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Abstract
The symmetric division deg coindex SDD(G) of a simple connected graph G is defined as the sum of the terms dG(u)2+dG(v)2

dG(u)dG(v)

over all pairs of distinct non-adjacent vertices of G, where dG(u) denotes the degree of a vertex u of G. In this paper, upper
bounds on the symmetric division deg coindex of edge corona product of two graphs and Mycielskian of a graph are presented.
Also, it is proved that the symmetric division deg coindex of the double graph of a connected graph G with n vertices can be
written in terms of the symmetric division deg coindex of G and n.
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1. Introduction

A topological index of a graph is a parameter that does not depend on the labeling or pictorial representation of the
graph. In theoretical chemistry, molecular structure descriptors (also called topological indices) are used for modeling
physicochemical, pharmacologic, toxicologic, biological and other properties of chemical compounds. Several types of such
indices exist, especially the ones that depend on the vertex and edge distances.

Topological indices have found applications in modeling several physicochemical properties in QSAR (Quantitative
structure-activity relationship) and QSPR (quantitative structure-property relationships) studies [4, 9]. Many particular
types of topological indices are defined using the structure of the underlying molecular graph, such as the Wiener index [11],
first Zagreb index [2] and Balaban index [3]. Vukičević and Gašperov [10] observed that most of these indices are defined
via the sum of individual bond contributions. Among the 148 discrete Adriatic indices studied in [10], whose predictive
properties were evaluated against the benchmark datasets of the International Academy of Mathematical Chemistry, 20
indices were selected as significant predictors of physicochemical properties. One of these useful discrete Adriatic indices
is the symmetric division deg index SDD which is defined as

SDD(G) =
∑

xy∈E(G)

(
dG(x)

dG(y)
+
dG(y)

dG(x)

)
.

Among all the existing topological indices, SDD index has the best correlating ability for predicting the total surface area
of polychlorobiphenys [10].

The first Zagreb index [2] and its coindex of a connected graph G are defined as

M1(G) =
∑

uv∈E(G)

(dG(u) + dG(v))

and
M1(G) =

∑
uv/∈E(G)

(dG(u) + dG(v)),

respectively. The harmonic index and its coindex are, respectively, defined as

H(G) =
∑

uv∈E(G)

2

dG(u) + dG(v)

and
H(G) =

∑
uv/∈E(G)

2

dG(u) + dG(v)
.
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Motivated by the studies on the coindices, like the first Zagreb coindex and harmonic coindex, the symmetric division
deg coindex is proposed here:

SDD(G) =
∑

uv/∈E(G)

dG(u)2 + dG(v)2

dG(u)dG(v)
.

In this paper, upper bounds on the symmetric division deg coindex of edge corona product of two graphs and Mycielskian
of a graph are given. Also, it is proved that the symmetric division deg coindex of the double graph of a connected graph
G with n vertices can be written in terms of the symmetric division deg coindex of G and n.

2. Mathematical properties of SDD

A modification of the second Zagreb index was proposed by Nikolić et al. [7] in 2003. The modified second Zagreb index
and its coindex of G are, respectively, defined as

M∗2 (G) =
∑

uv∈E(G)

1

dG(u)dG(v)

and
M
∗
2(G) =

∑
uv/∈E(G)

1

dG(u)dG(v)
.

The inverse degree index of G is defined as
ID(G) =

∑
u∈V (G)

1

dG(u)
.

The redefined first and second Zagreb coindices of G are, respectively, defined as

RZ1(G) =
∑

uv/∈E(G)

dG(u) + dG(v)

dG(u)dG(v)

and
RZ2(G) =

∑
uv/∈E(G)

dG(u)2 + dG(v)2

dG(u) + dG(v)
.

In this section, we present upper bounds on the symmetric division deg coindex of edge corona product graph, Mycielskian
of a graph and double graphs.

The edge corona product G •H of G and H is defined as the graph obtained by taking one copy of G and |E(G)| copies
of H, and then joining two end vertices of the ith edge of G to every vertex in the ith copy of H (see [1,3,8] for more details).

Lemma 2.1. [6] Let f be a convex function on the interval I and x1, x2, . . . , xn ∈ I. Then

f

(
x1 + x2 + . . .+ xn

n

)
≤ f(x1) + f(x2) + . . . f(xn)

n
,

with equality if and only if x1 = x2 = . . . = xn.

Theorem 2.1. Let G1 and G2 be two graphs with n1, n2 vertices and m1, m2 edges, respectively. Then

SDD(G1 •G2) ≤ SDD(G1) +m1

(
SDD(G2) +RZ1(G2) + 8M

∗
2(G2) +RZ2(G2) +H(G2)

)
+

2n1(n2 +m2)

(n2 + 1)
(ID(G1)− 1)

+
(

(n2 + 1)(2n1m1 −M1(G1)) + 2m1(m1 − 1)(m2 + 1)
)
ID(G2) + 2m1(m2

2 −m2 − 2n2).

Proof. Let xij be the jth vertex in the ith copy of H, i ∈ {1, 2, . . . ,m1}, j ∈ {1, 2, . . . , n2}, and let yk be the kth vertex in G1,
k ∈ {1, 2, . . . , n1}. Also let xj be the jth vertex in G2. By the definition of edge corona of G1 and G2, for each vertex xij , we
have dG1•G2(xij) = dG2(xj) + 2, and for every vertex yk in G1, dG1•G2(yk) = dG1(yk)n2 + dG1(yk) = (n2 + 1)dG1(yk).

Now, we consider the following four cases of nonadjacent vertex pairs in G1 •G2.

Case 1. The nonadjacent vertex pairs {xij , xih}, 1 ≤ i ≤ m1, 1 ≤ j < h ≤ n2, are considered and it is assumed that
xjxh /∈ E(G2).

S1 =

m1∑
i=1

∑
xijxih /∈E(G1•G2)

dG1•G2(xij)
2 + dG1•G2(xih)2

dG1•G2
(xij)dG1•G2

(xih)
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=

m1∑
i=1

∑
xjxh /∈E(G2)

(dG2
(xj) + 2)2 + (dG2

(xh) + 2)2

(dG2(xj) + 2)(dG2(xh) + 2)

=

m1∑
i=1

∑
xjxh /∈E(G2)

(dG2(xj)
2 + dG2(xh)2) + 4(dG2(xh) + dG2(xj)) + 8

dG2
(xj)dG2

(xh) + 2(dG2
(xj) + dG2

(xh)) + 4
.

By Lemma 2.1, we have
1

dG2
(xj)dG2

(xh) + 2(dG2
(xj) + dG2

(xh)) + 4
≤ 1

4dG2
(xj)dG2

(xh)
+

1

8(dG2
(xj) + dG2

(xh)) + 16

with equality if and only if dG2
(xj)dG2

(xh) = 8(dG2
(xj) + dG2

(xh)) + 16. Thus,

S1 ≤
m1∑
i=1

∑
xjxh /∈E(G2)

(
(dG2

(xj)
2 + dG2

(xh)2) + 4(dG2
(xh) + dG2

(xj)) + 8

4dG2(xj)dG2(xh)

+

m1∑
i=1

∑
xjxh /∈E(G2)

(dG2(xj)
2 + dG2(xh)2) + 4(dG2(xh) + dG2(xj)) + 8

8(dG2
(xj) + dG2

(xh)) + 16

)
.

Note that 8(dG2
(xj) + dG2

(xh)) + 16 ≥ dG2
(xj) + dG2

(xh). This implies

1

8(dG2
(xj) + dG2

(xh)) + 16
≤ 1

dG2
(xj) + dG2

(xh)
.

Therefore,

S1 ≤
m1∑
i=1

∑
xjxh /∈E(G2)

(
(dG2(xj)

2 + dG2(xh)2) + 4(dG2(xh) + dG2(xj)) + 8

dG2
(xj)dG2

(xh)

+

m1∑
i=1

∑
xjxh /∈E(G2)

(dG2
(xj)

2 + dG2
(xh)2) + 4(dG2

(xh) + dG2
(xj)) + 8

dG2(xj) + dG2(xh)

)

= m1

(
SDD(G2) +RZ1(G2) + 8M

∗
2(G2) +RZ2(G2) +H(G2) + 4m2

)
.

Case 2. The nonadjacent vertex pairs {yk, ys}, 1 ≤ k < s ≤ n1, are considered and it is assumed that ykys /∈ E(G1). Thus,

S2 =
∑

ykys /∈E(G1•G2)

dG1•G2
(yk)2 + dG1•G2

(ys)
2

dG1•G2
(yk)dG1•G2

(ys)

=
∑

ykys /∈E(G1)

(n2 + 1)2dG1
(yk)2 + (n2 + 1)2dG1

(ys)
2

(n2 + 1)2dG1
(yk)dG1

(ys)

=
∑

ykys /∈E(G1)

dG1
(yk)2 + dG1

(ys)
2

dG1(yk)dG1(ys)

= SDD(G1).

Case 3. The nonadjacent vertex pairs {xij , yk}, 1 ≤ i ≤ m1, 1 ≤ j ≤ n2, 1 ≤ k ≤ n1, are considered and it is assumed that
the ith edge ei, 1 ≤ i ≤ m1, in G1 does not pass through yk. Note that each vertex yk is adjacent to all vertices of dG1

(yk)

copies of G2, that is, each yk is not adjacent to any vertex of m1 − dG1(yk) copies of G2. Hence,

S3 =

n1∑
k=1

(n1 − dG1(yk))

n2∑
j=1

(dG2
(xj) + 2)2 + (n2 + 1)2dG1

(yk)2

(dG2(xj) + 2)(n2 + 1)dG1(yk)

≤
n1∑
k=1

(n1 − dG1
(yk))

n2∑
j=1

(
(dG2

(xj) + 2)

(n2 + 1)dG1(yk)
+

(n2 + 1)dG1
(yk)

dG2(xj)

)

=

n1∑
k=1

(n1 − dG1
(yk))

(
2(n2 +m2)

(n2 + 1)dG1
(yk)

+ (n2 + 1)dG1
(yk)ID(G2)

)

=
2n1(n2 +m2)

(n2 + 1)
ID(G1) + 2n1m1(n2 + 1)ID(G2)− 2n1(n2 +m2)

(n2 + 1)
− (n2 + 1)M1(G1)ID(G2)
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=
2n1(n2 +m2)

(n2 + 1)
(ID(G1)− 1) + (n2 + 1)(2n1m1 −M1(G1))ID(G2).

Case 4. The nonadjacent vertex pairs {xij , x`h}, 1 ≤ i < ` ≤ m1, 1 ≤ j, h ≤ n2, are considered.

S4 =
∑

xijx`h /∈E(G1•G2)

dG1•G2
(xij)

2 + dG1•G2
(x`h)2

dG1•G2(xij)dG1•G2(x`h)

=
m1(m1 − 1)

2

n2∑
j=1

n2∑
h=1

(dG2(xj) + 2)2 + (dG2(xh) + 2)2

(dG2
(xj) + 2)(dG2

(xh) + 2)

≤ m1(m1 − 1)

2

n2∑
j=1

n2∑
h=1

(
(dG2

(xj) + 2)

dG2(xh)
+

(dG2
(xh) + 2)

dG2(xj)

)
= 2m1(m1 − 1)(m2 + 1)ID(G2).

From the above four cases of nonadjacent vertex pairs, one obtains the desired result.

The Mycielskian µ(G) (see [5]) of G contains G itself as an isomorphic subgraph, together with n+1 additional vertices:
a vertex ui corresponding to each vertex vi of G, and another vertex w. Each vertex ui is connected by an edge to w, so that
these vertices form a subgraph in the form of a star K1,n. The minimum and maximum vertex degrees of G, respectively,
are denoted by δ(G) and ∆(G).

By the definition of the Mycielskian of a graph G, for each edge vivj of G, the Mycielskian of G includes two edges, uivj
and viuj . Now, we find an upper bound for symmetric division deg coindex of the Mycielskian of a graph.

Theorem 2.2. Let G be a graph on n vertices and m edges. Then

SDD(µ(G)) ≤
(
n(n− 1)− 2(m− 1)

2

)
SDD(G) +

(
n(n− 1)− 2m)

2

)
(2RZ1(G) +M

∗
2(G) +RZ2(G) +H(G) + n(n− 1)−m)

+m
(
SDD(G) +M∗2 (G) +RZ2(G) +H(G) + 2(m+ n)

)
+ (n2 + 2n+ 2)ID(G) + (3n+ 8m) +

3∆2 + 2∆ + 1

δ2
.

Proof. Let V (G) = {v1, . . . , vn} and let V (µ(G)) = {v1, . . . , vn, u1, . . . , un, w}. By the structure of the Mycielskian of G, if
vivj /∈ E(G), then viuj /∈ E(G), and vjui /∈ E(G). By the definition of µ(G), for each i ∈ {1, 2, . . . , n}, we have dµ(G)(vi) =

2dG(vi), dµ(G)(ui) = dG(vi) + 1 and dµ(G)(w) = n. Now, we consider the following cases of nonadjacent vertex pairs in µ(G).

Case 1. The nonadjacent vertex pairs {vi, vj} in µ(G) are considered.

C1 =
∑

vivj /∈E(µ(G))

dµ(G)(vi)
2 + dµ(G)(vj)

2

dµ(G)(vi)dµ(G)(vj)
=

∑
vivj /∈E(G)

4dG(vi)
2 + 4dG(vj)

2

4dG(vi)dG(vj)
= SDD(G).

Case 2. The nonadjacent vertex pairs {ui, uj} in µ(G) are considered.

Case 2.1. uiuj /∈ E(µ(G)) and vivj /∈ E(G).

C ′2 =
∑

uiuj /∈E(µ(G))

dµ(G)(ui)
2 + dµ(G)(uj)

2

dµ(G)(ui)dµ(G)(uj)

=
∑

vivj /∈E(G)

(dG(vi) + 1)2 + (dG(vj) + 1)2

(dG(vi) + 1)(dG(vj) + 1)

=
∑

vivj /∈E(G)

(dG(vi)
2 + dG(vj)

2) + 2(dG(vi) + dG(vj)) + 2

dG(vi)dG(vj) + (dG(vi) + dG(vj)) + 1
.

By Lemma 2.1, one obtains

C ′2 ≤
∑

vivj /∈E(G)

(dG(vi)
2 + dG(vj)

2) + 2(dG(vi) + dG(vj)) + 2

4dG(vi)dG(vj)

+
∑

vivj /∈E(G)

(dG(vi)
2 + dG(vj)

2) + 2(dG(vi) + dG(vj)) + 2

4(dG(vi) + dG(vj)) + 1)
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≤
∑

vivj /∈E(G)

(dG(vi)
2 + dG(vj)

2) + 2(dG(vi) + dG(vj)) + 2

dG(vi)dG(vj)

+
∑

vivj /∈E(G)

(dG(vi)
2 + dG(vj)

2) + 2(dG(vi) + dG(vj)) + 2

dG(vi) + dG(vj)

= SDD(G) + 2RZ1(G) +M
∗
2(G) +RZ2(G) +H(G) + n(n− 1)−m.

Case 2.2. uiuj /∈ E(µ(G)) and vivj ∈ E(G).

C ′′2 =
∑

uiuj /∈E(µ(G))

dµ(G)(ui)
2 + dµ(G)(uj)

2

dµ(G)(ui)dµ(G)(uj)

=
∑

vivj∈E(G)

(dG(vi) + 1)2 + (dG(vj) + 1)2

(dG(vi) + 1)(dG(vj) + 1)

≤ SDD(G) +M∗2 (G) +RZ2(G) +H(G) + 2(m+ n).

If uiuj /∈ E(µ(G)), then there are m edges vivj ∈ E(G) and n(n−1)
2 − m nonadjacent vertex pairs {vi, vj} in G as well as

µ(G). By Cases 2.1 and 2.2, we have the contribution of nonadjacent vertex pair of Case 2 given as

C2 =
(n(n− 1)

2
−m

)
C ′2 +mC ′′2

≤
(n(n− 1)

2
−m

)(
SDD(G) + 2RZ1(G) +M

∗
2(G) +RZ2(G) +H(G) + n(n− 1)−m

)
+m

(
SDD(G) +M∗2 (G) +RZ2(G) +H(G) + 2(m+ n)

)
.

Case 3. The nonadjacent vertex pairs {ui, vi} in µ(G) are considered for each i = 1, 2, . . . , n.

C3 =

n∑
i=1

dµ(G)(ui)
2 + dµ(G)(vi)

2

dµ(G)(ui)dµ(G)(vi)

=

n∑
i=1

(dG(vi) + 1)2 + 4dG(vi)
2

2(dG(vi) + 1)(dG(vi))

≤
n∑
i=1

(
dG(vi) + 1

dG(vi)
+ 2

)
.

Thus, C3 ≤ ID(G) + 3n.

Case 4. The nonadjacent vertex pairs {ui, vj} in µ(G) are considered.

C4 =
∑

uivj /∈E(µ(G))

dµ(G)(ui)
2 + dµ(G)(vj)

2

dµ(G)(ui)dµ(G)(vj)

=
∑

vivj /∈E(G)

(dG(vi) + 1)2 + 4dG(vj)
2

2(dG(vi) + 1)dG(vj)
.

For any vertex x ∈ V (G), one has δ(G) ≤ dG(x) ≤ ∆(G) and hence

C4 ≤
∑

vivj /∈E(G)

(dG(vi) + 1)2 + 4dG(vj)
2

dG(vi)dG(vj)

≤ SDD(G) +
3∆2 + 2∆ + 1

δ2
.

Case 5. The nonadjacent vertex pairs {w, vi} in µ(G) are considered for each i = 1, 2, . . . , n.

C5 =
∑

viw/∈E(µ(G))

dµ(G)(vi)
2 + dµ(G)(w)2

dµ(G)(vi)dµ(G)(w)

=
∑

vi∈V (G)

4dG(vi)
2 + (n+ 1)2

2dG(vi)(n+ 1)
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≤
∑

vi∈V (G)

4dG(vi)
2 + (n+ 1)2

dG(vi)

= (n+ 1)2ID(G) + 8m.

From the above five cases of nonadjacent vertex pairs, one obtains the desired result.

Let G be a graph with V (G) = {v1, v2, . . . , vn}. The vertices of the double graph G∗ are given by the two sets X =

{x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}. Thus for each vertex vi ∈ V (G), there are two vertices xi and yi in V (G∗). The
double graph G∗ includes the initial edge set of each copy of G, and for any edge vivj ∈ E(G), two more edges xiyj and xjyi
are added. For a given vertex v in G, let

TG(v) =
∑

uv/∈E(G)

dG(u)2 + dG(v)2

dG(u)dG(v)
.

Now, we find the exact value of the symmetric division deg coindex for the double graph of a given graph.

Theorem 2.3. Let G be a connected graph with n vertices. Then SDD(G∗) = 4SDD(G) + 2n.

Proof. Let V (G) = {v1, v2, . . . , vn}. Suppose that xi and yi are the corresponding clone vertices, in G∗, of vi for each i ∈
{1, 2, . . . , n}. For any given vertex vi in G and its clone vertices xi and yi, dG∗(xi) = dG∗(yi) = 2dG(vi) by the definition of
the double graph. For vi, vj ∈ V (G), if vivj /∈ E(G), then xixj /∈ E(G), yiyj /∈ E(G), xiyj /∈ E(G) and yixj /∈ E(G). Hence,
we only consider total contribution of the following three types of nonadjacent vertex pairs to calculate SDD(G).

Case 1. The nonadjacent vertex pairs {xi, xj} and {yi, yj} are considered, where vivj /∈ E(G).

∑
yiyj /∈E(G∗)

dG∗(yi)
2 + dG∗(yj)

2

dG∗(yi)dG∗(yj)
=

∑
xixj /∈E(G∗)

dG∗(xi)
2 + dG∗(xj)

2

dG∗(xi)dG∗(xj)

=
∑

vivj /∈E(G)

4dG(vi)
2 + 4dGvj)

2

4dG(vi)dGvj)

= SDD(G).

Case 2. The nonadjacent vertex pairs {xi, yi} are considered for each i ∈ {1, 2, . . . , n}.
n∑
i=1

dG∗(xi)
2 + dG∗(yi)

2

dG∗(xi)dG∗(yi)
=

n∑
i=1

4dG(vi)
2 + 4dG(vi)

2

4dG(vi)2
= 2n.

Case 3. The nonadjacent vertex pairs {xi, yj} and {yi, xj} are considered, where vivj /∈ E(G).

For each xi, there exist n−1−dG(vi) vertices in the set {y1, y2, . . . , yn}, among which every vertex together with xi compose a
nonadjacent vertex pairs ofG∗. The total contribution of these n−1−dG(vi) nonadjacent vertex pairs to calculate SDD(G∗)

is ∑
xiyj /∈E(G∗)

dG∗(xi)
2 + dG∗(yj)

2

dG∗(xi)dG∗(yj)
=

∑
vivj /∈E(G∗)

4dG(vi)
2 + 4dG(vj)

2

4dG(vi)dG(vj)
= TG(vi).

Hence,

∑
i 6=j, xiyj /∈E(G∗)

dG∗(xi)2 + dG∗(yj)
2

dG∗(xi)dG∗(yj)
=

n∑
i=1

TG(vi) = 2SDD(G).

Therefore,

SDD(G∗) =
∑

xixj /∈E(G∗)

dG∗(xi)
2 + dG∗(xj)

2

dG∗(xi)dG∗(xj)
+

∑
yiyj /∈E(G∗)

dG∗(yi)
2 + dG∗(yj)

2

dG∗(yi)dG∗(yj)

+

n∑
i=1

dG∗(xi)2 + dG∗(yi)
2

dG∗(xi)dG∗(yi)
+

∑
i6=j, xiyj /∈E(G∗)

dG∗(xi)
2 + dG∗(yj)

2

dG∗(xi)dG∗(yj)

= 4SDD(G) + 2n.
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