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Abstract

A set S of vertices in a connected graph G of diameter d is an irregular dominating set if it is possible to assign distinct
labels from the set {1, 2, . . . , d} to the vertices of S in such a way that for every vertex v of G, there exists a vertex u of S
such that the distance from v to u is the label of u. If exactly two vertices of S are permitted to have the same label, then
S is an antiregular dominating set. Several classes of graphs are investigated to determine whether they have irregular or
antiregular dominating sets, with the primary emphasis on trees. For graphs possessing these sets, the minimum size of
such a set is also studied.
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1. Introduction

In recent decades, domination in graphs has become a popular area of study. While this area evidently began with the
work of Berge [2] in 1958 and Ore [13] in 1962, domination did not become an active area of research until 1977 with the
appearance of a survey paper by Cockayne and Hedetniemi [8]. Since then, a large number of variations of domination
have surfaced and provided numerous applications to different areas of science and real-life problems (see [10, 11]). For
a vertex v in a nontrivial connected graph G, let N(v) denote the neighborhood of v and N [v] = {v} ∪ N(v) the closed
neighborhood of v. A vertex v in a graph G is said to dominate a vertex u if either u = v or uv ∈ E(G). That is, a vertex v
dominates the vertices in its closed neighborhood N [v]. A set S of vertices in G is a dominating set of G if every vertex of
G is dominated by at least one vertex in S. The minimum number of vertices in a dominating set of G is the domination
number γ(G) of G.

Of the many variations of domination that have been introduced, probably the most common and most studied is total
domination, introduced by Cockayne, Dawes and Hedetniemi [7]. In total domination, a vertex u dominates a vertex v in
a graph G if uv is an edge of G and so a vertex does not dominate itself. It is this manner of domination that we use here,
that is, in this paper domination is total domination. A set S of vertices in a graph G is a total dominating set of G if for
every vertex v of G, there is a vertex u ∈ S such that u dominates v. The minimum cardinality of a total dominating set
of G is the total domination number γt(G) of G. A graph G has a total domination number if and only if G has no isolated
vertices. The book by Henning and Yeo [12] deals exclusively with total domination in graphs. Here we only consider
nontrivial connected graphs.

Total domination and some other types of domination can be described with the aid of distance in graphs. We denote
the distance (the length of a shortest path) between two vertices u and v in a graph G by d(u, v). The greatest distance
from a vertex v to a vertex of G is its eccentricity, denoted by e(v). The minimum eccentricity among the vertices of G is the
radius rad(G) of G and the maximum eccentricity is the diameter diam(G). Therefore, the diameter of G is the maximum
distance between any two vertices of G. In total domination, a vertex u dominates a vertex v if d(u, v) = 1. For a total
dominating set S in a nontrivial connected graph G, one can think of assigning each vertex of S the label 1 and assigning
no label to the vertices of G not in S. Thus, if u ∈ S, then u is labeled 1, indicating that u dominates all vertices of G whose
distance from u is 1. Thus, every vertex of G has distance 1 from a vertex of S.

In [9], a generalization of (total) domination was introduced called orbital domination. For a positive integer r and a
vertex v in a connected graph G, the r-orbit Or(v) of v is Or(v) = {u ∈ V (G) : d(u, v) = r}. A set S = {u1, u2, . . . , uk} of
vertices in a nontrivial connected graph G is an orbital dominating set of G if each vertex ui ∈ S can be labeled with a
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positive integer ri, where ri ≤ e(ui), such that
⋃k

i=1Ori(ui) = V (G). Thus, if S is an orbital dominating set of G, then for
every vertex v of G, there exists a vertex ui in S such that d(ui, v) = ri. Here, ui is said to dominate v. The minimum
cardinality of an orbital dominating set is denoted by γo(G), called the orbital domination number of G. This concept has
been studied further in [5].

If all labels of an orbital dominating set S are the same positive integer r, then S is an r-regular orbital dominating set. It
was shown in [9] that a nontrivial connected graph G has an r-regular orbital dominating set if and only if 1 ≤ r ≤ rad(G).
If r = 1, then S is a total dominating set. At the other extreme, if no two vertices of an orbital dominating set S have
the same label, then S is an irregular orbital dominating set or, more simply, an irregular dominating set. This concept
was introduced and studied in [4] and studied further in [3, 6]. While every nontrivial connected graph has an orbital
dominating set (indeed, a total dominating set), not every graph has an irregular dominating set.

Proposition 1.1. [6] No connected vertex-transitive graph has an irregular dominating set.

If G is a graph possessing an irregular dominating set, then the minimum cardinality of such a set in G is the irregular
domination number γ̃(G) of G. Thus, γo(G) ≤ γ̃(G) for every graph G possessing an irregular dominating set. If S is an
orbital dominating set where exactly two vertices of S have the same label, then S is an antiregular orbital dominating set
or, more simply, an antiregular dominating set. If a graph has an irregular dominating set, then it also has an antiregular
dominating set, but not conversely. If a graph G possesses an antiregular dominating set, then the minimum cardinality
of such a set in G is the antiregular domination number γA(G) of G.

The primary goal here concerns investigating graphs that possess irregular or antiregular dominating sets and deter-
mining the irregular domination and antiregular domination numbers of these graphs. These concepts are members of
classes of concepts which are opposite in a sense to those that deal with regularity in graphs. Many of these irregularity
topics are discussed in [1].

While there are well-known classes of graphs that do not possess irregular dominating sets, including vertex-transitive
graphs as mentioned in Proposition 1.1, such sets exist in nearly all trees.

Theorem 1.1. [4] A nontrivial tree T has an irregular dominating set if and only if T is neither a star nor a path of order 2

or 6.

2. Graphs of small diameter

First, we investigate the irregular and antiregular domination numbers of graphs of small diameter. If S = {v1, v2, . . . , vk}
is an orbital dominating set in a graph G and f is the corresponding labeling, then (f(v1), f(v2), . . . , f(vk)) is called an
orbital sequence of G. An orbital sequence of length γo(G) is a minimum orbital sequence. It is easy to see that 1, 1 is the
only orbital sequence of length 2 in any nontrivial connected graph. Thus, we have the following observation.

Observation 2.1. Let G be a nontrivial connected graph. Then γo(G) = 2 if and only if γA(G) = 2 and so γA(G) = 2 if and
only if γt(G) = 2. Consequently, if γA(G) = 2, then diam(G) ≤ 3.

Chartrand, Henning, and Schultz [5] obtained the following two results concerning minimum orbital sequences of
length 3.

Theorem 2.1. [5] The only minimum orbital sequences (r1, r2, r3) where r1 ≤ r2 ≤ r3 of length 3 in connected graphs are
(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 1, 4), (1, 2, 2), (1, 2, 3), (2, 2, 2), (2, 2, 3), (2, 3, 3), and (3, 3, 3).

Theorem 2.2. [5] The only minimum orbital sequences (r1, r2, r3), r1 ≤ r2 ≤ r3, of length 3 in trees are (1, 1, 1), (1, 1, 3),
(1, 1, 4), and (1, 2, 3).

If S = {v1, v2, . . . , vk} is an irregular dominating set in a graphG and f is the corresponding labeling, then (f(v1), f(v2), . . . , f(vk))

is called an irregular dominating sequence or, more simply, an irregular sequence ofG. An irregular sequence of length γ̃(G)

is a minimum irregular sequence. An antiregular sequence and a minimum antiregular sequence of a graph are defined
similarly. The following are consequences of Theorems 2.1 and 2.2.

Corollary 2.1. If s is an irregular sequence of length 3 in a connected graph, then the three terms of s are 1, 2, 3.

Corollary 2.2. If s = (r1, r2, r3) is a minimum antiregular sequence of length 3 in a connected graphG, where r1 ≤ r2 ≤ r3,
then s is one of (1, 1, 2), (1, 1, 3), (1, 1, 4), (1, 2, 2), (2, 2, 3), and (2, 3, 3). Furthermore, if G is a tree, then s is either (1, 1, 3) or
(1, 1, 4).
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If G is a connected graph of diameter 2 with γA(G) = 3, then there is no restriction on the structure of the subgraph
of G induced by an antiregular dominating set of size 3.

Observation 2.2. For every graph F ∈ {K3,K2 + K1, P3,K3} of order 3, there exists a connected graph G of diameter 2

with γA(G) = 3 for which G has an antiregular dominating set S such that G[S] ∼= F .

Observation 2.2 can be illustrated with a single graph. The graph G of Figure 1 has diameter 2 and γA(G) = 3 and the
subgraphs ofG induced by the four minimum antiregular dominating sets shown in that figure are the four non-isomorphic
graphs of order 3. The following result characterizes those connected bipartite graphs having irregular domination num-
ber 3.

1

1 22

2

2

1

2

1

1

2 1

Figure 1: Four minimum antiregular dominating sets in a graph G.

Theorem 2.3. Let G be a connected bipartite graph. Then γ̃(G) = 3 if and only if (i) some vertex in a partite set U of G is
adjacent to every vertex in the other partite set W and (ii) there exists a vertex w ∈ W that is not adjacent to a vertex u ∈ U
but N(w) ⊆ O2(u).

Proof. First, assume that there is v ∈ U that is adjacent to every vertex in W and there is w ∈ W that is not adjacent to
some vertex u ∈ U and N(w) ⊆ O2(u). In particular, v ∈ N(w) and d(u,w) = 3. Define a labeling f of G by assigning the
label 1 to v, the label 2 to u, and the label 3 to w. Then each vertex of W is dominated by v, each vertex of N(w) ⊆ U is
dominated by u, and every vertex in U −N(w) is dominated by w. Thus, f is an irregular dominating labeling of G and so
γ̃(G) = 3.
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Figure 2: A step in the proof of Theorem 2.3.

We now establish the converse. Let G be a connected bipartite graph with γ̃(G) = 3. Since γ̃(G) = 3, it follows by
Corollary 2.1 that there is an irregular dominating labeling g of G that assigns 1, 2, 3 to three vertices of G. If x is a labeled
vertex and g(x) = r, then (i) Or(x) ⊆ U or Or(x) ⊆ W and (ii) x and Or(x) belong to the same partite set if and only if r is
even. Since there are exactly three labeled vertices of G, some labeled vertex must dominate all vertices in one partite set
ofG and the other two labeled vertices dominate all vertices in the other partite set ofG. We may assume that v is a labeled
vertex that dominates all vertices of W . Since v does not dominate itself, v ∈ U . Because every neighbor of v belongs to W
and the distance from v to these vertices is 1, the vertex v must be labeled 1, implying that v is adjacent to every vertex
of W . At this stage, every vertex of W is dominated, in fact by v, and no vertex of U is dominated. In particular, v is not
dominated.

Because every vertex of W is adjacent to v and the label 1 has already been assigned, no vertex of W can dominate v.
Therefore, v can only be dominated by a vertex of U . Since the distance from a vertex of U − {v} to v is 2, some vertex
of U − {v} must be labeled 2. Let u ∈ U − {v} such that g(u) = 2. Thus, u dominates all vertices of U at distance 2 from u,
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including v. At this stage, no vertex in the set U −O2(u) is dominated. In particular, u is not dominated. By Corollary 2.1,
there must be a vertex w ∈W that is labeled 3 and dominates the remaining vertices of U , namely all vertices in U−O2(u).
Hence, d(u,w) = 3 and w is not adjacent to u. Since a vertex in N(w) ⊆ U cannot be dominated by v or by w, it follows that
each vertex in N(w) is dominated by u and so N(w) ⊆ O2(u). Consequently, G has the desired property.

Suppose that G is a connected bipartite graph with γ̃(G) = 3. By Theorem 2.3, there is a vertex v in one partite set U
of G that is adjacent to all vertices in the other partite set W of G. If x, y ∈ U , where x, y 6= v, then d(v, x) = d(v, y) = 2 and
so d(x, y) = 2 or d(x, y) = 4. The following corollary is therefore a consequence of Theorem 2.3.

Corollary 2.3. If G is a connected bipartite graph with γ̃(G) = 3, then diam(G) ∈ {3, 4}.

Figure 3 shows two graphs G with γ̃(G) = 3, one of which has diameter 3 while the other has diameter 4.

3

3 1 2 1 2

Figure 3: Two graphs G with γ̃(G) = 3.

By Observation 2.1, if G is a nontrivial connected graph, then γA(G) = 2 if and only if γt(G) = 2. For example, if
G = F � K2, where F is a graph with γ(F ) = 1, or G = F ∨ H (the join of two graphs F and H), then γt(G) = 2 and so
γA(G) = 2. Every complete bipartite graph has total domination number 2 and so has an antiregular dominating set. The
only connected bipartite graphs of diameter 2 and girth 4 are the complete bipartite graphsKr,s where r, s ≥ 2, all of which
have an antiregular dominating set. Thus, if there exists a connected graph G of diameter 2 other than C5 that does not
have an antiregular dominating set, then it must have girth 3 or 5 or it is a non-bitartite graph of girth 4. The famous
Petersen graph and the 7-regular Hoffman-Singleton graph both have diameter 2 and girth 5 and each has antiregular
dominating sets. In fact, for both graphs, any three neighbors of any vertex that are labeled 1, 2, 2 is a minimum antiregular
dominating set. This is shown for the Petersen graph in Figure 4. It is not known if there exists a 57-regular graph of
diameter 2 and girth 5 but if such a graph exists, then it too possesses a minimum antiregular dominating set of the same
type. We have the following conjecture.

2

1

2

Figure 4: An antiregular dominating labeling of the Petersen graph.

Conjecture 2.1. If G is a graph of diameter 2 and G 6= C5, then G has an antiregular dominating set.

If a graph of diameter 2 has a vertex of sufficiently small degree or sufficiently large degree, then it must have an
antiregular dominating set. The following result will be useful in establishing this fact.

Lemma 2.1. Let G be a graph of diameter 2. If G contains two adjacent vertices u and v such that either (1) every vertex
different from u or v is a neighbor of u or v or (2) every neighbor of u different from v is a neighbor of v or every neighbor
of v different from u is a neighbor of u, then G has an antiregular dominating set.

Proof. First, suppose that (1) occurs. Then {u, v} is a total dominating set ofG and so γt(G) = γA(G) = 2 by Observation 2.1.
Next, suppose that (1) does not occur but (2) occurs, say every neighbor of u different from v is a neighbor of v. Since (1)
does not occur, there is a neighbor w of v that is not neighbor of u. Then the labeling f : {u, v, w} → {1, 2} defined by
f(u) = 2 and f(v) = f(w) = 1 is an antiregular dominating labeling of G.

Theorem 2.4. Let G be a graph of order n ≥ 4 and diameter 2 such that G 6= C5. If δ(G) ≤ 2 or ∆(G) ≥ max{3, n− 4}, then
G has an antiregular dominating set.
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Proof. First, suppose that δ(G) ≤ 2. Since G 6= C5, there is v ∈ V (G) such that deg v = δ(G) and v is adjacent to a vertex u
of degree 3 or more. If deg v = 1, then every vertex different from u is a neighbor of u and so {u, v} is a total dominating set
of G. Thus, γA(G) = 2 by Observation 2.1. If deg v = 2, let N(v) = {u,w}. Since diam(G) = 2, every vertex different from u

or w is a neighbor of u or w. If uw ∈ E(G), then G has an antiregular dominating set by Lemma 2.1. Thus, we may assume
that uw /∈ E(G). First, suppose that there is a vertex x1 different from v that is adjacent to both u and w. Since deg u ≥ 3,
there is a neighbor x2 of u different from x1 such that d(x2, v) = 2. Then the labeling f : {v, x1, x2} → {1, 2} defined by
f(x1) = 1 and f(v) = f(x2) = 2 is an antiregular dominating labeling of G. Next, suppose that there is no vertex different
from v that is adjacent to both u and w. Since deg u ≥ 3, there are two distinct neighbors x1 and x2 of u different from v.
Then the labeling f : {v, x1, x2} → {1, 2} defined by f(x1) = 1 and f(v) = f(x2) = 2 is an antiregular dominating labeling
of G.

Next, suppose that ∆(G) ≥ max{3, n−4}. Let uv ∈ E(G) such that deg u = ∆(G) and deg v = max{degw : w ∈ N(u)}. By
Lemma 2.1, we may assume that there is x ∈ N(u)−{v} such that x /∈ N(v) and there is y ∈ N(v)−{u} such that y /∈ N(u).
Let X be the set of neighbors of u distinct from v that are not neighbors of v and let Y be the set of neighbors of v distinct
from u that are not neighbors of u. Thus, x ∈ X and y ∈ Y . Also, let Z = N(u) ∩ N(v) and let S = V (G) − [N(u) ∪ N(v)].
By Lemma 2.1, we may assume that S is not empty. Thus, X,Y and S are not empty, while Z may be empty. Hence,
∆(G) = deg u = n−1− (|Y |+ |S|) ≤ n−3. Since diam(G) = 2, every vertex of S is adjacent to at least one vertex inX∪Z∪Y
and d(u, s) = d(v, s) = 2 for each s ∈ S. See Figure 5.
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Figure 5: A step in the proof of Theorem 2.4.

(1) If there is w ∈ X ∪ Z that is adjacent to every vertex of Y or there is w ∈ Z ∪ Y that is adjacent to every vertex
of X, say the latter, then the labeling f : {u, v, w} → {1, 2} defined by f(u) = 2 and f(v) = f(w) = 1 is an antiregular
dominating labeling of G.

(2) If there is w ∈ X ∪Z ∪Y such that w is not adjacent to any vertex of S, then the labeling f : {u, v, w} → {1, 2} defined
by f(u) = f(v) = 1 and f(w) = 2 is an antiregular dominating labeling of G.

By (1) and (2), we may assume that G satisfies the following two conditions:

(i) For every w ∈ X ∪Z, there is y ∈ Y such that wy /∈ E(G) and for every w ∈ Z ∪Y , there is x ∈ X such that wx /∈ E(G).

(ii) Every vertex in X ∪ Z ∪ Y is adjacent to some vertex of S.

Since ∆(G) = deg u = n− 1− (|Y |+ |S|) ≥ n− 4 and Y and S are nonempty sets, it follows that |Y |+ |S| ≤ 3 and so either
|Y | = 1 or |S| = 1. First, suppose that |Y | = 1. Let Y = {y} and |S| ∈ {1, 2}. By (i), the vertex y is not adjacent to any vertex
x ∈ X and so d(x, y) = 2 for each x ∈ X. If deg v ≥ 3, then let w ∈ N(v)−{u, y} and the labeling f : {u,w, y} → {1, 2} defined
by f(w) = 1 and f(u) = f(y) = 2 is an antiregular dominating labeling of G. If deg v = 2, then Z = ∅, |X| ≥ 2, and deg x = 2

for each x ≥ X by (ii). Let x1, x2 ∈ X. The labeling f : {v, x1, x2} → {1, 2} defined by f(x1) = 1 and f(v) = f(x2) = 2 is an
antiregular dominating labeling of G. Next, suppose that |S| = 1 and |Y | = 2. Let S = {s}. By (ii), the vertex s is adjacent
to every vertex in X ∪Z ∪Y . If Z 6= ∅, then N(s)∪N(z) = V (G) for each vertex z ∈ Z and so γt(G) = γA(G) = 2. Hence, we
may assume that Z = ∅ and so |X| ≥ 2. Let x1, x2 ∈ X. Then the labeling f : {s, x1, x2} → {1, 2} defined by f(s) = f(x1) = 1

and f(x2) = 2 is an antiregular dominating labeling of G.

Conjecture 2.2. If G is a graph of order n ≥ 9 and diameter 2 such that ∆(G) = n − 5, then G has an antiregular
dominating set.

By Theorem 2.4, if there should exist a graph G of order n ≥ 8 and diameter 2 that has no antiregular dominating
labeling, then 3 ≤ deg v ≤ n− 5 for every vertex v of G. In the case where n = 8, there are two 3-regular graphs of order 8
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and diameter 2 (shown in Figure 6), each of which has an antiregular dominating labeling (also shown in Figure 6). Hence,
if there is a graph of diameter 2 (different from the cycle of order 5) with no antiregular dominating labeling, then it has
order 9 or more.

2

2 2

1 2

1

Figure 6: Two 3-regular graphs of order 8 and diameter 2.

3. Antiregular domination in paths

We saw in Theorem 1.1 that none of P2, P3 and P6 has an irregular dominating labeling, while all other paths do. The
irregular domination numbers of all paths Pn of order n with 4 ≤ n ≤ 26 and n 6= 6 have been determined in [3], namely

γ̃(Pn) =



n− 1 if n = 4, 5

n+2
2 if n = 10

n+3
2 if n is odd and 7 ≤ n ≤ 25

n+4
2 if n is even, 8 ≤ n ≤ 26, and n 6= 10.

We now turn our attention to antiregular domination numbers of paths. All nontrivial paths possess an antiregular
dominating labeling. The path P6, which has no irregular dominating labeling, has an antiregular dominating labeling in
which any number in the set [5] is repeated. This is illustrated in Figure 7.

1

5 1 1 4

2 2 1 3

5 3

4 1 2 4 3

5 3 51 2

3 2

Figure 7: Antiregular dominating labelings of P6.

In order to establish a lower bound for antiregular domination numbers of paths, we first present an observation
concerning bipartite graphs.

Observation 3.1. Let G be a nontrivial connected bipartite graph with partite sets U and W and let f be an irregular
dominating labeling of G. If x is a labeled vertex and f(x) = r, then (i) Or(x) ⊆ U or Or(x) ⊆W and (ii) x and Or(x) belong
to the same partite set if and only if r is even. Consequently, if a labeled vertex dominates two vertices u and v, then d(u, v)

is even.

Theorem 3.1. For each integer n ≥ 5,

γA(Pn) ≥ d(n+ 1)/2e =

{
n+1
2 if n is odd

n+2
2 if n is even.

Proof. Let Pn = (u0, u1, . . . , un−1) be a path of order n ≥ 5. Assume, to the contrary, that there is either an odd integer n ≥ 5

such that γA(Pn) < n+1
2 or an even integer n ≥ 6 such that γA(Pn) < n+2

2 . We consider these two cases.

Case 1. n is odd. Then n = 2k + 1 for some integer k ≥ 2 and
⌈
n+1
2

⌉
= n+1

2 = k + 1. Thus, there is a minimum antiregular
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dominating labeling f of P2k+1 using at most k labels from the set [2k]. If f(v) ∈ [k], then v dominates one or two vertices
of P2k+1 (according to the location of v). If f(v) ∈ {k + 1, k + 2, . . . , 2k} = [k + 1, 2k], then v dominates at most one vertex
of P2k+1. Thus, these k labeled vertices can dominate at most 2k vertices of P2k+1, which is a contradiction.

Case 2. n is even. Let n = 2k+ 2 for some integer k ≥ 2. Then
⌈
n+1
2

⌉
= n+2

2 = k+ 2. Thus, there is a minimum antiregular
dominating labeling f of P2k+2 using at most k + 1 labels from the set [2k + 1]. If f(v) ∈ [k], then v dominates one or two
vertices of P2k+2. If f(v) ∈ [k + 1, 2k + 1], then v dominates at most one vertex of P2k+2. This implies that (i) f(v) ∈ [k]

for every labeled vertex v of P2k+2, (ii) there is a ∈ [k] such that exactly two vertices of P2k+2 are labeled a, (iii) for each
b ∈ [k]−{a}, there is exactly one vertex of P2k+2 labeled b, and (iv) no vertex of P2k+2 is dominated by more than one vertex
and every vertex dominates two vertices. Furthermore, any subset of ` vertices labeled from elements of the set [k] must
dominate 2` vertices of P2k+2. If f(v) = k and v dominates two vertices of P2k+2, then v ∈ {uk, uk+1}. By symmetry, we
may assume that f(uk) = k and uk dominates u0 and u2k. Since a vertex labeled k − 1 must dominate exactly two vertices
in V (P2k+2)− {u0, u2k}, this forces f(uk+2) = k − 1 and uk+2 dominates u3 and u2k+1.

If k = 2 (and n = 6), then the 3rd labeled vertex cannot dominate u1 and u2, a contradiction. If k = 3 (and n = 8), then the
vertex labeled 1 cannot dominate two vertices in {u1, u2, u4, u5} not already dominated, a contradiction. Hence, k ≥ 4. This
forces f(uk−1) = k−2 and uk−1 dominates u1 and u2k−3 and f(uk+1) = k−3 and uk+1 dominates u4 and u2k−2. If k = 4 (and
n = 10), then the 5th labeled vertex cannot dominate the remaining two undominated vertices u2 and u7, a contradiction.
If k = 5 (and n = 12), then the vertex labeled 1 cannot dominate two of the four undominated vertices u2, u5, u6, u9, a
contradiction. Hence, k ≥ 6. Then either f(uk+3) = k−4 or f(uk−2) = k−4. If k = 6 (and n = 12), then the vertex labeled 1
cannot dominate the two undominated vertices, a contradiction. Thus, we may assume that k ≥ 7. If f(uk+3) = k − 4,
then uk+3 dominates u7 and u2k−1. Since the vertex labeled k − 5 must dominate two undominated vertices, this forces
f(uk−3) = k − 5 and uk−3 dominates u2 and u2k−8. If f(uk−2) = k − 4, then uk−2 dominates u2 and u2k−6. Since the vertex
labeled k − 5 must dominate two undominated vertices, this forces f(uk+4) = k − 5 and uk+4 dominates u9 and u2k−1. In
either case, if i ∈ {0, 1, 2, 3, 4}∪{2k−3, 2k−2, 2k−1, 2k, 2k+ 1}, then ui is already dominated. Hence, there is no unlabeled
vertex that can be labeled k − 6 and dominates two vertices not already dominated, which is impossible.

While equality in Theorem 3.1 holds for n = 5, 6, 7, 8, 10, 12 (as a minimum antiregular dominating labeling of Pn is
given in Figure 8 for each n ∈ {5, 6, 7, 8, 10, 12}), strict inequality holds for n = 9 and n = 11.

6

n = 5, 6

n = 7

n = 8

n = 10

n = 12

3 1 2 2

3 1 12

3 1 5 2 1

1 5 2 3 1

1 5 3 1 2 9

4 1 1

4

Figure 8: Antiregular dominating labelings of Pn for n = 5, 6, 7, 8, 10, 12.

Proposition 3.1. γA(P9) = 6 and γA(P11) = 7.

Proof. The antiregular dominating labelings of P9 and P11 in Figure 9 shows that γA(P9) ≤ 6 and γA(P11) ≤ 7. By Theo-
rem 3.1, γA(P9) ≥ 5 and γA(P11) ≥ 6. It remains to show that γA(P9) 6= 5 and γA(P11) 6= 6. We will only verify γA(P9) 6= 5

since the argument for γA(P11) 6= 6 is similar.

n = 11

813214

5 3 1 4 2 3 7

n = 9

Figure 9: Antiregular dominating labelings of P9 and P11.

Let P9 = (v1, v2, . . . , v9). Assume, to the contrary, that there is an antiregular dominating labeling f of P9 in which five
vertices are labeled. Since a labeled vertex can dominate at most two vertices of P , there must be four labeled vertices
that dominate eight vertices of P . By Observation 3.1, if a labeled vertex dominates two vertices vi and vj of P , then
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d(vi, vj) = |i−j| is even and so i and j are of the same parity. LetX be the set of four labeled vertices of P that dominate eight
vertices of P . Then the vertices of X must dominate all the vertices v2, v4, v6, v8 and four of the five vertices v1, v3, v5, v7, v9.
Furthermore, each vertex ofX must dominate one pair of vertices in {v2, v4, v6, v8} or one pair of vertices in {v1, v3, v5, v7, v9}.

v9

.......
..........

...............................................................
.......
.. .......

..........
...............................................................
.......
.. .......

..........
...............................................................
.......
..qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq .......

..........
...............................................................
.......
..

v1 v2 v3 v4 v5 v6 v7 v8

.......
..........

...............................................................
.......
..

The two vertices in X that dominate v2, v4, v6, v8 produce a partition of {v2, v4, v6, v8} into two 2-element subsets. There
are three possible such partitions:

(a) {v2, v4}, {v6, v8}, (b) {v2, v6}, {v4, v8}, and (c) {v2, v8}, {v4, v6}.

If (a) occurs, then f(v3) = f(v7) = 1; if (b) occurs, then f(v4) = f(v6) = 2; and if (c) occurs, then f(v5) = 3 and f(v5) = 1,
which is impossible. Thus, only (a) and (b) are possible and so either f(v3) = f(v7) = 1 or f(v4) = f(v6) = 2.

The two vertices of X that dominate four vertices in {v1, v3, v5, v7, v9} produce a partition of these four vertices into two
2-element subsets. By symmetry, there are nine distinct possible partitions:

(1) {v1, v3}, {v5, v7}, (2) {v1, v3}, {v5, v9}, (3) {v1, v5}, {v7, v9},
(4) {v1, v5}, {v3, v7}, (5) {v1, v5}, {v3, v9}, (6) {v1, v7}, {v3, v5},
(7) {v1, v7}, {v3, v9}, (8) {v1, v9}, {v3, v5}, (9) {v1, v9}, {v3, v7}.

? If (1) occurs, then f(v2) = f(v6) = 1, which is impossible since no label can be used three or more times and no two
labels can be duplicated.

? If (2) occurs, then f(v2) = 1 and f(v7) = 2, which is impossible because no label can be used three times.

? If (3) occurs, then f(v3) = 2 and f(v8) = 1, which is impossible because no label can be used three times.

? If (4) occurs, then f(v3) = f(v5) = 2, which is impossible because no label can be used three or more times and no two
labels can be duplicated.

? If (5) occurs, then f(v3) = 2 and f(v6) = 3. This forces that (a) occurs in which v3 is already labeled 1, a contradiction.

? If (6) occurs, then f(v4) = 3 and f(v4) = 1, which is impossible.

? If (7) occurs, then f(v4) = f(v6) = 3, which is impossible because two labels cannot be duplicated.

? If (8) occurs, then f(v5) = 4 and f(v4) = 1. This forces that (b) occurs in which v4 is already labeled 2, a contradiction.

? If (9) occurs, then f(v5) = 4 and f(v5) = 2, which is impossible.

Consequently, γA(P9) 6= 5 and so γA(P9) = 6.

By Proposition 3.1, if n = 9, 11, then γA(Pn) = γ̃(Pn) = n+3
2 . This gives rise to the following question.

Problem 3.1. Does γA(Pn) = γ̃(Pn) = n+3
2 for all odd integers n ≥ 13?

While each nontrivial path different from P2, P3, and P6 has an irregular dominating labeling, it follows from Proposi-
tion 1.1 that no cycle Cn of order n ≥ 3 has an irregular dominating labeling. Thus, we have the following question: Which
cycles have an antiregular dominating labeling? Not only does the path of size 5 fail to have an irregular dominating
labeling, the cycle of size 5 fails to have an antiregular dominating labeling.

Example 3.1. The 5-cycle C5 does not have an antiregular dominating labeling.

Proof. Assume, to the contrary, thatC5 = (v1, v2, v3, v4, v5, v1) has an antiregular dominating labeling whose corresponding
antiregular dominating labeling is f . Since at least one vertex of C5 must be labeled 2, we may assume that f(v1) = 2.
Thus, v1 dominates v3 and v4. Because v1 cannot dominate itself, it follows that v1 is dominated by a vertex labeled 1 or 2.
First, suppose that v1 is dominated by a vertex labeled 1, say f(v2) = 1. However then, the remaining two undominated
vertices v2 and v5 cannot be dominated by the 3rd labeled vertex (which is not v1), producing a contradiction. Next, suppose
that v1 is dominated by a vertex labeled 2, say f(v3) = 2. The remaining undominated vertex v2 must be dominated by a
vertex labeled 1. Since f(v1) = f(v3) = 2, this is impossible.

It can be shown that for all integers n with 6 ≤ n ≤ 30, the n-cycle Cn has an antiregular dominating labeling. Such a
labeling is shown in Figure 10 for n = 29 and n = 30. In fact, we have the following conjecture.

Conjecture 3.1. For each integer n ≥ 6, the n-cycle Cn has an antiregular dominating labeling.
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Figure 10: Antiregular dominating labelings of C29 and C30.

4. Antiregular domination in trees

In Section 3, we discussed antiregular domination in paths. We now turn our attention to trees in general. For an integer
d ≥ 3, let T̃d denote the unique tree (up to isomorphism) of largest order having diameter d with the property that there
is a longest path P in T̃d such that each interior vertex of P has degree 3 and all other vertices of T̃d have degree 1 or 2.
Figure 11 shows the trees T̃d of diameter d = 3, 4, 5, 6.

Figure 11: The trees T̃d of diameter d = 3, 4, 5, 6.

Lemma 4.1. Let T be a tree of diameter d and let P be a longest path in the tree T̃d of diameter d ≥ 3 each of whose interior
vertices has degree 3 in T̃d. If f is an antiregular dominating labeling of T̃d such that each labeled vertex of T̃d belongs to P ,
then f gives rise to an antiregular dominating labeling f ′ of T such that f and f ′ have the same set of labels.

Proof. Let P = (u0, u1, u2, . . . , ud) be a longest path in T̃d, where ui is adjacent to the vertex wi not on P andBi is the branch
(path) at ui containing uiwi for 1 ≤ i ≤ d − 1. Let f be an antiregular dominating labeling of T̃d such that each labeled
vertex of T̃d belongs to P . Next, let T be a tree of diameter d ≥ 3 and let P ′ = (u′0, u

′
1, u
′
2, . . . , u

′
d) be a longest path in T .

Denote the set of all labeled vertices of T̃d by X. Thus, X ⊆ V (P ). Let X ′ = {x′ : x ∈ X}. Then X ′ ⊆ V (P ′). Define a
labeling f ′ : X ′ → [d] of T by f ′(x′) = f(x) for each x′ ∈ X ′ and all vertices in V (T ) −X ′ are not labeled. We show that f ′
is an antiregular dominating labeling of T . Let v′ ∈ V (T ). We show that v′ is dominated by a vertex of X ′.

? If v′ ∈ V (P ′), then v′ = u′i for some integer i with 0 ≤ i ≤ d. Since f is an antiregular dominating labeling of T̃d, it
follows that ui is dominated by a vertex x ∈ X in T̃d. Since dT̃d

(ui, x) = dT (u′i, x
′) and f(x) = f ′(x′), it follows that u′i

is dominated by x′ ∈ X ′.

? If v′ /∈ V (P ′), then v′ belongs to a branch B′i at u′i for some integer i with 1 ≤ i ≤ d− 1 such that V (B′i)∩V (P ′) = {u′i}.
Suppose that dT (v′, u′i) = j ≥ 1. Let Bi be the branch at ui in T̃d containing uiwi and let v ∈ V (Bi) such that
dT̃d

(v, ui) = j. Then v is dominated by a vertex x ∈ X in T̃d. Since dT̃d
(ui, x) = dT (u′i, x

′), it follows that dT̃d
(v, x) =

j+dT̃d
(u′i, x

′) = j+dT (ui, x) = dT (v′, x′). Furthermore, f(x) = f ′(x′). Hence, v′ is dominated by a vertex x′ ∈ X ′ in T .

Therefore, f ′ is an antiregular dominating labeling of T and f and f ′ have the same set of labels.

Theorem 4.1. If T is a tree of diameter d ≥ 3, then γA(T ) ≤ γA(Pd+1).

Proof. By Lemma 4.1, it suffices to show that T̃d has an antiregular dominating labeling for every integer d ≥ 3 such that
every labeled vertex of T̃d belongs to a longest path P in T̃d in which every interior vertex of P has degree 3 in T̃d. We
proceed by induction to verify the following statement.
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For each integer d ≥ 3, there is an antiregular dominating labeling f of T̃d such that (1) all labeled vertices of T̃d
belong to a longest path P , each of whose interior vertices has degree 3, and (2) at least one end-vertex of P is
not labeled by f .

Figure 12 shows an antiregular dominating labeling with the desired properties for the tree T̃3. Thus, the statement holds
for d = 3. Suppose that the statement holds for the tree T̃d for some integer d ≥ 3. We show that the statement also holds
for the tree T̃d+1.

11

Figure 12: An antiregular dominating labeling for T̃3.

Let T = T̃d+1 and let P = (u0, u1, . . . , ud+1) ∼= Pd+2 be a longest path (of diameter d + 1) in T such that each interior
vertex of P has degree 3 in T . For 1 ≤ i ≤ d, let Bi be the branch (path) of T at ui such that V (Bi) ∩ V (P ) = {ui}. Let
P ′ = (u0, u1, . . . , ud) = P − {ud+1} ∼= Pd+1 and let T ′ ∼= T̃d be the subtree of T with longest path P ′ such that each interior
vertex of P ′ has degree 3 in T ′. By the induction hypothesis, there is an antiregular dominating labeling f ′ of T ′ using
elements from the set [d] such that (1) all labeled vertices of T ′ belong to P ′ and (2) at least one end-vertex of P ′ is not
labeled by f ′. We may assume that u0 is not labeled by f ′. We now extend the labeling f ′ of the subtree T ′ to a labeling f
of T by assigning the label d + 1 to u0. This is illustrated in Figure 13 for d = 3, 4, 5, 6, where T̃d is obtained from T̃d+1 by
deleting those vertices and edges of T̃d+1 indicated in bold and the labeling f ′ of T̃d of Figure 13 is extended to a labeling f
of T̃d+1 by defining f(u0) = d+ 1. Since f ′ is an antiregular dominating labeling, so is f .

6

1 1 1 14

4115 5114

Figure 13: Antiregular dominating labelings of T̃d of diameter d = 3, 4, 5, 6.

The following result gives an upper bound for the diameter of a tree having a given antiregular domination number.

Theorem 4.2. If T is a tree with γA(T ) = k, then

diam(T ) ≤

{
2k − 1 if k is even
2k − 2 if k is odd.

Proof. We consider two cases, according to whether k is even or k is odd.

Case 1. k is even. Since each labeled vertex dominates at most two vertices on a path of order diam(T ) + 1, it follows that
diam(T ) + 1 ≤ 2k.

Case 2. k is odd. Assume, to the contrary, that there is a tree with γA(T ) = k for some odd integer k ≥ 3 such that diam(T ) ≥
2k − 1. Then T contains a path P = (u1, u2, . . . , u2k) of order 2k. Let U1 = {u1, u3, . . . , u2k−1} and U2 = {u2, u4, . . . , u2k}.
Thus, |U1| = |U2| = k. Since γA(T ) = k, there is an antiregular dominating labeling of T using exactly k − 1 distinct labels
from the set [2k − 1] and one of these label is used exactly twice. Necessarily, each of these k labeled vertices of T must
dominate two vertices of P and the set of pairs of vertices of P dominated by a labeled vertex of T must result in a partition
of V (P ). If {ui, uj} is a pair of vertices dominated by a labeled vertex of T , then d(ui, uj) = |i− j| must be even. Therefore,
either {ui, uj} ⊆ U1 or {ui, uj} ⊆ U2. However, since both U1 and U2 consist of an odd number of vertices, such a labeling is
impossible.
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As a consequence of Theorem 4.2, we then have the following result.

Corollary 4.1. If T is a nontrivial tree, then

γA(T ) ≥


diam(T ) + 1

2
if γA(T ) is even

diam(T ) + 2

2
if γA(T ) is odd.
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