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Abstract

As there is a paucity of cubic Fibonacci and Lucas identities in the existing literature, this paper is devoted to evaluating
some cubic binomial Fibonacci and Lucas sums.
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1. Introduction

The Fibonacci numbers, Fj , and the Lucas numbers, Lj , are defined, for j ∈ Z, through the following recurrence relations:

Fj = Fj−1 + Fj−2, (j ≥ 2), F0 = 0, F1 = 1;

and
Lj = Lj−1 + Lj−2, (j ≥ 2), L0 = 2, L1 = 1;

with
F−j = (−1)j−1Fj , L−j = (−1)jLj .

Details about the Fibonacci and Lucas numbers can be found in the excellent books written by Koshy [2] and Vajda [6].
Throughout this paper, we denote the golden ratio, (1 +

√
5)/2, by α and write

β =
1−
√
5

2
= − 1

α
,

so that αβ = −1 and α+ β = 1. Explicit formulas (Binet formulas) for the Fibonacci and Lucas numbers in terms of α and
β are given as

Fj =
αj − βj

α− β
, Lj = αj + βj , j ∈ Z.

Nagy et al. [4] noted that there is a dearth of cubic Fibonacci and Lucas identities in the existing literature. Some
cubic Fibonacci identities with binomial coefficients were derived recently by Kronenburg [3]. The main goal of the present
paper is to evaluate the following sums:
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(
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(
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k
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2n−kF 3

k+s,

n∑
k=0

(−1)k
(
n

k

)
3kF 3

k+s,

n∑
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n

k

)
3n−kF 3
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bn/2c∑
k=0
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n
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)
F 3
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dn/2e∑
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(
n
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)
F 3
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and the corresponding series involving Lucas numbers, for any non-negative integer n and for any integer s.
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2. Prerequisite identities for the main results

In this section, some results that are needed for proving the main results (presented in Section 3) are given.

Lemma 2.1. For a real or complex number z, assume that a given well-behaved function h(z) have, in its domain, the
representation h(z) =

∑c2
k=c1

g(k)zf(k) where f(k) and g(k) are given real sequences and c1, c2 ∈ [−∞,∞]. Let j be an integer.
Then,

c2∑
k=c1

g(k)zf(k)Fm
jf(k) =

1

(
√
5)m

m∑
i=0

(−1)i
(
m

i

)
h
(
βijα(m−i)jz

)
, (F)

c2∑
k=c1

g(k)zf(k)Lm
jf(k) =

m∑
i=0

(
m

i

)
h
(
βijα(m−i)jz

)
. (L)

Proof. We have
c2∑

k=c1

g(k)zf(k)Fm
jf(k) =

c2∑
k=c1

g(k)zf(k)
(
αjf(k) − βjf(k)

)m
(
√
5)m

=
1

(
√
5)m

c2∑
k=c1

g(k)zf(k)
m∑
i=0

(−1)i
(
m

i

)
βijf(k)α(m−i)jf(k)

=
1

(
√
5)m

m∑
i=0

(−1)i
(
m

i

) c2∑
k=c1

g(k)
(
βijα(m−i)jz

)f(k)
=

1

(
√
5)m

m∑
i=0

(−1)i
(
m

i

)
h
(
βijα(m−i)jz

)
.

The proof of (L) is similar.

Since βiαm−i = (−1)iαm−2i, identities (F) and (L) can also be written as
c2∑

k=c1

g(k)zf(k)Fm
jf(k) =

1

(
√
5)m

m∑
i=0

(−1)i
(
m

i

)
h
(
(−1)ijα(m−2i)jz

)
, (F′ )

c2∑
k=c1

g(k)zf(k)Lm
jf(k) =

m∑
i=0

(
m

i

)
h
(
(−1)ijα(m−2i)jz

)
. (L′)

Lemma 2.2. For the non-negative integers m and n, the integers j, r and s, and the real or complex numbers x and z, the
following identities hold:

n∑
k=0

(
n

k

)
xn−kzkFm

j(rk+s) =
1

(
√
5)m

m∑
i=0

(−1)i(js+1)

(
m

i

)
α(m−2i)js

(
x+ (−1)ijrα(m−2i)jrz

)n
, (BF)

n∑
k=0

(
n

k

)
xn−kzkLm

j(rk+s) =

m∑
i=0

(−1)ijs
(
m

i

)
α(m−2i)js

(
x+ (−1)ijrα(m−2i)jrz

)n
. (BL)

Proof. Consider the binomial identity

h(z) =

n∑
k=0

g(k)zf(k) = zs(x+ zr)n,

where
f(k) = rk + s, g(k) =

(
n

k

)
xn−k. (1)

Thus,
h
(
(−1)ijα(m−2i)jz

)
= (−1)ijsα(m−2i)jszs(x+ (−1)ijrα(m−2i)jrzr)n. (2)

Use of (1) and (2) in identity (F′ ), with c1 = 0, c2 = n, gives
n∑

k=0

(
n

k

)
xn−kzrkFm

j(rk+s) =
1

(
√
5)m

m∑
i=0

(−1)i(js+1)

(
m

i

)
α(m−2i)js

(
x+ (−1)ijrα(m−2i)jrzr

)n
,

from which identity (BF) follows when we write z1/r for z. To prove (BL), use (1) and (2) in identity (L′ ).
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It is sometimes convenient to use the (α vs β) versions of identities (BF) and (BL):
n∑

k=0

(
n

k

)
xn−kzkFm

j(rk+s) =
1

(
√
5)m

m∑
i=0

(−1)i
(
m

i

)
βijsα(m−i)js

(
x+ βijrα(m−i)jrz

)n
, (BF′ )

n∑
k=0

(
n

k

)
xn−kzkLm

j(rk+s) =

m∑
i=0

(
m

i

)
βijsα(m−i)js

(
x+ βijrα(m−i)jrz

)n
. (BL′ )

Lemma 2.3 (Hoggatt et al. [1]). For the integers p and q, the following identities hold:

Lp+q − Lpα
q = −βpFq

√
5,

Lp+q − Lpβ
q = αpFq

√
5,

Fp+q − Fpα
q = βpFq,

Fp+q − Fpβ
q = αpFq.

Lemma 2.4. Let a, b, c and d be rational numbers and λ be an irrational number. Then,

a+ λb = c+ λd ⇐⇒ a = c, b = d .

Lemma 2.5. For the integers p and q,

1 + (−1)pα2q =

{
(−1)pαqFq

√
5, if p and q have different parity;

(−1)pαqLq, if p and q have the same parity;

and

1− (−1)pα2q =

{
(−1)p−1αqLq, if p and q have different parity;

(−1)p−1αqFq

√
5, if p and q have the same parity.

Proof. We have

(−1)p+q + (−1)pα2q = αp+qβp+q + αp+2qβp

= αp+qβp(αq + βq)

= (−1)pαqLq.

(3)

Similarly,
(−1)p+q − (−1)pα2q = (−1)p−1αqFq

√
5. (4)

Corresponding to (3) and (4), we have

(−1)p+q + (−1)pβ2q = (−1)pβqLq (5)

and
(−1)p+q − (−1)pβ2q = (−1)pβqFq

√
5. (6)

Identities (3), (4), (5) and (6) imply

(−1)q + α2q = αqLq,

(−1)q − α2q = −αqFq

√
5,

(−1)q + β2q = βqLq,

(−1)q − β2q = βqFq

√
5.

Lemma 2.6 (Hoggatt et al [1]). For p and q integers,

Lp+q − Lpα
q = −βpFq

√
5,

Lp+q − Lpβ
q = αpFq

√
5,

Fp+q − Fpα
q = βpFq,

Fp+q − Fpβ
q = αpFq.
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Lemma 2.7. The following identies hold:

1− α = β, 1− β = α, 1 + α3 = 2α2, 1 + β3 = 2β2, (7)
1 + α = α2, 1 + β = β2, 1− α3 = −2α, 1− β3 = −2β, (8)

1− 2α = −
√
5, 1− 2β =

√
5, 1 + 2α3 = α3

√
5, 1 + 2β3 = −β3

√
5, (9)

2 + α = α
√
5, 2 + β = −β

√
5, 2− α3 = −

√
5, 2− β3 =

√
5, (10)

1 + 3α = α2
√
5, 1 + 3β = −β2

√
5, 1− 3α3 = −2α2

√
5, 1− 3β3 = 2β2

√
5, (11)

3− α = −β
√
5, 3− β = α

√
5, 3 + α3 = 2α

√
5, 3 + β3 = −2β

√
5. (12)

Proof. Each identity is obtained by making appropriate substitutions for p and q in the identities given in Lemma 2.6.

3. Cubic binomial Fibonacci identities

Lemma 3.1. For a non-negative integer n, integers j, r and s, and real or complex numbers x and z, the following identities
hold:

5
√
5

n∑
k=0

(
n

k

)
xn−kzkF 3

j(rk+s) = α3js(x+ α3jrz)n − β3js(x+ β3jrz)n

− (−1)js3αjs(x+ (−1)jrαjrz)n

+ (−1)js3βjs(x+ (−1)jrβjrz)n,

(F1)

n∑
k=0

(
n

k

)
xn−kzkL3

j(rk+s) = α3js(x+ α3jrz)n + β3js(x+ β3jrz)n

+ (−1)js3αjs(x+ (−1)jrαjrz)n

+ (−1)js3βjs(x+ (−1)jrβjrz)n.

(L1)

Proof. Set m = 3 in identities (BF′ ) and (BL′ ).

Theorem 3.1. For a non-negative integer n and for any integer s, the following identities hold:
n∑

k=0

(
n

k

)
F 3
k+s =

1

5
(2nF2n+3s + 3Fn−s), (13)

n∑
k=0

(
n

k

)
L3
k+s = 2nL2n+3s + 3Ln−s . (14)

Proof. By setting x = 1, z = 1, j = 1, r = 1 in (F1) and utilizing identity (7), we obtain

5
√
5

n∑
k=0

(
n

k

)
F 3
k+s = 2n(α3s+2n − β3s+2n) + 3(αn−s − βn−s);

and hence identity (13). To prove identity (14), use these (x, z, j, . . .) values in (L1).

A special case of (13), when s = 0, was obtained by Stanica [5].

Theorem 3.2. For a non-negative integer n and for any integer s,
n∑

k=0

(
n

k

)
(−1)kF 3

k+s =
1

5
((−1)n2nFn+3s − (−1)s3F2n+s), (15)

n∑
k=0

(−1)k
(
n

k

)
L3
k+s = (−1)n2nLn+3s + (−1)s3L2n+s, (16)

Proof. To prove identity (15), set x = 1, z = −1, j = 1, r = 1 in (F1), noting the identities in (8), to get

5
√
5

n∑
k=0

(−1)k
(
n

k

)
F 3
k+s = (−1)n2n(αn+3s − βn+3s)− 3(−1)s(α2n+s − β2n+s),

from which the identity follows. The proof of (16) is similar. Use these values in (L1).
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Stanica [5] also found the special case of identity (15) when s = 0.

Theorem 3.3. For a non-negative integer n and for any integer s,

n∑
k=0

(
n

k

)
2kF 3

k+s =

{
5n/2−1(F3n+3s − (−1)s3Fs), if n is even;

5(n−3)/2(L3n+3s + (−1)s3Ls) if n is odd,
(17)

n∑
k=0

(
n

k

)
2kL3

k+s =

{
5n/2(L3n+3s + (−1)s3Ls), if n is even;

5(n+1)/2(F3n+3s − (−1)s3Fs) if n is odd.
(18)

Proof. The proof of (17) proceeds with the choice j = 1, r = 1, x = 1, z = 2 in (F1), employing the set of identities (9), giving

5
√
5

n∑
k=0

2k
(
n

k

)
F 3
k+s = (

√
5)n(α3n+3s − (−1)nβ3n+3s)− 3(−1)n+s(

√
5)n(αs − (−1)nβs),

from which the identity follows in accordance with the parity of n. The proof of (18) is similar. Use these (x, z, j, . . .) values
in (L1).

Theorem 3.4. For a non-negative integer n and for any integer s,

n∑
k=0

(−1)k
(
n

k

)
2n−kF 3

k+s =

{
5n/2−1((−1)s−13Fn+s + F3s), if n is even;

5(n−3)/2((−1)s−13Ln+s − L3s), if n is odd;
(19)

n∑
k=0

(−1)k
(
n

k

)
2n−kL3

k+s =

{
5n/2((−1)s3Ln+s + L3s), if n is even;

5(n+1)/2((−1)s3Fn+s − F3s), if n is odd.
(20)

Proof. The coice x = 2, z = −1, j = 1, z = 1 in (F1), noting the set of identities (10) gives

5
√
5

n∑
k=0

(−1)k
(
n

k

)
2n−kF 3

k+s = (
√
5)n(−1)n(α3s − (−1)nβ3s)− (

√
5)n(−1)s3(αn+s − (−1)nβn+s);

from which we get (19). The proof of (20) is similar.

Theorem 3.5. For a non-negative integer n and for any integer s,

n∑
k=0

(−1)k
(
n

k

)
3kF 3

k+s =

{
5n/2−1(2nF2n+3s − (−1)s3F2n+s), if n is even;

−5(n−3)/2(2nL2n+3s + (−1)s3L2n+s), if n is odd;
(21)

n∑
k=0

(−1)k
(
n

k

)
3kL3

k+s =

{
5n/2(2nL2n+3s + (−1)s3L2n+s), if n is even;

−5(n+1)/2(2nF2n+3s − (−1)s3F2n+s), if n is odd.
(22)

Proof. Choose x = 1, z = −3, j = 1, r = 1 in (F1). This gives, with the use of the identities in (11),

5
√
5

n∑
k=0

(−1)k
(
n

k

)
3kF 3

k+s = (
√
5)n(−1)n2n(α2n+3s − (−1)nβ2n+3s)− (

√
5)n(−1)s3(α2n+s − (−1)nβ2n+s).

Identity (21) now follows. The proof of (22) is similar.

Theorem 3.6. For a non-negative integer n and for any integer s,

n∑
k=0

(
n

k

)
3n−kF 3

k+s =

{
5n/2−1(2nFn+3s + 3Fn−s), if n is even;

5(n−3)/2(2nLn+3s + 3Ln−s), if n is odd;
(23)

n∑
k=0

(
n

k

)
3n−kL3

k+s =

{
5n/2(2nLn+3s + 3Ln−s), if n is even;

5(n+1)/2(2nFn+3s + 3Fn−s), if n is odd.
(24)

Proof. Set x = 3, z = 1, j = 1 = r in (F1) and use the set of identities in (12) to obtain

5
√
5

n∑
k=0

(
n

k

)
3n−kF 3

k+s = (
√
5)n2n(αn+3s − (−1)nβn+3s) + (

√
5)n3(αn−s − (−1)nβn−s);

from which (23) follows. The proof of (24) is similar. Use the same (x, z, . . .) values in (L1).
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Lemma 3.2. For a non-negative integer n, integers j, r and s and real or complex z,

5
√
5

bn/2c∑
k=0

2

(
n

2k

)
z2kF 3

j(2rk+s) = α3js(1 + α3jrz)n + α3js(1− α3jrz)n − β3js(1 + β3jrz)n − β3js(1− β3jrz)n

− (−1)jsαjs3(1 + (−1)jrαjrz)n − (−1)jsαjs3(1− (−1)jrαjrz)n

+ (−1)jsβjs3(1 + (−1)jrβjrz)n + (−1)jsβjs3(1− (−1)jrβjrz)n,

(F2)

2

bn/2c∑
k=0

(
n

2k

)
z2kL3

j(2rk+s) = α3js(1 + α3jrz)n + α3js(1− α3jrz)n + β3js(1 + β3jrz)n + β3js(1− β3jrz)n

+ (−1)jsαjs3(1 + (−1)jrαjrz)n + (−1)jsαjs3(1− (−1)jrαjrz)n

+ (−1)jsβjs3(1 + (−1)jrβjrz)n + (−1)jsβjs3(1− (−1)jrβjrz)n,

(L2)

5
√
5

dn/2e∑
k=1

2

(
n

2k − 1

)
z2k−1F 3

j(2rk+s)

= α3j(r+s)(1 + α3jrz)n − α3j(r+s)(1− α3jrz)n − β3j(r+s)(1 + β3jrz)n + β3j(r+s)(1− β3jrz)n

− (−1)j(r+s)αj(r+s)3(1 + (−1)jrαjrz)n + (−1)j(r+s)αj(r+s)3(1− (−1)jrαjrz)n

+ (−1)j(r+s)βj(r+s)3(1 + (−1)jrβjrz)n − (−1)j(r+s)βj(r+s)3(1− (−1)jrβjrz)n,

(F3)

2

dn/2e∑
k=1

(
n

2k − 1

)
z2k−1L3

j(2rk+s)

= α3j(r+s)(1 + α3jrz)n − α3j(r+s)(1− α3jrz)n + β3j(r+s)(1 + β3jrz)n − β3j(r+s)(1− β3jrz)n

+ (−1)j(r+s)αj(r+s)3(1 + (−1)jrαjrz)n − (−1)j(r+s)αj(r+s)3(1− (−1)jrαjrz)n

+ (−1)j(r+s)βj(r+s)3(1 + (−1)jrβjrz)n − (−1)j(r+s)βj(r+s)3(1− (−1)jrβjrz)n.

(L3)

Proof. In the identities

h1(z) = 2

bn/2c∑
k=0

(
n

2k

)
z2rk+s = zs(1 + zr)n + zs(1− zr)n,

h2(z) = 2

dn/2e∑
k=1

(
n

2k − 1

)
z2rk+s = zr+s(1 + zr)n − zr+s(1− zr)n,

identify
g(k) = 2

(
n

2k

)
, f(k) = 2rk + s, c1 = 0, c2 = bn/2c , h(z) = zs(1 + zr)n + zs(1− zr)n,

and use these in (F) and (L) to obtain (F2) and (L2).
Similarly, use of

g(k) = 2

(
n

2k − 1

)
, f(k) = 2rk + s, c1 = 1, c2 = dn/2e , h(z) = zs(1 + zr)n − zs(1− zr)n,

in (F) and (L) gives (F3) and (L3).

Theorem 3.7. For a non-negative integer n and for any integer s,

10

bn/2c∑
k=0

(
n

2k

)
F 3
2k+s = 2n(F2n+3s + (−1)nFn+3s)− 3(−1)s(F2n+s − (−1)sFn−s), (25)

2

bn/2c∑
k=0

(
n

2k

)
L3
2k+s = 2n(L2n+3s + (−1)nLn+3s) + 3(−1)s(L2n+s + (−1)sLn−s). (26)
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Proof. The choice of z = 1 = j = r in (F2) gives

10
√
5

bn/2c∑
k=0

(
n

2k

)
F 3
2k+s = 2n(α2n+3s − β2n+3s) + (−1)n2n(αn+3s − βn+3s)

+ 3(−1)s(βsαn − αsβn)− 3(−1)s(α2n+s − β2n+s);

from which identity (25) follows. The proof of (26) is similar; use z = 1 = j = r in (L2).

Corollary 3.1. For a non-negative integer n and for any integer s,

10

n∑
k=0

(
2n

2k

)
F 3
2k+s =

{
4nLnF3n+3s − (−1)s3Fn+sL3n, if n is even;
4nFnL3n+3s − (−1)s3Ln+sF3n, if n is odd;

2

n∑
k=0

(
2n

2k

)
L3
2k+s =

{
4nLnL3n+3s + (−1)s3Ln+sL3n, if n is even;
5(4nFnF3n+3s + (−1)s3Fn+sF3n), if n is odd.

(27)

Proof. Write 2n for n in each of the identities (25) and (26). Simplification is achieved by the use of the following well-known
Fibonacci identities which are valid for any two integers u and v having the same parity:

Fu + (−1)(u−v)/2Fv = L(u−v)/2F(u+v)/2, (28)

Fu − (−1)(u−v)/2Fv = F(u−v)/2L(u+v)/2, (29)

Lu + (−1)(u−v)/2Lv = L(u−v)/2L(u+v)/2, (30)

Lu − (−1)(u−v)/2Lv = 5F(u−v)/2F(u+v)/2. (31)

Corollary 3.2. For a non-negative integer n,

10

n∑
k=0

(
2n− 1

2k

)
F 3
2k =

{
(22n−1 − 3)F2n−1Ln−1Ln, if n is even;
(22n−1 − 3)5F2n−1Fn−1Fn, if n is odd;

(32)

2

n∑
k=0

(
2n

2k

)
L3
2k =

{
(4n + 3)LnL3n, if n is even;
(4n + 3)5FnF3n, if n is odd.

(33)

Proof. To prove (32), write 2n− 1 for n in (25) and set s = 0. To prove (33), set s = 0 in identity (27).

Theorem 3.8. For a non-negative integer n and for any integer s,

10

dn/2e∑
k=1

(
n

2k − 1

)
F 3
2k+s = 2n(F2n+3s+3 − (−1)nFn+3s+3)− (−1)s3(F2n+s+1 − (−1)sFn−s−1), (34)

2

dn/2e∑
k=1

(
n

2k − 1

)
L3
2k+s = 2n(L2n+3s+3 − (−1)nLn+3s+3) + (−1)s3(L2n+s+1 + (−1)sLn−s−1). (35)

Proof. Set z = 1 = j = r in identity (F3) to obtain

10
√
5

dn/2e∑
k=1

(
n

2k − 1

)
F 3
2k+s = 2n(α2n+3s+3 − β2n+3s+3)− (−1)n2n(αn+3s+3 − βn+3s+3)

+ (−1)s+13(α2n+s+1 − β2n+s+1) + (−1)s+13(αnβs+1 − αs+1βn);

from which identity (34) follows. The proof of (35) is similar.

Corollary 3.3. For a non-negative integer n and for any integer s, the following identities hold:

10

n∑
k=1

(
2n

2k − 1

)
F 3
2k+s =

{
4nFnL3n+3s+3 − (−1)s3Ln+s+1F3n, if n is even;
4nLnF3n+3s+3 − (−1)s3Fn+s+1L3n, if n is odd;

2

n∑
k=1

(
2n

2k − 1

)
L3
2k+s =

{
5(4nFnF3n+3s+3 + (−1)s3Fn+s+1F3n), if n is even;
4nLnL3n+3s+3 + (−1)s3Ln+s+1L3n, if n is odd.
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Proof. Write 2n for n in each of the identities (34) and (35), and make use of identities (28) – (31).

Corollary 3.4. For a non-negative integer n, the following identities hold:

10

n∑
k=1

(
2n− 1

2k − 1

)
F 3
2k−1 =

{
(22n−1 + 3)5F2n−1Fn−1Fn, if n is even;
(22n−1 + 3)F2n−1Ln−1Ln, if n is odd;

2

n∑
k=1

(
2n

2k − 1

)
L3
2k−1 =

{
(4n − 3)5FnF3n, if n is even;
(4n − 3)LnL3n, if n is odd.
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