{n}{k} 3^{n-k} F_{k+s}^{3}, \\
\\
\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k} F_{2 k+s}^{3}, \quad \sum_{k=1}^{\lceil n / 2\rceil}\binom{n}{2 k-1} F_{2 k+s}^{3}
\end{gathered}
$$

and the corresponding series involving Lucas numbers, for any non-negative integer n and for any integer s.

2. Prerequisite identities for the main results

In this section, some results that are needed for proving the main results (presented in Section 3) are given.
Lemma 2.1. For a real or complex number z, assume that a given well-behaved function $h(z)$ have, in its domain, the representation $h(z)=\sum_{k=c_{1}}^{c_{2}} g(k) z^{f(k)}$ where $f(k)$ and $g(k)$ are given real sequences and $c_{1}, c_{2} \in[-\infty, \infty]$. Let j be an integer. Then,

$$
\begin{gather*}
\sum_{k=c_{1}}^{c_{2}} g(k) z^{f(k)} F_{j f(k)}^{m}=\frac{1}{(\sqrt{5})^{m}} \sum_{i=0}^{m}(-1)^{i}\binom{m}{i} h\left(\beta^{i j} \alpha^{(m-i) j} z\right), \tag{F}\\
\sum_{k=c_{1}}^{c_{2}} g(k) z^{f(k)} L_{j f(k)}^{m}=\sum_{i=0}^{m}\binom{m}{i} h\left(\beta^{i j} \alpha^{(m-i) j} z\right) . \tag{L}
\end{gather*}
$$

Proof. We have

$$
\begin{aligned}
\sum_{k=c_{1}}^{c_{2}} g(k) z^{f(k)} F_{j f(k)}^{m} & =\sum_{k=c_{1}}^{c_{2}} g(k) z^{f(k)} \frac{\left(\alpha^{j f(k)}-\beta^{j f(k)}\right)^{m}}{(\sqrt{5})^{m}} \\
& =\frac{1}{(\sqrt{5})^{m}} \sum_{k=c_{1}}^{c_{2}} g(k) z^{f(k)} \sum_{i=0}^{m}(-1)^{i}\binom{m}{i} \beta^{i j f(k)} \alpha^{(m-i) j f(k)} \\
& =\frac{1}{(\sqrt{5})^{m}} \sum_{i=0}^{m}(-1)^{i}\binom{m}{i} \sum_{k=c_{1}}^{c_{2}} g(k)\left(\beta^{i j} \alpha^{(m-i) j} z\right)^{f(k)} \\
& =\frac{1}{(\sqrt{5})^{m}} \sum_{i=0}^{m}(-1)^{i}\binom{m}{i} h\left(\beta^{i j} \alpha^{(m-i) j} z\right) .
\end{aligned}
$$

The proof of (L) is similar.
Since $\beta^{i} \alpha^{m-i}=(-1)^{i} \alpha^{m-2 i}$, identities (F) and (L) can also be written as

$$
\begin{gather*}
\sum_{k=c_{1}}^{c_{2}} g(k) z^{f(k)} F_{j f(k)}^{m}=\frac{1}{(\sqrt{5})^{m}} \sum_{i=0}^{m}(-1)^{i}\binom{m}{i} h\left((-1)^{i j} \alpha^{(m-2 i) j} z\right), \\
\sum_{k=c_{1}}^{c_{2}} g(k) z^{f(k)} L_{j f(k)}^{m}=\sum_{i=0}^{m}\binom{m}{i} h\left((-1)^{i j} \alpha^{(m-2 i) j} z\right) . \tag{L'}
\end{gather*}
$$

Lemma 2.2. For the non-negative integers m and n, the integers j, r and s, and the real or complex numbers x and z, the following identities hold:

$$
\begin{gather*}
\sum_{k=0}^{n}\binom{n}{k} x^{n-k} z^{k} F_{j(r k+s)}^{m}=\frac{1}{(\sqrt{5})^{m}} \sum_{i=0}^{m}(-1)^{i(j s+1)}\binom{m}{i} \alpha^{(m-2 i) j s}\left(x+(-1)^{i j r} \alpha^{(m-2 i) j r} z\right)^{n}, \tag{BF}\\
\sum_{k=0}^{n}\binom{n}{k} x^{n-k} z^{k} L_{j(r k+s)}^{m}=\sum_{i=0}^{m}(-1)^{i j s}\binom{m}{i} \alpha^{(m-2 i) j s}\left(x+(-1)^{i j r} \alpha^{(m-2 i) j r} z\right)^{n} . \tag{BL}
\end{gather*}
$$

Proof. Consider the binomial identity

$$
h(z)=\sum_{k=0}^{n} g(k) z^{f(k)}=z^{s}\left(x+z^{r}\right)^{n},
$$

where

$$
\begin{equation*}
f(k)=r k+s, \quad g(k)=\binom{n}{k} x^{n-k} \tag{1}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
h\left((-1)^{i j} \alpha^{(m-2 i) j} z\right)=(-1)^{i j s} \alpha^{(m-2 i) j s} z^{s}\left(x+(-1)^{i j r} \alpha^{(m-2 i) j r} z^{r}\right)^{n} . \tag{2}
\end{equation*}
$$

Use of (1) and (2) in identity (F^{\prime}), with $c_{1}=0, c_{2}=n$, gives

$$
\sum_{k=0}^{n}\binom{n}{k} x^{n-k} z^{r k} F_{j(r k+s)}^{m}=\frac{1}{(\sqrt{5})^{m}} \sum_{i=0}^{m}(-1)^{i(j s+1)}\binom{m}{i} \alpha^{(m-2 i) j s}\left(x+(-1)^{i j r} \alpha^{(m-2 i) j r} z^{r}\right)^{n}
$$

from which identity (BF) follows when we write $z^{1 / r}$ for z. To prove (BL), use (1) and (2) in identity (L^{\prime}).

It is sometimes convenient to use the (α vs β) versions of identities (BF) and (BL):

$$
\begin{gather*}
\sum_{k=0}^{n}\binom{n}{k} x^{n-k} z^{k} F_{j(r k+s)}^{m}=\frac{1}{(\sqrt{5})^{m}} \sum_{i=0}^{m}(-1)^{i}\binom{m}{i} \beta^{i j s} \alpha^{(m-i) j s}\left(x+\beta^{i j r} \alpha^{(m-i) j r} z\right)^{n}, \\
\sum_{k=0}^{n}\binom{n}{k} x^{n-k} z^{k} L_{j(r k+s)}^{m}=\sum_{i=0}^{m}\binom{m}{i} \beta^{i j s} \alpha^{(m-i) j s}\left(x+\beta^{i j r} \alpha^{(m-i) j r} z\right)^{n} . \tag{BL'}
\end{gather*}
$$

Lemma 2.3 (Hoggatt et al. [1]). For the integers p and q, the following identities hold:

$$
\begin{gathered}
L_{p+q}-L_{p} \alpha^{q}=-\beta^{p} F_{q} \sqrt{5}, \\
L_{p+q}-L_{p} \beta^{q}=\alpha^{p} F_{q} \sqrt{5}, \\
F_{p+q}-F_{p} \alpha^{q}=\beta^{p} F_{q}, \\
F_{p+q}-F_{p} \beta^{q}=\alpha^{p} F_{q} .
\end{gathered}
$$

Lemma 2.4. Let a, b, c and d be rational numbers and λ be an irrational number. Then,

$$
a+\lambda b=c+\lambda d \Longleftrightarrow a=c, \quad b=d
$$

Lemma 2.5. For the integers p and q,

$$
1+(-1)^{p} \alpha^{2 q}=\left\{\begin{array}{l}
(-1)^{p} \alpha^{q} F_{q} \sqrt{5}, \quad \text { if } p \text { and } q \text { have different parity; } \\
(-1)^{p} \alpha^{q} L_{q}, \quad \text { if } p \text { and } q \text { have the same parity; }
\end{array}\right.
$$

and

$$
1-(-1)^{p} \alpha^{2 q}=\left\{\begin{array}{l}
(-1)^{p-1} \alpha^{q} L_{q}, \quad \text { if } p \text { and } q \text { have different parity; } \\
(-1)^{p-1} \alpha^{q} F_{q} \sqrt{5}, \quad \text { if } p \text { and } q \text { have the same parity. }
\end{array}\right.
$$

Proof. We have

$$
\begin{align*}
(-1)^{p+q}+(-1)^{p} \alpha^{2 q} & =\alpha^{p+q} \beta^{p+q}+\alpha^{p+2 q} \beta^{p} \\
& =\alpha^{p+q} \beta^{p}\left(\alpha^{q}+\beta^{q}\right) \tag{3}\\
& =(-1)^{p} \alpha^{q} L_{q}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
(-1)^{p+q}-(-1)^{p} \alpha^{2 q}=(-1)^{p-1} \alpha^{q} F_{q} \sqrt{5} \tag{4}
\end{equation*}
$$

Corresponding to (3) and (4), we have

$$
\begin{equation*}
(-1)^{p+q}+(-1)^{p} \beta^{2 q}=(-1)^{p} \beta^{q} L_{q} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
(-1)^{p+q}-(-1)^{p} \beta^{2 q}=(-1)^{p} \beta^{q} F_{q} \sqrt{5} . \tag{6}
\end{equation*}
$$

Identities (3), (4), (5) and (6) imply

$$
\begin{gathered}
(-1)^{q}+\alpha^{2 q}=\alpha^{q} L_{q}, \\
(-1)^{q}-\alpha^{2 q}=-\alpha^{q} F_{q} \sqrt{5}, \\
(-1)^{q}+\beta^{2 q}=\beta^{q} L_{q}, \\
(-1)^{q}-\beta^{2 q}=\beta^{q} F_{q} \sqrt{5} .
\end{gathered}
$$

Lemma 2.6 (Hoggatt et al [1]). For p and q integers,

$$
\begin{gathered}
L_{p+q}-L_{p} \alpha^{q}=-\beta^{p} F_{q} \sqrt{5}, \\
L_{p+q}-L_{p} \beta^{q}=\alpha^{p} F_{q} \sqrt{5}, \\
F_{p+q}-F_{p} \alpha^{q}=\beta^{p} F_{q}, \\
F_{p+q}-F_{p} \beta^{q}=\alpha^{p} F_{q} .
\end{gathered}
$$

Lemma 2.7. The following identies hold:

$$
\begin{gather*}
1-\alpha=\beta, \quad 1-\beta=\alpha, \quad 1+\alpha^{3}=2 \alpha^{2}, \quad 1+\beta^{3}=2 \beta^{2}, \tag{7}\\
1+\alpha=\alpha^{2}, \quad 1+\beta=\beta^{2}, \quad 1-\alpha^{3}=-2 \alpha, \quad 1-\beta^{3}=-2 \beta, \tag{8}\\
1-2 \alpha=-\sqrt{5}, \quad 1-2 \beta=\sqrt{5}, \quad 1+2 \alpha^{3}=\alpha^{3} \sqrt{5}, \quad 1+2 \beta^{3}=-\beta^{3} \sqrt{5}, \tag{9}\\
2+\alpha=\alpha \sqrt{5}, \quad 2+\beta=-\beta \sqrt{5}, \quad 2-\alpha^{3}=-\sqrt{5}, \quad 2-\beta^{3}=\sqrt{5}, \tag{10}\\
1+3 \alpha=\alpha^{2} \sqrt{5}, \quad 1+3 \beta=-\beta^{2} \sqrt{5}, \quad 1-3 \alpha^{3}=-2 \alpha^{2} \sqrt{5}, \quad 1-3 \beta^{3}=2 \beta^{2} \sqrt{5}, \tag{11}\\
3-\alpha=-\beta \sqrt{5}, \quad 3-\beta=\alpha \sqrt{5}, \quad 3+\alpha^{3}=2 \alpha \sqrt{5}, \quad 3+\beta^{3}=-2 \beta \sqrt{5} . \tag{12}
\end{gather*}
$$

Proof. Each identity is obtained by making appropriate substitutions for p and q in the identities given in Lemma 2.6.

3. Cubic binomial Fibonacci identities

Lemma 3.1. For a non-negative integer n, integers j, r and s, and real or complex numbers x and z, the following identities hold:

$$
\begin{align*}
5 \sqrt{5} \sum_{k=0}^{n}\binom{n}{k} x^{n-k} z^{k} F_{j(r k+s)}^{3}= & \alpha^{3 j s}\left(x+\alpha^{3 j r} z\right)^{n}-\beta^{3 j s}\left(x+\beta^{3 j r} z\right)^{n} \\
& -(-1)^{j s} 3 \alpha^{j s}\left(x+(-1)^{j r} \alpha^{j r} z\right)^{n} \tag{F1}\\
& +(-1)^{j s} 3 \beta^{j s}\left(x+(-1)^{j r} \beta^{j r} z\right)^{n}, \\
\sum_{k=0}^{n}\binom{n}{k} x^{n-k} z^{k} L_{j(r k+s)}^{3}= & \alpha^{3 j s}\left(x+\alpha^{3 j r} z\right)^{n}+\beta^{3 j s}\left(x+\beta^{3 j r} z\right)^{n} \\
& +(-1)^{j s} 3 \alpha^{j s}\left(x+(-1)^{j r} \alpha^{j r} z\right)^{n} \tag{L1}\\
& +(-1)^{j s} 3 \beta^{j s}\left(x+(-1)^{j r} \beta^{j r} z\right)^{n} .
\end{align*}
$$

Proof. Set $m=3$ in identities $\left(\mathrm{BF}^{\prime}\right)$ and ($\left.\mathrm{BL}^{\prime}\right)$.
Theorem 3.1. For a non-negative integer n and for any integer s, the following identities hold:

$$
\begin{gather*}
\sum_{k=0}^{n}\binom{n}{k} F_{k+s}^{3}=\frac{1}{5}\left(2^{n} F_{2 n+3 s}+3 F_{n-s}\right), \tag{13}\\
\sum_{k=0}^{n}\binom{n}{k} L_{k+s}^{3}=2^{n} L_{2 n+3 s}+3 L_{n-s} . \tag{14}
\end{gather*}
$$

Proof. By setting $x=1, z=1, j=1, r=1$ in (F1) and utilizing identity (7), we obtain

$$
5 \sqrt{5} \sum_{k=0}^{n}\binom{n}{k} F_{k+s}^{3}=2^{n}\left(\alpha^{3 s+2 n}-\beta^{3 s+2 n}\right)+3\left(\alpha^{n-s}-\beta^{n-s}\right) ;
$$

and hence identity (13). To prove identity (14), use these (x, z, j, \ldots) values in (L1).
A special case of (13), when $s=0$, was obtained by Stanica [5].
Theorem 3.2. For a non-negative integer n and for any integer s,

$$
\begin{gather*}
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} F_{k+s}^{3}=\frac{1}{5}\left((-1)^{n} 2^{n} F_{n+3 s}-(-1)^{s} 3 F_{2 n+s}\right), \tag{15}\\
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} L_{k+s}^{3}=(-1)^{n} 2^{n} L_{n+3 s}+(-1)^{s} 3 L_{2 n+s}, \tag{16}
\end{gather*}
$$

Proof. To prove identity (15), set $x=1, z=-1, j=1, r=1$ in (F1), noting the identities in (8), to get

$$
5 \sqrt{5} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} F_{k+s}^{3}=(-1)^{n} 2^{n}\left(\alpha^{n+3 s}-\beta^{n+3 s}\right)-3(-1)^{s}\left(\alpha^{2 n+s}-\beta^{2 n+s}\right),
$$

from which the identity follows. The proof of (16) is similar. Use these values in (L1).

Stanica [5] also found the special case of identity (15) when $s=0$.
Theorem 3.3. For a non-negative integer n and for any integer s,

$$
\begin{align*}
& \sum_{k=0}^{n}\binom{n}{k} 2^{k} F_{k+s}^{3}=\left\{\begin{array}{l}
5^{n / 2-1}\left(F_{3 n+3 s}-(-1)^{s} 3 F_{s}\right), \quad \text { if } n \text { is even } \\
5^{(n-3) / 2}\left(L_{3 n+3 s}+(-1)^{s} 3 L_{s}\right) \text { if } n \text { is odd }
\end{array}\right. \tag{17}\\
& \sum_{k=0}^{n}\binom{n}{k} 2^{k} L_{k+s}^{3}=\left\{\begin{array}{l}
5^{n / 2}\left(L_{3 n+3 s}+(-1)^{s} 3 L_{s}\right), \quad \text { if } n \text { is even } \\
5^{(n+1) / 2}\left(F_{3 n+3 s}-(-1)^{s} 3 F_{s}\right) \text { if } n \text { is odd }
\end{array}\right. \tag{18}
\end{align*}
$$

Proof. The proof of (17) proceeds with the choice $j=1, r=1, x=1, z=2$ in (F1), employing the set of identities (9), giving

$$
5 \sqrt{5} \sum_{k=0}^{n} 2^{k}\binom{n}{k} F_{k+s}^{3}=(\sqrt{5})^{n}\left(\alpha^{3 n+3 s}-(-1)^{n} \beta^{3 n+3 s}\right)-3(-1)^{n+s}(\sqrt{5})^{n}\left(\alpha^{s}-(-1)^{n} \beta^{s}\right)
$$

from which the identity follows in accordance with the parity of n. The proof of (18) is similar. Use these (x, z, j, \ldots) values in (L1).

Theorem 3.4. For a non-negative integer n and for any integer s,

$$
\begin{gather*}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} 2^{n-k} F_{k+s}^{3}=\left\{\begin{array}{l}
5^{n / 2-1}\left((-1)^{s-1} 3 F_{n+s}+F_{3 s}\right), \quad \text { if } n \text { is even } \\
5^{(n-3) / 2}\left((-1)^{s-1} 3 L_{n+s}-L_{3 s}\right), \quad \text { if } n \text { is odd }
\end{array}\right. \tag{19}\\
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} 2^{n-k} L_{k+s}^{3}=\left\{\begin{array}{l}
5^{n / 2}\left((-1)^{s} 3 L_{n+s}+L_{3 s}\right), \quad \text { if } n \text { is even } \\
5^{(n+1) / 2}\left((-1)^{s} 3 F_{n+s}-F_{3 s}\right), \quad \text { if } n \text { is odd }
\end{array}\right. \tag{20}
\end{gather*}
$$

Proof. The coice $x=2, z=-1, j=1, z=1$ in (F1), noting the set of identities (10) gives

$$
5 \sqrt{5} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} 2^{n-k} F_{k+s}^{3}=(\sqrt{5})^{n}(-1)^{n}\left(\alpha^{3 s}-(-1)^{n} \beta^{3 s}\right)-(\sqrt{5})^{n}(-1)^{s} 3\left(\alpha^{n+s}-(-1)^{n} \beta^{n+s}\right)
$$

from which we get (19). The proof of (20) is similar.
Theorem 3.5. For a non-negative integer n and for any integer s,

$$
\begin{align*}
& \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} 3^{k} F_{k+s}^{3}=\left\{\begin{array}{l}
5^{n / 2-1}\left(2^{n} F_{2 n+3 s}-(-1)^{s} 3 F_{2 n+s}\right), \quad \text { if } n \text { is even } \\
-5^{(n-3) / 2}\left(2^{n} L_{2 n+3 s}+(-1)^{s} 3 L_{2 n+s}\right), \quad \text { if } n \text { is odd }
\end{array}\right. \tag{21}\\
& \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} 3^{k} L_{k+s}^{3}=\left\{\begin{array}{l}
5^{n / 2}\left(2^{n} L_{2 n+3 s}+(-1)^{s} 3 L_{2 n+s}\right), \quad \text { if } n \text { is even } \\
-5^{(n+1) / 2}\left(2^{n} F_{2 n+3 s}-(-1)^{s} 3 F_{2 n+s}\right), \quad \text { if } n \text { is odd } .
\end{array}\right. \tag{22}
\end{align*}
$$

Proof. Choose $x=1, z=-3, j=1, r=1$ in (F1). This gives, with the use of the identities in (11),

$$
5 \sqrt{5} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} 3^{k} F_{k+s}^{3}=(\sqrt{5})^{n}(-1)^{n} 2^{n}\left(\alpha^{2 n+3 s}-(-1)^{n} \beta^{2 n+3 s}\right)-(\sqrt{5})^{n}(-1)^{s} 3\left(\alpha^{2 n+s}-(-1)^{n} \beta^{2 n+s}\right)
$$

Identity (21) now follows. The proof of (22) is similar.
Theorem 3.6. For a non-negative integer n and for any integer s,

$$
\begin{align*}
& \sum_{k=0}^{n}\binom{n}{k} 3^{n-k} F_{k+s}^{3}=\left\{\begin{array}{l}
5^{n / 2-1}\left(2^{n} F_{n+3 s}+3 F_{n-s}\right), \quad \text { if } n \text { is even } \\
5^{(n-3) / 2}\left(2^{n} L_{n+3 s}+3 L_{n-s}\right), \\
\text { if } n \text { is odd }
\end{array}\right. \tag{23}\\
& \sum_{k=0}^{n}\binom{n}{k} 3^{n-k} L_{k+s}^{3}=\left\{\begin{array}{l}
5^{n / 2}\left(2^{n} L_{n+3 s}+3 L_{n-s}\right), \quad \text { if } n \text { is even } \\
5^{(n+1) / 2}\left(2^{n} F_{n+3 s}+3 F_{n-s}\right), \quad \text { if } n \text { is odd } .
\end{array}\right. \tag{24}
\end{align*}
$$

Proof. Set $x=3, z=1, j=1=r$ in (F1) and use the set of identities in (12) to obtain

$$
5 \sqrt{5} \sum_{k=0}^{n}\binom{n}{k} 3^{n-k} F_{k+s}^{3}=(\sqrt{5})^{n} 2^{n}\left(\alpha^{n+3 s}-(-1)^{n} \beta^{n+3 s}\right)+(\sqrt{5})^{n} 3\left(\alpha^{n-s}-(-1)^{n} \beta^{n-s}\right)
$$

from which (23) follows. The proof of (24) is similar. Use the same (x, z, \ldots) values in (L1).

Lemma 3.2. For a non-negative integer n, integers j, r and s and real or complex z,

$$
\begin{align*}
& 5 \sqrt{5} \sum_{k=0}^{\lfloor n / 2\rfloor} 2\binom{n}{2 k} z^{2 k} F_{j(2 r k+s)}^{3}=\alpha^{3 j s}\left(1+\alpha^{3 j r} z\right)^{n}+\alpha^{3 j s}\left(1-\alpha^{3 j r} z\right)^{n}-\beta^{3 j s}\left(1+\beta^{3 j r} z\right)^{n}-\beta^{3 j s}\left(1-\beta^{3 j r} z\right)^{n} \\
& -(-1)^{j s} \alpha^{j s} 3\left(1+(-1)^{j r} \alpha^{j r} z\right)^{n}-(-1)^{j s} \alpha^{j s} 3\left(1-(-1)^{j r} \alpha^{j r} z\right)^{n} \tag{F2}\\
& +(-1)^{j s} \beta^{j s} 3\left(1+(-1)^{j r} \beta^{j r} z\right)^{n}+(-1)^{j s} \beta^{j s} 3\left(1-(-1)^{j r} \beta^{j r} z\right)^{n}, \\
& 2 \sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k} z^{2 k} L_{j(2 r k+s)}^{3}=\alpha^{3 j s}\left(1+\alpha^{3 j r} z\right)^{n}+\alpha^{3 j s}\left(1-\alpha^{3 j r} z\right)^{n}+\beta^{3 j s}\left(1+\beta^{3 j r} z\right)^{n}+\beta^{3 j s}\left(1-\beta^{3 j r} z\right)^{n} \\
& +(-1)^{j s} \alpha^{j s} 3\left(1+(-1)^{j r} \alpha^{j r} z\right)^{n}+(-1)^{j s} \alpha^{j s} 3\left(1-(-1)^{j r} \alpha^{j r} z\right)^{n} \tag{L2}\\
& +(-1)^{j s} \beta^{j s} 3\left(1+(-1)^{j r} \beta^{j r} z\right)^{n}+(-1)^{j s} \beta^{j s} 3\left(1-(-1)^{j r} \beta^{j r} z\right)^{n}, \\
& 5 \sqrt{5} \sum_{k=1}^{\lceil n / 2\rceil} 2\binom{n}{2 k-1} z^{2 k-1} F_{j(2 r k+s)}^{3} \\
& =\alpha^{3 j(r+s)}\left(1+\alpha^{3 j r} z\right)^{n}-\alpha^{3 j(r+s)}\left(1-\alpha^{3 j r} z\right)^{n}-\beta^{3 j(r+s)}\left(1+\beta^{3 j r} z\right)^{n}+\beta^{3 j(r+s)}\left(1-\beta^{3 j r} z\right)^{n} \tag{F3}\\
& -(-1)^{j(r+s)} \alpha^{j(r+s)} 3\left(1+(-1)^{j r} \alpha^{j r} z\right)^{n}+(-1)^{j(r+s)} \alpha^{j(r+s)} 3\left(1-(-1)^{j r} \alpha^{j r} z\right)^{n} \\
& +(-1)^{j(r+s)} \beta^{j(r+s)} 3\left(1+(-1)^{j r} \beta^{j r} z\right)^{n}-(-1)^{j(r+s)} \beta^{j(r+s)} 3\left(1-(-1)^{j r} \beta^{j r} z\right)^{n}, \\
& 2 \sum_{k=1}^{\lceil n / 2\rceil}\binom{n}{2 k-1} z^{2 k-1} L_{j(2 r k+s)}^{3} \\
& =\alpha^{3 j(r+s)}\left(1+\alpha^{3 j r} z\right)^{n}-\alpha^{3 j(r+s)}\left(1-\alpha^{3 j r} z\right)^{n}+\beta^{3 j(r+s)}\left(1+\beta^{3 j r} z\right)^{n}-\beta^{3 j(r+s)}\left(1-\beta^{3 j r} z\right)^{n} \tag{L3}\\
& +(-1)^{j(r+s)} \alpha^{j(r+s)} 3\left(1+(-1)^{j r} \alpha^{j r} z\right)^{n}-(-1)^{j(r+s)} \alpha^{j(r+s)} 3\left(1-(-1)^{j r} \alpha^{j r} z\right)^{n} \\
& +(-1)^{j(r+s)} \beta^{j(r+s)} 3\left(1+(-1)^{j r} \beta^{j r} z\right)^{n}-(-1)^{j(r+s)} \beta^{j(r+s)} 3\left(1-(-1)^{j r} \beta^{j r} z\right)^{n} .
\end{align*}
$$

Proof. In the identities

$$
\begin{gathered}
h_{1}(z)=2 \sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k} z^{2 r k+s}=z^{s}\left(1+z^{r}\right)^{n}+z^{s}\left(1-z^{r}\right)^{n}, \\
h_{2}(z)=2 \sum_{k=1}^{\lceil n / 2\rceil}\binom{n}{2 k-1} z^{2 r k+s}=z^{r+s}\left(1+z^{r}\right)^{n}-z^{r+s}\left(1-z^{r}\right)^{n},
\end{gathered}
$$

identify

$$
g(k)=2\binom{n}{2 k}, \quad f(k)=2 r k+s, \quad c_{1}=0, \quad c_{2}=\lfloor n / 2\rfloor, \quad h(z)=z^{s}\left(1+z^{r}\right)^{n}+z^{s}\left(1-z^{r}\right)^{n},
$$

and use these in (F) and (L) to obtain (F2) and (L2).
Similarly, use of

$$
g(k)=2\binom{n}{2 k-1}, \quad f(k)=2 r k+s, \quad c_{1}=1, \quad c_{2}=\lceil n / 2\rceil, \quad h(z)=z^{s}\left(1+z^{r}\right)^{n}-z^{s}\left(1-z^{r}\right)^{n},
$$

in (F) and (L) gives (F3) and (L3).
Theorem 3.7. For a non-negative integer n and for any integer s,

$$
\begin{align*}
& 10 \sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k} F_{2 k+s}^{3}=2^{n}\left(F_{2 n+3 s}+(-1)^{n} F_{n+3 s}\right)-3(-1)^{s}\left(F_{2 n+s}-(-1)^{s} F_{n-s}\right), \tag{25}\\
& 2 \sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k} L_{2 k+s}^{3}=2^{n}\left(L_{2 n+3 s}+(-1)^{n} L_{n+3 s}\right)+3(-1)^{s}\left(L_{2 n+s}+(-1)^{s} L_{n-s}\right) . \tag{26}
\end{align*}
$$

Proof. The choice of $z=1=j=r$ in (F2) gives

$$
\begin{aligned}
& 10 \sqrt{5} \sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k} F_{2 k+s}^{3}=2^{n}\left(\alpha^{2 n+3 s}-\beta^{2 n+3 s}\right)+(-1)^{n} 2^{n}\left(\alpha^{n+3 s}-\beta^{n+3 s}\right) \\
&+3(-1)^{s}\left(\beta^{s} \alpha^{n}-\alpha^{s} \beta^{n}\right)-3(-1)^{s}\left(\alpha^{2 n+s}-\beta^{2 n+s}\right)
\end{aligned}
$$

from which identity (25) follows. The proof of (26) is similar; use $z=1=j=r$ in (L2).
Corollary 3.1. For a non-negative integer n and for any integer s,

$$
\begin{align*}
& 10 \sum_{k=0}^{n}\binom{2 n}{2 k} F_{2 k+s}^{3}= \begin{cases}4^{n} L_{n} F_{3 n+3 s}-(-1)^{s} 3 F_{n+s} L_{3 n}, & \text { if } n \text { is even } ; \\
4^{n} F_{n} L_{3 n+3 s}-(-1)^{s} 3 L_{n+s} F_{3 n}, & \text { if } n \text { is odd } ;\end{cases} \\
& 2 \sum_{k=0}^{n}\binom{2 n}{2 k} L_{2 k+s}^{3}= \begin{cases}4^{n} L_{n} L_{3 n+3 s}+(-1)^{s} 3 L_{n+s} L_{3 n}, & \text { if } n \text { is even } ; \\
5\left(4^{n} F_{n} F_{3 n+3 s}+(-1)^{s} 3 F_{n+s} F_{3 n}\right), & \text { if } n \text { is odd } .\end{cases} \tag{27}
\end{align*}
$$

Proof. Write $2 n$ for n in each of the identities (25) and (26). Simplification is achieved by the use of the following well-known Fibonacci identities which are valid for any two integers u and v having the same parity:

$$
\begin{align*}
& F_{u}+(-1)^{(u-v) / 2} F_{v}=L_{(u-v) / 2} F_{(u+v) / 2} \tag{28}\\
& F_{u}-(-1)^{(u-v) / 2} F_{v}=F_{(u-v) / 2} L_{(u+v) / 2} \tag{29}\\
& L_{u}+(-1)^{(u-v) / 2} L_{v}=L_{(u-v) / 2} L_{(u+v) / 2} \tag{30}\\
& L_{u}-(-1)^{(u-v) / 2} L_{v}=5 F_{(u-v) / 2} F_{(u+v) / 2} \tag{31}
\end{align*}
$$

Corollary 3.2. For a non-negative integer n,

$$
\begin{gather*}
10 \sum_{k=0}^{n}\binom{2 n-1}{2 k} F_{2 k}^{3}=\left\{\begin{array}{l}
\left(2^{2 n-1}-3\right) F_{2 n-1} L_{n-1} L_{n}, \quad \text { if } n \text { is even } ; \\
\left(2^{2 n-1}-3\right) 5 F_{2 n-1} F_{n-1} F_{n}, \quad \text { if } n \text { is odd } ;
\end{array}\right. \tag{32}\\
2 \sum_{k=0}^{n}\binom{2 n}{2 k} L_{2 k}^{3}= \begin{cases}\left(4^{n}+3\right) L_{n} L_{3 n}, & \text { if } n \text { is even } ; \\
\left(4^{n}+3\right) 5 F_{n} F_{3 n}, & \text { if } n \text { is odd } .\end{cases} \tag{33}
\end{gather*}
$$

Proof. To prove (32), write $2 n-1$ for n in (25) and set $s=0$. To prove (33), set $s=0$ in identity (27).
Theorem 3.8. For a non-negative integer n and for any integer s,

$$
\begin{align*}
& 10 \sum_{k=1}^{\lceil n / 2\rceil}\binom{n}{2 k-1} F_{2 k+s}^{3}=2^{n}\left(F_{2 n+3 s+3}-(-1)^{n} F_{n+3 s+3}\right)-(-1)^{s} 3\left(F_{2 n+s+1}-(-1)^{s} F_{n-s-1}\right), \tag{34}\\
& 2 \sum_{k=1}^{\lceil n / 2\rceil}\binom{n}{2 k-1} L_{2 k+s}^{3}=2^{n}\left(L_{2 n+3 s+3}-(-1)^{n} L_{n+3 s+3}\right)+(-1)^{s} 3\left(L_{2 n+s+1}+(-1)^{s} L_{n-s-1}\right) . \tag{35}
\end{align*}
$$

Proof. Set $z=1=j=r$ in identity (F3) to obtain

$$
\begin{aligned}
10 \sqrt{5} \sum_{k=1}^{\lceil n / 2\rceil}\binom{n}{2 k-1} F_{2 k+s}^{3}= & 2^{n}\left(\alpha^{2 n+3 s+3}-\beta^{2 n+3 s+3}\right)-(-1)^{n} 2^{n}\left(\alpha^{n+3 s+3}-\beta^{n+3 s+3}\right) \\
& +(-1)^{s+1} 3\left(\alpha^{2 n+s+1}-\beta^{2 n+s+1}\right)+(-1)^{s+1} 3\left(\alpha^{n} \beta^{s+1}-\alpha^{s+1} \beta^{n}\right)
\end{aligned}
$$

from which identity (34) follows. The proof of (35) is similar.
Corollary 3.3. For a non-negative integer n and for any integer s, the following identities hold:

$$
\begin{aligned}
& 10 \sum_{k=1}^{n}\binom{2 n}{2 k-1} F_{2 k+s}^{3}= \begin{cases}4^{n} F_{n} L_{3 n+3 s+3}-(-1)^{s} 3 L_{n+s+1} F_{3 n}, & \text { if } n \text { is even } \\
4^{n} L_{n} F_{3 n+3 s+3}-(-1)^{s} 3 F_{n+s+1} L_{3 n}, & \text { if } n \text { is odd }\end{cases} \\
& 2 \sum_{k=1}^{n}\binom{2 n}{2 k-1} L_{2 k+s}^{3}= \begin{cases}5\left(4^{n} F_{n} F_{3 n+3 s+3}+(-1)^{s} 3 F_{n+s+1} F_{3 n}\right), & \text { if } n \text { is even } \\
4^{n} L_{n} L_{3 n+3 s+3}+(-1)^{s} 3 L_{n+s+1} L_{3 n}, & \text { if } n \text { is odd } .\end{cases}
\end{aligned}
$$

Proof. Write $2 n$ for n in each of the identities (34) and (35), and make use of identities (28) - (31).
Corollary 3.4. For a non-negative integer n, the following identities hold:

$$
\begin{gathered}
10 \sum_{k=1}^{n}\binom{2 n-1}{2 k-1} F_{2 k-1}^{3}=\left\{\begin{array}{l}
\left(2^{2 n-1}+3\right) 5 F_{2 n-1} F_{n-1} F_{n}, \quad \text { if } n \text { is even } ; \\
\left(2^{2 n-1}+3\right) F_{2 n-1} L_{n-1} L_{n}, \quad \text { if } n \text { is odd }
\end{array}\right. \\
2 \sum_{k=1}^{n}\binom{2 n}{2 k-1} L_{2 k-1}^{3}=\left\{\begin{array}{l}
\left(4^{n}-3\right) 5 F_{n} F_{3 n}, \quad \text { if } n \text { is even } \\
\left(4^{n}-3\right) L_{n} L_{3 n}, \quad \text { if } n \text { is odd } .
\end{array}\right.
\end{gathered}
$$

References

[1] V. E. Hoggatt, J. W. Phillips, H. T. Leonard, Twenty-four master identities, Fibonacci Quart. 9 (1971) 1-17.
[2] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, New York, 2001.
[3] M. J. Kronenburg, Some weighted generalized Fibonacci number summation identities: Part 2, arXiv:2106.11838v2 [math.NT], Preprint, (2021).
[4] M. Nagy, S. R. Cowel, V. Beiu, Survey of cubic Fibonacci identities when cuboids carry weight, arXiv:1902.05944 [math.HO], Preprint, (2019).
[5] P. Stănică, Generating functions, weighted and non-weighted sums for powers of second order recurrence sequences, Fibonacci Quart. 41 (2003) 321-333.
[6] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Dover Press, New York, 2008.

