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Abstract

For a nonnegative integer r, the r-orbit Or(v) of a vertex v in a connected graph G of order n and diameter d is the set of
vertices at distance r from v. Let S = {v1, v2, . . . , vk} be a set of vertices of G where 3 ≤ k ≤ n and let f : S → {1, 2, . . . , d}
be a labeling of the vertices of S defined by f(vi) = ri for 1 ≤ i ≤ k. If ri 6= rj for every pair i, j of integers with 1 ≤ i, j ≤ k
and

⋃k
i=1Ori(vi) = V (G), then S is an irregular dominating set for G and f is an irregular dominating labeling for G. The

minimum cardinality of an irregular dominating set of G is the irregular domination number γ̃(G) of G. It is known that
a nontrivial tree T has an irregular dominating labeling if and only if T is neither a star nor a path of order 2 or 6. In this
work, we establish bounds for the irregular domination numbers of trees and present structural characterizations of those
trees having a small irregular domination number. Irregular dominating labelings of such trees are also determined.
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1. Introduction

Domination in graphs has become a popular area of study in recent decades. The book by Haynes, Hedetniemi, and
Slater [7] is entirely devoted to this area. While the basic concept of domination is quite simple, many variations and
generalizations of domination have been studied over the years. A vertex u in a graph G is said to dominate a vertex v if
either u = v or uv ∈ E(G), that is, a vertex u dominates the vertices in its closed neighborhoodN [u] = N(u)∪{u}. A set S of
vertices in G is a dominating set of G if every vertex of G is dominated by at least one vertex in S. The minimum number of
vertices in a dominating set of G is the domination number γ(G) of G. There are domination parameters defined in terms
of distance and vertex orbits in graphs which provides a more general setting for domination in graphs. We refer to the
books [4,7] for graph theory notation and terminology not described here.

Of the many variations of domination that have been introduced, probably the most common and most studied is total
domination introduced by Cockayne, Dawes and Hedetniemi [5]. In total domination, a vertex u dominates a vertex v in
a graph G if uv is an edge of G. A set S of vertices in a graph G is a total dominating set of G if for every vertex v of G,
there is a vertex u ∈ S such that u dominates v. The minimum cardinality of a total dominating set for G is the total
domination number γt(G) of G. A graph G has a total domination number if and only if G has no isolated vertices. Here
we only consider nontrivial connected graphs.

Total domination and other types of domination can be described in terms of distance in graphs. Let G be a nontrivial
connected graph. The distance d(u, v) between vertices u and v in G is the minimum number of edges in a u − v path in
G. The eccentricity e(v) of a vertex v of G is the distance between v and a vertex farthest from v in G. The radius rad(G)

of G is the minimum eccentricity among the vertices of G and the diameter diam(G) of G is the maximum eccentricity.
Equivalently, the diameter of G is the greatest distance between any two vertices of G. In total domination, a vertex u
dominates a vertex v if d(u, v) = 1. For a total dominating set S in a nontrivial connected graph G, one can think of
assigning each vertex of S the label 1 and assigning no label to the vertices of G not in S. Thus, if u ∈ S, then u is labeled 1,
indicating that u dominates all vertices of G whose distance from u is 1.

In [6], a generalization of (total) domination was introduced called orbital domination. For a nonnegative integer r,
the r-orbit Or(v) of a vertex v in G is the set of vertices at distance r from v. This is sometimes referred to as the r-step
neighborhood of v. Thus, O0(v) = {v}, O1(v) = N(v), and

⋃e(v)
r=0 Or(v) = V (G). For orbital domination of a nontrivial

connected graph G, a set S of vertices of G is sought where there is defined a labeling f of the vertices of S such that for
u ∈ S, the label f(u) of u is a positive integer with f(u) ≤ e(u). The vertex u then dominates a vertex v if d(u, v) = f(u),
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that is, u dominates all vertices of G whose distance from u is f(u). Equivalently, u dominates all vertices in the f(u)-orbit
of u. The minimum cardinality of such a dominating set of G is the orbital domination number γo(G) of G. Since 1 is a
possible label for any vertex of G, the orbital domination number exists for every nontrivial connected graph G; indeed,
γo(G) ≤ γt(G).

In [2], a more restricted version of orbital domination was introduced called irregular domination, which deals with
the area of irregularity in graphs discussed in [1]. For irregular domination of a nontrivial connected graph G, a set S of
vertices of G is sought where there is defined a labeling f of the vertices of S with distinct positive integers in such a way
that for every v of G, there is u ∈ S such that d(u, v) = f(u). More formally, for a connected graph G of order n ≥ 3, we seek
a set S = {v1, v2, . . . , vk} of vertices of G where 3 ≤ k ≤ n on which can be defined a labeling (a one-to-one function) f on S
by f(vi) = ri such that ri ≤ e(vi) for 1 ≤ i ≤ k such that

⋃k
i=1Ori(vi) = V (G). Thus, if d = diam(G), then f assigns distinct

labels from the set [d] = {1, 2, . . . , d} to the vertices of S where the remaining vertices of G are unlabeled. Such a set S
is called an irregular orbital dominating set or, more simply, an irregular dominating set for G and the labeling f is an
irregular (orbital) dominating labeling of G. Unlike total domination and the more general orbital domination, however,
irregular dominating labelings are not defined for all nontrivial connected graphs. The primary goal is investigating graphs
that possess irregular dominating labelings. While there are well-known classes of graphs that do not possess irregular
dominating labelings, such as vertex-transitive graphs, such labelings exist for nearly all trees. We write Pn for the path
of order n.

Theorem 1.1. [2] A nontrivial tree T has an irregular dominating labeling if and only if T is none of P2, P6 or a star.

For a nontrivial connected graph G possessing irregular dominating sets, the minimum cardinality of an irregular
dominating set of G is referred to as the irregular domination number of G, denoted by γ̃(G). A irregular dominating
set of cardinality γ̃(G) is a minimum irregular dominating set and its corresponding irregular dominating labeling is a
minimum irregular dominating labeling of G. In this work, we establish bounds for irregular dominating numbers of
trees and present structural characterizations of trees having small irregular domination numbers. Minimum irregular
dominating labelings of these trees are also determined.

2. Irregular domination numbers of trees

The proof of Theorem 1.1 in [2] gives rise to the following result.

Proposition 2.1. If T is a tree of diameter d ≥ 3 and d 6= 5, then γ̃(T ) ≤ γ̃(Pd+1).

Consequently, it would be useful to know the value of irregular domination numbers of paths. In order to obtain
information on irregular domination numbers of paths, we first state an immediate observation.

Observation 2.1. If a connected graph G possessing an irregular dominating set, then

3 ≤ γ̃(G) ≤ diam(G).

Furthermore, if diam(G) = 3, then every irregular dominating labeling uses the labels 1, 2, 3.

It can be shown that γ̃(P4) = 3, γ̃(P5) = 4, γ̃(P7) = 5 and γ̃(Pn) = 6 for n = 8, 9, 10. A minimum irregular dominating
labeling is shown in Figure 1 for each of these paths.

n=4, 5
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Figure 1: Minimum irregular dominating labelings of Pn for n = 4, 5, 7, 8, 9, 10.

For the paths Pn of order n ≥ 11, we present a lower bound for γ̃(Pn) in terms of n. To establish this bound, we first
present two useful observations on irregular dominating labelings of trees.
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Observation 2.2. Let U andW be the partite sets of a nontrivial tree T and let f be an irregular dominating labeling of T .
If x is a labeled vertex with f(x) = r, then (i) Or(x) ⊆ U or Or(x) ⊆W and (ii) x and Or(x) belong to the same partite set if
and only if r is even. Consequently, a labeled vertex cannot dominate two vertices u and w if d(u,w) is odd.

Observation 2.3. Let P be a path of length 2 or more in a tree T . For every irregular dominating labeling of T , a labeled
vertex of T dominates at most two vertices of P .

Theorem 2.1. For each integer n ≥ 11, γ̃(Pn) ≥ d(n+ 3)/2e.

Proof. Let Pn = (u0, u1, . . . , un−1) be a path of order n ≥ 11. Assume, to the contrary, there is either an odd integer n ≥ 11

such that γ̃(Pn) <
n+3
2 or an even integer n ≥ 12 such that γ̃(Pn) <

n+4
2 . We consider these two cases.

Case 1. n is odd. Then n = 2k+ 1 for some integer k ≥ 5 and
⌈
n+3
2

⌉
= n+3

2 = k+ 2. Thus, there is a minimum irregular
dominating labeling f of P2k+1 using at most n+1

2 = k + 1 labels from the set [2k]. If f(v) ∈ [k], then v dominates one or
two vertices of P2k+1 (according to the location of v). If f(v) ∈ {k + 1, k + 2, . . . , 2k} = [k + 1, 2k], then v dominates only
one vertex of P2k+1. This implies that f uses at least k + 1 labels and so f uses exactly k + 1 labels. In order for k + 1

labeled vertices to dominate 2k + 1 vertices, there must be k vertices labeled 1, 2, . . . , k that dominate 2k vertices of P2k+1

and one vertex whose label belongs to [k+1, 2k] that dominates exactly one vertex of of P2k+1. Furthermore, any subset of `
vertices labeled from elements of the set [k] must dominate 2` vertices of P2k+1. If f(v) = k and v dominates two vertices
of P2k+1, then v = uk and v dominates u0 and u2k. If f(w) = k − 1 and w dominates two vertices of P2k+1, then w 6= uk and
so w ∈ {uk−1, uk+1}. However, if f(w) = k − 1 and w ∈ {uk−1, uk+1}, then the two vertices labeled k and k − 1 dominate
exactly three vertices of P2k+1. This is a contradiction.

Case 2. n is even. Let n = 2k+2 for some integer k ≥ 5. Then
⌈
n+3
2

⌉
= n+4

2 = k+3. Thus, there is a minimum irregular
dominating labeling f of P2k+2 using at most k + 2 labels from the set [2k + 1]. If f(v) ∈ [k], then v dominates one or two
vertices of P2k+2. If f(v) ∈ [k+ 1, 2k+ 1], then v dominates only one vertex of P2k+2. This implies that f uses at least k+ 2

labels and so f uses exactly k+2 labels. In order for k+2 labeled vertices to dominate 2k+2 vertices of P2k+2, there must
be k vertices labeled 1, 2, . . . , k that dominate 2k vertices of P2k+2 and two vertices whose label belong to [k+1, 2k+1] that
dominate two vertices of P2k+2. Furthermore, any subset of ` vertices labeled from elements of the set [k] must dominate 2`

vertices of P2k+2. If f(v) = k and v dominates two vertices of P2k+2, then v ∈ {uk, uk+1}. By symmetry, we may assume
that f(uk) = k and uk dominates u0 and u2k. There are three situations, according to k = 5, k = 6 or k ≥ 7.

First, suppose that k = 5 and n = 12. Since f(u5) = 5, this forces f(u7) = 4, f(u4) = 3, and f(u6) = 2. However, no
unlabeled vertex can be labeled 1 to dominate two vertices not already dominated, which is a contradiction. Next, suppose
that k = 6 and n = 14. Since f(u6) = 6, this forces f(u8) = 5, f(u5) = 4, f(u7) = 3, and f(u9) = 2. However, no unlabeled
vertex can be labeled 1 and dominates two vertices not already dominated, which is a contradiction. Finally, suppose that
k ≥ 7 and n = 2k + 2 ≥ 16. Since f(uk) = k, it follows that uk dominates u0 and u2k, which forces f(uk+2) = k − 1 and uk+2

dominates u3 and u2k+1, f(uk−1) = k − 2 and uk−1 dominates u1 and u2k−3, and f(uk+1) = k − 3 and uk+1 dominates u4
and u2k−2. Then either f(uk+3) = k − 4 or f(uk−2) = k − 4. If f(uk+3) = k − 4, then uk+3 dominates u7 and u2k−1. This
forces f(uk−3) = k− 5 and uk−3 dominates u2 and u2k−8. If f(uk−2) = k− 4, then uk−2 dominates u2 and u2k−6. This forces
f(uk+4) = k − 5 and uk+4 dominates u9 and u2k−1. In either case, if i ∈ {0, 1, 2, 3, 4} ∪ {2k − 3, 2k − 2, 2k − 1, 2k, 2k + 1},
then ui is already dominated. Hence, there is no unlabeled vertex that can be labeled k− 6 and dominates two vertices not
already dominated, which is impossible.

It can be shown that equality holds in Theorem 2.1 for 11 ≤ n ≤ 26. In fact, we conjecture that equality holds in
Theorem 2.1 for all n ≥ 11.

By Proposition 2.1, if T is a tree of diameter d ≥ 3 and d 6= 5, then γ̃(T ) ≤ γ̃(Pd+1). Hence, as expected, the diameter
of a tree T plays an important role in determining the irregular domination number γ̃(T ) of T . A path P in a tree T is
diametrical if the length of P is the diameter of T . A tree T is an irregular minimal tree with respect to (1) its diameter
and (2) its irregular domination number, or more simply a minimal tree, if there is a minimum irregular dominating
labeling of T such that for every unlabeled end-vertex v of T we have diam(T − v) < diam(T ). Consequently, this minimum
irregular dominating labeling of T must assign a label to each end-vertex of T not belonging to some diametrical path of T .
For example, Figure 2 shows two minimal trees of diameter 4 and one minimal tree of diameter d for each d ∈ {5, 6, 7},
together with a minimum irregular dominating labeling for each of these five trees.

The next two results provide a sharp upper bound for the diameter of a tree T with a given irregular domination
number γ̃(T ), according to the parity of γ̃(T ).

Theorem 2.2. If T is a tree with γ̃(T ) = k for some odd integer k ≥ 3, then diam(T ) ≤ 2k − 2. Furthermore, for each odd
integer k ≥ 3, there is a minimal tree Tk of diameter 2k − 2 such that γ̃(Tk) = k.
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Figure 2: Examples of minimal trees of diameter d with 4 ≤ d ≤ 7.

Proof. Assume, to the contrary, that there is a tree with γ̃(T ) = k for some odd integer k ≥ 3 such that diam(T ) ≥ 2k − 1.
Then T contains a path P = (u1, u2, . . . , u2k) of order 2k. Let U1 = {u1, u3, . . . , u2k−1} and U2 = {u2, u4, . . . , u2k}. Thus,
|U1| = |U2| = k. Since γ̃(T ) = k, there is an irregular dominating labeling of T using exactly k distinct labels from the
set [2k − 1]. Necessarily, each labeled vertex of T must dominate two vertices of P and the set of pairs of vertices of P
dominated by a labeled vertex of T must result in a partition of V (P ). If {ui, uj} is a pair of vertices dominated a labeled
vertex of T , then d(ui, uj) = |i − j| must be even. Therefore, either {ui, uj} ⊆ U1 or {ui, uj} ⊆ U2. However, since both U1

and U2 consist of an odd number of vertices, such a labeling is impossible.
Next, let k ≥ 3 be an odd integer. We saw in Figure 2 that there is a minimal tree T3 of diameter 4 with γ̃(T3) = 3. For

an odd integer k ≥ 5, let Tk be the tree obtained from the path P2k−1 = (u1, u2, . . . , u2k−1) of order 2k − 1 by adding k − 2

pendant edges ukvi for 3 ≤ i ≤ k at uk. Then diam(Tk) = 2k − 2 (and P2k−1 is the only path of length diam(Tk) = 2k − 2

in Tk). Hence, γ̃(Tk) ≥ k. To show that γ̃(Tk) ≤ k, we define a labeling f of Tk by f(uk) = 1, f(uk+2) = 2, and f(vi) = i for
3 ≤ i ≤ k with all remaining vertices of Tk unlabeled. In particular, u1 and u2k−1 are the only unlabeled end-vertices of T .
Observe that

O1(uk) = {uk−1, uk+1} ∪ {v3, v4, . . . , vk},

O2(uk+2) = {uk, uk+4} (and so uk ∈ O2(uk+2)),
Oi(vi) = {uk−i+1, uk+i−1} for 3 ≤ i ≤ k.

Hence,

O1(uk)
⋃
O2(uk+2)

⋃(
k⋃

i=3

Oi(vi)

)
= V (T )

and so f is an irregular dominating labeling of Tk using exactly k labels from the set [2k− 2]. Therefore, γ̃(Tk) = k and f is
a minimum irregular dominating labeling of Tk. Since P2k−1 is the only diametrical path in Tk and diam(Tk−v) < diam(Tk)

if v ∈ {ui, u2k−1}, it follows that Tk is a minimal tree of diameter 2k − 2 such that γ̃(Tk) = k.

Theorem 2.3. If T is a tree with γ̃(T ) = k for some even integer k ≥ 4, then diam(T ) ≤ 2k − 1. Furthermore, for each even
integer k ≥ 4, there is a minimal tree Tk of diameter 2k − 1 such that γ̃(Tk) = k.

Proof. Let T be a tree with γ̃(T ) = k for some even integer k ≥ 4 and let f be an irregular dominating labeling of T . Since
each labeled vertex dominates at most two vertices on a path of order diam(T ) + 1, it follows that diam(T ) + 1 ≤ 2k and so
diam(T ) ≤ 2k − 1.

Next, let k ≥ 4 be an even integer. We saw in Figure 2 that there is a tree T4 of diameter 7 with γ̃(T4) = 4. A tree T6
of diameter 11 with γ̃(T6) = 6 is shown in Figure 3 with a minimum irregular dominating labeling using exactly six labels
from the set [11].

7

1

43

5 6

Figure 3: A tree T6 with diam(T ) = 11 and γ̃(T ) = 6.

Thus, we may assume that k ≥ 8 and we can write k = 2` where ` ≥ 4. Let Tk be the tree obtained from the path P4` =

(u1, u2, . . . , u4`) of order 4` by adding (1) ` − 3 pendant edges u2`vi for 3 ≤ i ≤ ` − 1 at u2` and (2) ` + 1 ≥ 5 pendant
paths (u2`, vj , wj) of order 3 for ` + 1 ≤ j ≤ 2` + 1 at u2`. Then diam(Tk) = 2k − 1 = 4` − 1 and P4` is the only path of

92



P. Broe, G. Chartrand, and P. Zhang / Electron. J. Math. 1 (2021) 89–100 93

length diam(Tk) = 4` − 1 in Tk. We show that γ̃(Tk) = k = 2`. Since γ̃(Tk) ≥ 2`, it suffices to show that γ̃(Tk) ≤ 2`. We
define a labeling f of Tk by f(u2`) = 1, f(vi) = i for 3 ≤ i ≤ ` − 1, f(u3`) = `, and f(wj) = j for ` + 1 ≤ j ≤ 2` + 1 with all
remaining vertices of Tk unlabeled. In particular, the two end-vertices u1 and u4` of P4` are not labeled. (In fact, u1 and u4`
are the only unlabeled end-vertices of T .) The set of labels used by f is Lf = [2`+ 1]− {2} and so |Lf | = 2`. Observe that

O1(u2`) = {u2`−1, u2`+1} ∪ {vi : 3 ≤ i ≤ `− 1} ∪ {vj : `+ 1 ≤ j ≤ 2`+ 1}

O`(u3`) = {u2`, u4`}

O3(v3) = {u2`−2, u2`+2} ∪ {wj : `+ 1 ≤ j ≤ 2`+ 1}

Oi(vi) = {u2`−i+1, u2`+i−1} for 4 ≤ i ≤ `− 1

Oj(wj) = {u2`−j+2, u2`+j−2} for `+ 1 ≤ j ≤ 2`+ 1.

Hence, f is an irregular dominating labeling of Tk using exactly k = 2` labels from the set [4`−1]. Therefore, γ̃(Tk) = k and f
is a minimum irregular dominating labeling of Tk. Since P4` is the only diametrical path in Tk and diam(Tk−v) < diam(Tk)

for each unlabeled end-vertex of P4`, it follows that the tree Tk is a minimal tree of diameter 2k−1 such that γ̃(Tk) = k.

By Theorem 2.3, there exists a minimal tree T of diameter 2k− 1 having γ̃(T ) = k for each even integer k ≥ 4. However,
more can be said.

Theorem 2.4. For an even integer 2k ≥ 4, let T2k denote the set of all non-isomorphic minimal trees T of diameter 4k − 1

and γ̃(T ) = 2k. Then lim
k→∞

|T2k| =∞.

Proof. Let p be a positive integer. We show that there exists a positive integer j such that for every even integer 2k ≥ j,
we have |T2k| ≥ p. Let j = 4p and let 2k be any even integer such that 2k ≥ j = 4p. Thus, either 2k = 4` or 2k = 4`+ 2 for
some positive integer `. In either case, ` ≥ p. We show that |T2k| ≥ `. We consider two cases, according to whether 2k = 4`

or 2k = 4`+ 2.
Case 1. 2k = 4`. Let T1 be the tree consisting of the path P = (u1, u2, . . . , u8`) of length 8` − 1 = 4k − 1, where at the

vertex u4` are placed the 4`− 2 pendant paths Q1, Q2, . . . , Q4`−2 of lengths 1, 2, . . . , 4`− 2, respectively. Let Qj be a u4` − vj
path of length j for 1 ≤ j ≤ 4` − 2. For 2 ≤ i ≤ `, the tree Ti is obtained from T1 by placing a pendant u6` − wi path Q of
length 2i− 2 at the vertex u6`. Observe that P is the only diametrical path in Ti for 1 ≤ i ≤ `. Next, we define a labeling fi
of Ti for 1 ≤ i ≤ ` as follows. For i = 1, let f1(u4`) = 1, fi(vj) = 2j + 1 for 1 ≤ j ≤ 4`− 2, and f(u6`) = 2`. For 2 ≤ i ≤ `, let
fi(u4`) = 1, fi(vj) = 2j +1 for 1 ≤ j ≤ 4`− 2, and fi(wi) = 2`+2i− 2. In particular, the end-vertices u1 and u8` of P are not
labeled by fi for 1 ≤ i ≤ `. In fact, u1 and u8` are the only unlabeled end-vertices in Ti for 1 ≤ i ≤ `. Observe that

O1(u4`) = {u4`−1, u4`+1} ∪

(
4`−2⋃
i=1

{x ∈ V (Qi) : d(x, u4`) = 1}

)

O2j+1(vj) = {u4`−j−1, u4`+j+1} ∪

(
4`−2⋃
i=1

{x ∈ V (Qi) : d(x, u4`) = i+ 1}

)
, 1 ≤ j ≤ 4`− 2,

O2`(u6`) = {u4`, u8`} if i = 1

O2`+2i−2(wi) = {u4`, u8`}, 2 ≤ i ≤ `.

For 1 ≤ i ≤ `, this labeling fi is an irregular dominating labeling of Ti consisting of 4` = 2k labels from the set [8`− 1] and
so γ̃(Ti) = 2k. Hence, fi is a minimum irregular dominating labeling of Ti for 1 ≤ i ≤ `. Since P is the only diametrical path
in Ti and diam(Ti−v) < diam(Ti) for each unlabeled end-vertex v of P , it follows that Ti is a minimal tree of diameter 4k−1

and γ̃(Ti) = 2k for 1 ≤ i ≤ `. Consequently, |T2k| ≥ ` ≥ p.
Case 2. 2k = 4`+2. For 1 ≤ i ≤ `, let Ti be the tree consisting of the path P = (u1, u2, . . . , u8`+4) of length 8`+3 = 4k−1,

where at the vertex u4`+2 are placed 4` pendant paths Q1, Q2, . . ., Q4` of lengths 1, 2, . . . , 4`, respectively and a pendant
u6`+3 − wi path Q of length 2i − 1 at the vertex u6`+3. For 1 ≤ j ≤ 4`, let Qj be a u4` − vj path of length j. Thus, P is the
only diametrical path in Ti for 1 ≤ i ≤ `. Next, we define a labeling fi of Ti for 1 ≤ i ≤ ` by fi(u4`+2) = 1, fi(vj) = 2j + 1 for
1 ≤ j ≤ 4`, and fi(wi) = 2`+ 2i. In particular, u1 and u8`+4 are not labeled by fi for 1 ≤ i ≤ `. In fact, u1 and u8`+4 are the
only unlabeled end-vertices in Ti for 1 ≤ i ≤ `. Observe that

O1(u4`+2) = {u4`+1, u4`+3} ∪

(
4⋃̀
i=1

{x ∈ V (Qi) : d(x, u4`+2) = 1}

)

O2j+1(vj) = {u4`−j+1, u4`+j+3} ∪

(
4⋃̀
i=1

{x ∈ V (Qi) : d(x, u4`+2) = i+ 1}

)
, 1 ≤ j ≤ 4`,
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O2`+2i(wi) = {u4`+2, u8`+4}, 1 ≤ i ≤ `.

For 1 ≤ i ≤ `, this labeling fi is an irregular dominating labeling of Ti consisting of 4`+2 = 2k labels from the set [8`+3] and
so γ̃(Ti) = 2k. Hence, fi is a minimum irregular dominating labeling of Ti for 1 ≤ i ≤ `. Since P is the only diametrical path
in Ti and diam(Ti−v) < diam(Ti) for each unlabeled end-vertex v of P , it follows that Ti is a minimal tree of diameter 4k−1

and γ̃(Ti) = 2k for 1 ≤ i ≤ `. Consequently, |T2k| ≥ ` ≥ p.

We saw in the proof of Theorem 2.4 that for each positive integer `, (1) there are ` non-isomorphic minimal trees T with
diam(T ) = 8`−1 and γ̃(T ) = 4` and (2) there are ` non-isomorphic minimal trees T with diam(T ) = 8`+3 and γ̃(T ) = 4`+2.
In general, there are typically more than ` such non-isomorphic trees. For example, while the proof of Theorem 2.4 shows
that there are three non-isomorphic minimal trees T with diam(T ) = 23 and γ̃(T ) = 12, all four trees shown in Figure 4
also have diameter 23, irregular domination number 12 and are minimal, where P = (u1, u2, . . . , u24) is the longest path
in each of these trees. In fact, using this procedure, we can construct four additional minimal trees T with diam(T ) = 23

and γ̃(T ) = 12. One such tree consists of P where at the vertex u12 are placed ten pendant paths Q1, Q2, . . ., Q10 such that
the length of Qi is i for 1 ≤ i ≤ 10. An irregular dominating labeling of this tree assigns the label 1 to u12, the label 6 to u8,
and the label 2i+ 1 to the end-vertex of Qi for 1 ≤ i ≤ 10.
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Figure 4: Four non-isomorphic minimal trees T with diam(T ) = 23 and γ̃(T ) = 12.

3. Trees of small irregular domination number

We have seen in Observation 2.1 that if G is a connected graph of diameter 3 or more having an irregular dominating
labeling, then γ̃(G) ≥ 3. We now characterize those trees T for which γ̃(T ) = 3 or γ̃(T ) = 4. It is convenient to introduce
some terminology. Here, we consider a star to be a graph of type K1,t where t ≥ 1. A vertex of degree t in a star K1,t is
referred to as its center, where either vertex of the star K1,1 = K2 is a center. By attaching a pendant star K1,t to a vertex v
of a graph, we mean identifying v with the center of the star. If T is a tree obtained by attaching a pendant star to at least
one end-vertex of a star S, then S is referred to as the defining star of T . Let T be the set of all trees obtained by attaching
a pendant star to at least two but not all end-vertices of a defining star of size 3 or more. Thus, if T ∈ T with partite sets U
and W such that U contains the center v of the defining star of T , then v is adjacent to every vertex of W and v is the only
vertex in U that is not an end-vertex of T . Thus, the diameter of T is 4 and v is the central vertex of T .

Theorem 3.1. A tree T has γ̃(T ) = 3 if and only if T is a double star or T ∈ T .

Proof. We have seen that every double star has irregular domination number 3. Let T ∈ T , where S is the defining star
of T and let v be the central vertex of S. Assigning the label 1 to v, the label 2 to any vertex at distance 2 from v, and the
label 3 to any neighbor of v that is an end-vertex of T results in an irregular dominating labeling of T . Thus, γ̃(T ) = 3.

It remains to show that if T is a tree with γ̃(T ) = 3, then T is a double star or T ∈ T . Suppose that T is not a double
star. Since γ̃(T ) = 3, it follows that (1) diam(T ) = d ≥ 4 and (2) there is an irregular dominating labeling g of T that assigns
three distinct elements of [d] of T to three vertices of T . Let U and W be the partite sets of T . By Observation 2.2, if x is a
labeled vertex and g(x) = r, then (i) Or(x) ⊆ U or Or(x) ⊆W and (ii) x and Or(x) belong to the same partite set if and only
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if r is even. Since there are exactly three labeled vertices of T , some labeled vertex must dominate all vertices of U or all
vertices of W .

We may assume that v is a labeled vertex that dominates all vertices of W . Since v does not dominate itself, v ∈ U .
Because every neighbor of v belongs to W and the distance from v to these vertices is 1, the vertex v must be labeled 1,
implying that v is adjacent to every vertex of W . This in turn implies that the distance between every two vertices of T is
at most 4 and so d ≤ 4. Therefore, d = 4. Thus, all three labels of g come from the set {1, 2, 3, 4}. At this stage, every vertex
of W is dominated, in fact by v, and no vertex of U is dominated. In particular, v is not dominated.

Because every vertex of W is adjacent to v and the label 1 has already been assigned, no vertex of W can dominate v.
Therefore, v can only be dominated by a vertex of U . Since the distance from a vertex of U − {v} to v is 2, some vertex
of U − {v} must be labeled 2. Let u ∈ U − {v} such that g(u) = 2. Thus, u dominates all vertices of U at distance 2
from u. In particular, u dominates v. Necessarily, u is adjacent to only one vertex x of W , for if u is also adjacent to a
vertex y ∈W − {x}, then (u, x, v, y, u) is a cycle of T , which is impossible. Therefore, u and, in fact, every vertex of U − {v}
is an end-vertex of T . Let (v, x, u) be the v−u path in T where x ∈W . At this stage, each vertex in the set U −O2(u) is not
dominated. In particular, u is not dominated.

Since d = 4, it follows that W must contain at least two vertices adjacent to vertices of U −{v}. Consequently, for every
vertex s ∈ U − {v}, there is t ∈ U − {v} such that d(s, t) = 4. Therefore, there is a vertex z ∈ U such that d(u, z) = 4. Thus,
labeling a vertex z′ ∈ U − {v} with the label 4 in order to dominate both u and z would mean that d(u, z′) = 4 and so z′
would be undominated by the two vertices labeled 1 and 2, namely v and u. Thus, no vertex can be labeled 4.

Since γ̃(T ) = 3, the only conclusion is that there must be a vertex w ∈ W − {x} that is labeled 3 and dominates the
remaining vertices of U which includes u and z. Thus, w is adjacent to neither u nor z. Moreover, w cannot be adjacent
any vertex y ∈ U − {v}; for if this were the case, then since d(y, v) = 2 and d(y, z) = d(y, u) = 4, it follows that y is not
dominated by any of v, u, and w. Therefore, w must be an end-vertex of T . Assigning the label 3 to w then has the effect of
having w dominate all vertices of U −{v}. Consequently, every vertex of T is dominated by at least one of u, v, and w. This
says that T is a tree obtained by the defining star K1,|W |, where |W | ≥ 3, with the center v and so T ∈ T .

The proof of Theorem 3.1 also provides the following result.

Theorem 3.2. A tree T has γ̃(T ) = 3 if and only if the following labeling is an irregular dominating labeling of T : (1) a
central vertex u of T is labeled 1, (2) an end-vertex v at distance 2 from u is labeled 2, and (3) an end-vertex w at distance 3

from v is labeled 3.

The following is a consequence of Theorem 3.2, which characterizes the structure of a minimum irregular dominating
labeling of a tree T with γ̃(T ) = 3.

Corollary 3.1. If T is a tree with γ̃(T ) = 3, then every minimum irregular dominating labeling of T produces one of the
labeled minimal subtrees in Figure 5 depending on the diameter of T .
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Figure 5: Minimal trees in a tree T with γ̃(T ) = 3.

A tree T ∈ T can also be described as a tree of diameter 4 such that its central vertex is adjacent to at least one
end-vertex of T . Hence, Theorem 3.1 can be restated as follows.

Theorem 3.3. A tree T has γ̃(T ) = 3 if and only if (i) diam(T ) = 3 or (ii) diam(T ) = 4 and the central vertex of T is adjacent
to at least one end-vertex of T .

Since γ̃(P5) = 4, the following is a consequence Theorem 3.3 and Proposition 2.1.

Corollary 3.2. If T is a tree of diameter 4, then γ̃(T ) = 3 or γ̃(T ) = 4. Furthermore, γ̃(T ) = 3 if and only if the central
vertex of T is adjacent to at least one end-vertex of T . Consequently, γ̃(T ) = 4 if and only if the central vertex of T is not
adjacent to any end-vertex of T .

Next, we present a structural characterization of a minimum irregular dominating labeling of a tree T with diam(T ) =

γ̃(T ) = 4.
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Figure 6: Three trees of diameter 4.

Theorem 3.4. If T is a tree with diam(T ) = γ̃(T ) = 4, then every minimum irregular dominating labeling of T produces
one of the three labeled minimal subtrees in Figure 6.

Proof. Since diam(T ) = γ̃(T ) = 4, the four labels used by a minimum irregular dominating labeling f of G are 1, 2, 3, 4. Let
u ∈ V (G) such that f(u) = 4. Since u must dominate at least one vertex u′ of T , it follows that d(u, u′) = 4 and so u and u′
are peripheral vertices of T . Thus, u and u′ are end-vertices of T . Let P = (u = u0, u1, u2, u3, u4 = u′) be the unique u− u′
diametrical path in T . Since u0 cannot dominate itself, u0 is dominated by a vertex v labeled 1, 2 or 3. We consider these
three cases.

Case 1. The vertex u0 is dominated by a vertex v labeled 1. Then d(u0, v) = 1 and so u0v ∈ E(G). Since u0 is an end-vertex
of T , it follows that v is the only neighbor of u0. Thus, v = u1 and f(u1) = 1. Since u1 is not dominated by u0 or u1, it follows
that u1 must be dominated by a vertex labeled 2 or 3.

? First, suppose that u1 is dominated by a vertexw labeled 2. Thus, d(u1, w) = 2 and u1 andw belong to the same partite
set of T . This implies that d(w, u0) = 1 or d(w, u0) = 3. Since w 6= u1, it follows that, d(w, u0) = 3. We may therefore
assume that w = u3, where the vertices of T can be relabeled if necessary. Since u3 is not dominated by u0, u1, or u3,
the vertex u3 must be dominated by a vertex x labeled 3 and d(u3, x) = 3. Thus, x belongs to the partite set of T not
containing u3. Hence, d(x, u0) = 4 or d(x, u0) = 2. If d(x, u0) = 4, then T must contain a path (x, y, u2, u3), where
x 6= u4 and y 6= u3. Since u4 is not labeled, diam(T − u4) = 3 and so the resulting subtree T − u4 is not minimal, a
contradiction. Thus, d(x, u0) = 2 and T contains the path (x, u1, u2, u3). This is the subtree T3 in Figure 6.

? Next, suppose that u1 is dominated by a vertex w labeled 3. Thus, d(u1, w) = 3 and we may assume that w = u4 and
f(u4) = 3. Since u3 is not dominated by u0, u1, or w = u4, the vertex u3 must be dominated by a vertex x labeled 2.
Thus, d(x, u3) = 2 and x and u3 belong to the same partite set of T . Hence, d(x, u0) = 1 or d(x, u0) = 3. Since x 6= u1

(where f(u1) = 1), it follows that d(x, u0) = 3. Because d(x, u3) = 2 and diam(T ) = 4, it follows that (x, u2, u3) must be
a path in T and so T must contain the minimal labeled tree T ′ obtained by adding a pendant edge to P at u2. However
then, γ̃(T ′) = 3, which is a contradiction, and so u1 cannot be dominated a vertex labeled 3,.

Case 2. The vertex u0 is dominated by a vertex v labeled 2 and by no vertex labeled 1. Then f(v) = 2 and d(u0, v) = 2.
Therefore, either (1) v = u2 or (2) v is an end-vertex of T adjacent to u1 since diam(T ) = 4.

? Suppose first that v = u2 and so f(u2) = 2. Since u2 is not dominated by u0 or u2, it follows that u2 is dominated
by a vertex x labeled 1 or 3. If u2 is dominated by a vertex x labeled 3, then T must contain a path (x, y, u1, u2),
where x, y /∈ V (P ). However, this is impossible since diam(T ) = 4. Thus, u2 is dominated by a vertex x labeled 1.
However, x 6= u1 because u0 is not dominated by a vertex z labeled 1. If z is an end-vertex adjacent to u2, then T must
contain the minimal labeled tree T ′ obtained by adding a pendant edge to P at u2. However then, γ̃(T ′) = 3, which
is a contradiction, Thus, z = u3 and f(u3) = 1. Since u3 is not dominated by u0, u2, or u3, it follows that u3 must be
dominated by a vertex w labeled 3. Thus, (w, u1, u2, u3) must be path in T . However then, u1 is not dominated by any
of the four labeled vertices, which is impossible.

? Next, suppose that v 6= u2 and so v is an end-vertex adjacent to u1. Since v is not dominated by u0 or v, it follows that v
must be dominated by a vertex labeled 1 or 3. Since u0 is not dominated by a vertex labeled 1, we have f(u1) 6= 1 and
v cannot be dominated by a vertex labeled 1. Thus, v must be dominated by a vertex w labeled 3. Either w = u3 or
w 6= u3 and (w, u2, u1, v) is a path in T . If w 6= u3 and f(w) = 3, then since neither w nor u1 is dominated by u0, v,
or w, it follows that w and u1 must be dominated by a vertex labeled 1. Thus, f(u2) = 1. This implies that w is an
end-vertex of T and so T contains the minimal labeled tree T ′ obtained by adding a pendant edgewu2 to P at u2. Since
γ̃(T ′) = 3, however, this is impossible. Therefore, w = u3 and f(u3) = 3. At this stage, u1 and u3 are not dominated,
but this can be accomplished by labeling u2 with 1. This is the tree T2 in Figure 6.

Case 3. The vertex u0 is dominated by a vertex v labeled 3 and by no vertex labeled 1 or 2. Then f(v) = 3 and d(u0, v) = 3.
Therefore, either (1) v 6= u3 and T contains the path (v, u2, u1, u0) or (2) v = u3.
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? First, suppose that v 6= u3 and T contains the path (v, u2, u1, u0) where f(v) = 3. Since v is not dominated by u0 or v, it
follows that v must be dominated by a vertex x labeled 1 or 2. If v is dominated by a vertex x labeled 2, then x = u1 or
x = u3. In either case, there are two adjacent undominated vertices on P , not both of which can be dominated by the
remaining labeled vertex, a contradiction. So, v must be dominated by a vertex y labeled 1. Therefore, either y = u2

or y is an end-vertex of T adjacent to v. If y is an end-vertex of T adjacent to v and f(y) = 1, then u1, u2 and u3 are
undominated vertices on P and cannot be dominated by any remaining labeled vertex. So, y = u2 and f(u2) = 1.
In this case, v must be an end-vertex not on P adjacent at u2 and so T contains a subtree T ′ consisting of P and a
pendant edge vu2. Since γ̃(T ′) = 3, this is impossible.

? Next, suppose that v = u3. and f(u3) = 3. Since neither u0 nor u3 dominates u3, it follows that u3 must be dominated
by a vertex w labeled 1 or 2. Suppose that f(w) = 2. Thus, either w = u1 or w 6= u1 and wu2 ∈ E(T ). Regardless of
which of these occurs, there are two adjacent undominated vertices on T , not both of which can be dominated by the
remaining labeled vertex, a contradiction. Therefore, f(w) = 1 and w = u2, w = u4, or w /∈ V (P ) and wu3 ∈ E(T ). If
w 6= u2 and f(w) = 1, then u1 and u2 are adjacent undominated vertices on T , not both of which can be dominated
by the remaining labeled vertex. So, w = u2. By defining f(u4) = 2, we have an irregular dominating labeling of T
containing T1 in Figure 6.

The following is an immediate consequence of Theorem 3.1 and Corollary 3.2.

Corollary 3.3. If T is a tree of diameter 5 or more, then γ̃(T ) ≥ 4.

We now show that every tree T of diameter 5 that is not P6 has irregular domination number 4.

Theorem 3.5. If T is a tree with diam(T ) = 5 and T 6= P6, then γ̃(T ) = 4.

Proof. Let T be tree with diam(T ) = 5 and T 6= P6. Since γ̃(T ) ≥ 4 by Corollary 3.3, it remains to show that γ̃(T ) ≤ 4.
Let P = (u0, u1, u2, . . . , u5) be a longest path in T . Since T 6= P6, some interior vertex of P has degree 3 or more. We may
assume that deg u1 ≥ 3 or deg u2 ≥ 3. If deg u1 ≥ 3, then T contains the tree T1 of Figure 7 as a subtree. If deg u2 ≥ 3 and
a neighbor w2 of u2 not on P is an end-vertex of T , then T contains the tree T2 of Figure 7 as a subtree; while if deg u2 ≥ 3

and a neighbor w2 of u2 not on P is not an end-vertex of T , then T contains the tree T3 of Figure 7 as a subtree.

4.......
.................................................................
......

.......
.................................................................
...... .......

................................................................

....... .......
.................................................................
......

.......
.................................................................
...... .......

................................................................

....... .......
.................................................................
......

.......
................................................................
.......

.......
................................................................
.......

.......
.................................................................
......

.......
................................................................
....... .......

.................................................................

...... .......
.................................................................
......

.......
................................................................
.......

.......
................................................................
.......

.......
................................................................
.......

.......
.................................................................
......

.......
.................................................................
......

.......
.................................................................
......

.......
................................................................
..............

.................................................................

......3 1 2 1

3

2

T1 : T2 :

T3 :
1

4

3

4

2.......
................................................................
.......

Figure 7: Three subtrees T1, T2, and T3 in a tree of diameter 5 and order 7 or more.

For i = 1, 2, 3, Figure 7 also shows an irregular dominating labeling of Ti with exactly four labels 1, 2, 3, 4. Consequently,
if Ti ⊆ T where i = 1, 2, 3, then an irregular dominating labeling of T can be defined by assigning labels only to the vertices
of the subtree Ti as indicated in Figure 7 (and so all other vertices of T are not labeled). Thus, γ̃(T ) ≤ 4 and so γ̃(T ) = 4.

By Theorem 3.5, if T is a tree with diam(T ) = 5 and T 6= P6, then γ̃(T ) = 4. Thus, every minimum irregular dominating
labeling of a tree T of diameter 5 (that is not a path) uses exactly four labels from the set [5]. Next, we present a structural
characterization of minimum irregular dominating labelings of non-path trees of diameter 5.

Theorem 3.6. If T is a tree of diameter 5 and T 6= P6, then every minimum irregular dominating labeling of T produces
one of the labeled trees in Figure 8.

Proof. Let T is a tree of order n, diam(T ) = 4 and γ̃(T ) = 4 and let P = (u1, u2, . . . , u6) be a path of length 6 in T . Since
T 6= P6, it follows that V (T )− V (P ) 6= ∅. Define

Wi = {w ∈ V (T )− V (P ) : d(ui, w) = 1} if 2 ≤ i ≤ 5

Xi = {x ∈ V (T )− V (P ) : d(ui, x) = 2} if 3 ≤ i ≤ 4
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Figure 8: Minimal trees in a tree T with diam(T ) = 5 and γ̃(T ) = 4.

where some of Wi and Xi may be empty. Suppose that f is a minimum irregular dominating labeling of T where Lf is the
set of labeled vertices of T . Thus, |Lf | = 4 and {i : ui ∈ Lf} ⊆ [5]. Hence, there are at least two vertices in Lf , each of
which dominates exactly two vertices of P such that exactly four vertices of P are dominated by these two vertices. If a
labeled vertex dominates two vertices ui and uj on P , then |i− j| is even. So, there is x ∈ Lf that dominates two vertices
of {u1, u3, u5} and there is y ∈ Lf that dominates two vertices of {u2, u4, u6}. Consequently, each of the sets {u1, u3, u5} and
{u2, u4, u6} is partitioned into two sets, one of which is a 2-element set and the other is a singleton. The following are the
six distinct ways to do this and so we consider these six cases. (1) {u1, u3}, {u5}, {u2, u4}, {u6}, (2) {u1, u3}, {u5}, {u4, u6},
{u2}, (3) {u1, u3}, {u5}, {u2, u6}, {u4}, (4) {u1, u5}, {u3}, {u2, u4}, {u6}, (5) {u1, u5}, {u3}, {u4, u6}, {u2}, and (6) {u1, u5},
{u3}, {u2, u6}, {u4}.

Case 1. The set {u1, u3, u5} ∪ {u2, u4, u6} is partitioned into the four subsets {u1, u3}, {u5}, {u2, u4}, {u6}. In order for a
labeled vertex to dominate u1 and u3, either u2 is labeled 1 or an end-vertex neighbor w2 of u2 is labeled 2. Similarly, in
order for a labeled vertex to dominate u2 and u4, either u3 is labeled 1, an end-vertex neighbor w3 of u3 is labeled 2, or an
end-vertex x3 on a pendant path (x3, w3, u3) of length 2 at u3 is labeled 3.

? First, assume that f(u2) = 1 and u1 and u3 are dominated. In order to dominate u2 and u4, either an end-vertex
neighbor w3 of u3 is labeled 2 or an end-vertex x3 on a pendant path (x3, w3, u3) of length 2 at u3 is labeled 3. If
f(w3) = 2, then assigning the label 3 tow4 (to dominatew2 and u6) and the label 4 to u1 produces a minimal subtree T1
of T shown in Figure 8. (This is the only possible irregular dominating labeling when f(u2) = 1 and f(w3) = 2.) If
f(x3) = 3, then this forces f(x4) = 4 (to dominate w3 and u6) and so x4 and w4 cannot be dominated by a 4th labeled
vertex, a contradiction.

? Next, assume that f(w2) = 2 and u1 and u3 are dominated. In order to dominate u2 and u4, either f(u3) = 1 or an
end-vertex x3 on a pendant path (x3, w3, u3) of length 2 at u3 is labeled 3. If f(u3) = 1, then this forces f(w3) = 3 and
f(x4) = 4 and so x4 is not dominated, a contradiction. If f(x3) = 3, then the additional two labeled vertices cannot
dominate the five undominated vertices u6, u5, w2, w3 and x3, a contradiction.

Case 2. The set {u1, u3, u5} ∪ {u2, u4, u6} is partitioned into the four subsets {u1, u3}, {u5}, {u4, u6}, {u2}. In order for
a labeled vertex to dominate u1 and u3, either u2 is labeled 1 or an end-vertex neighbor w2 of u2 is labeled 2. Similarly,
in order for a labeled vertex to dominate u4 and u6, either u5 is labeled 1 or an end-vertex neighbor w5 of u5 is labeled 2.
By symmetry, we may assume that f(u2) = 1 and f(w5) = 2. Assigning the label 3 to w4 and the label 4 to u1 produces a
minimal subtree T2 of T shown in Figure 8. This is the only possible minimal subtree of T in Case 2 (up to isomorphism).

Case 3. The set {u1, u3, u5} ∪ {u2, u4, u6} is partitioned into the four subsets {u1, u3}, {u5}, {u2, u6}, {u4}. In order for a
labeled vertex to dominate u1 and u3, either u2 is labeled 1 or an end-vertex neighbor w2 of u2 is labeled 2. Similarly, in
order for a labeled vertex to dominate u2 and u6, either u4 is labeled 2, an end-vertex neighbor w4 of u4 is labeled 3, or an
end-vertex x4 on a pendant path (x4, w4, u4) of length 2 at u4 is labeled 4.

? First, assume that f(u2) = 1 and u1 and u3 are dominated. If f(u4) = 2, then assigning the label 3 to w2 and the
label 4 to u1 produces a minimal subtree T5 of T shown in Figure 8. If f(w4) = 3, then assigning the label 4 to u1 and
the label 2 to u6 produces a minimal subtree T3 of T shown in Figure 8. If f(x4) = 4, then this forces f(u3) = 2 and u3
dominates w4 and u5. However then, a 4th labeled vertex (not labeled 1) cannot dominate u4 and x4, a contradiction.

? Next, assume that f(w2) = 2 and u1 and u3 are dominated. If f(w4) = 3, then this forces f(u1) = 4 or f(x3) = 4 and a
4th labeled vertex cannot dominate u4 and w2, a contradiction. If f(x4) = 4, then assigning the label 3 to w3 and the
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label 1 to w4 produce an irregular dominating labeling. Since u1 is not labeled and u1 and w2 are similar, a minimal
subtree of T produced here is isomorphic T2 of Figure 8.

Case 4. The set {u1, u3, u5} ∪ {u2, u4, u6} is partitioned into the four subsets {u1, u5}, {u3}, {u2, u4}, {u6}. In order for a
labeled vertex to dominate u1 and u5, either u3 is labeled 2, an end-vertex neighbor w3 of u3 is labeled 3, or an end-vertex x3
on a pendant path (x3, w3, u3) of length 2 at u3 is labeled 4. Similarly, in order for a labeled vertex to dominate u2 and u4,
either u3 is labeled 1, an end-vertex neighbor w3 of u3 is labeled 2, or an end-vertex x3 on a pendant path (x3, w3, u3) of
length 2 at u3 is labeled 3,

? First, suppose that f(u3) = 2 and u1 and u5 are dominated by u3. This forces f(x3) = 3 (and x3 dominates u2 and u4),
which in turn forces f(w3) = 1 (and w3 dominates u3 and x3). This then forces f(x4) = 4 and x4 dominates u6 and w2.
However then, x4 is not dominated, a contradiction.

? Next, suppose that f(w3) = 3 and u1 and u5 are dominated by w3. If f(u3) = 1, then assigning the label 2 to u4 and
the label 4 to u2 produces a minimal subtree T3 of T shown in Figure 8. This is the only minimal subtree produced
when f(u3) = 1 and f(w3) = 3. If f(w′3) = 2 where w′3 6= w3, this forces f(x4) = 4 and x4 dominates w3.w

′
3 and u6.

However then x4 is not dominated, a contradiction.

? Finally, suppose that f(x3) = 4 where (x3, w3, u3) is a pendant path at u3 and u1 and u5 are dominated by x3. If
f(u3) = 1, then x3, u3 and u6 cannot be dominated by the two remaining labeled vertices, a contradiction. If f(w3) = 2,
then this forces f(w4) = 3 and w4 dominates w3 and u6. Then a 4th labeled vertex cannot dominate x3 and u3. If
f(w′3) = 2, then this forces f(w3) = 1 and f(u1) = 3. Then u6 is not dominated, a contradiction. If f(x′3) = 3 where
(x′3, w

′
3, u3) is a pendant path at u3 and w′3 6= w3, then assigning the label 1 to w3 and the label 2 to u4 produces a

minimal subtree T4 of T shown in Figure 8. If f(x′′3) = 3 where (x′′3 , w3, u3) is a pendant path at u3, then assigning
the label 1 to w3 and the label 2 to u4 produces a minimal subtree T5 of T shown in Figure 8.

Case 5. The set {u1, u3, u5} ∪ {u2, u4, u6} is partitioned into the four subsets {u1, u5}, {u3}, {u4, u6}, {u2}. In order for a
labeled vertex to dominate u1 and u5, either u3 is labeled 2, an end-vertex neighbor w3 of u3 is labeled 3, or an end-vertex x3
on a pendant path (x3, w3, u3) of length 2 at u3 is labeled 4. Similarly, in order for a labeled vertex to dominate u4 and u6,
either u5 is labeled 1 or an end-vertex neighbor w5 of u5 is labeled 2.

? First, suppose that f(u5) = 1 and u4 and u6 by u5. If f(u3) = 2, then in order to dominate u2, either f(x3) = 3,
f(w4) = 3 or f(w5) = 4. Then a 4th labeled vertex cannot dominate u3 and a vertex in {w3, w4, w5} in each situation,
a contradiction. If f(w3) = 3, then assigning the label 4 to u6 and the label 2 to any vertex in {u1, w2, w4} produces a
minimal subtree of T shown in Figure 8. So, there are three distinct minimal subtrees T1, T2, and T3 of T of Figure 8
if f(u5) = 1 and f(w3) = 3. If f(x3) = 4, this forces f(u4) = 2 and u4 dominates w3 and u2. Since the labeled 1 is used,
a 4th label vertex cannot dominate x3 and u3, a contradiction.

? Next, suppose that f(w5) = 2 and u4 and u6 by w5. If f(w3) = 3 (and w3 dominates u1 and u5), then in order to
dominate u2 and w3, either f(u3) = 1 or f(u6) = 4 . In either situation, a 4th labeled vertex cannot dominate u3 and
w5, a contradiction. If f(x3) = 4 (and x3 dominates u1 and u5), then in order to dominate u2 and w3, either f(u3) = 1

or f(u5) = 3. In either situation, a 4th labeled vertex cannot dominate u3 and w5, a contradiction.

Case 6. The set {u1, u3, u5} ∪ {u2, u4, u6} is partitioned into the four subsets {u1, u5}, {u3}, {u2, u6}, {u4}. In order for a
labeled vertex to dominate u1 and u5, either u3 is labeled 2, an end-vertex neighbor w3 of u3 is labeled 3, or an end-vertex x3
on a pendant path (x3, w3, u3) of length 2 at u3 is labeled 4. Similarly, in order for a labeled vertex to dominate u2 and u6,
either u4 is labeled 2, an end-vertex neighbor w4 of u4 is labeled 3, or an end-vertex x4 on a pendant path (x4, w4, u4) of
length 2 at u4 is labeled 4. If u1, u5, u2, u6 are dominated by the two vertices labeled 2 or 3, say f(u3) = 2 and f(w4) = 3,
then this forces f(u4) = 1 (and u4 dominates u3 and w4). However then, u4 (or u4 and an additional added vertex) cannot
be dominated by a 4th labeled vertex, a contradiction. If u1, u5, u2, u6 are dominated by the two vertices labeled 2 or 4, say
f(u3) = 2 and f(x4) = 3, then assigning the label 1 to w4 and the label 3 to u6 produces a minimal subtree T4 of T shown
in Figure 8. If u1, u5, u2, u6 are dominated by the two vertices labeled 3 or 4, say f(w3) = 3 and f(x4) = 4, then assigning
the label 1 to w4 and the label 2 to u5 produces a minimal subtree T2 of T shown in Figure 8.

An extensive case-by-case analysis gives us the following two results.

Theorem 3.7. If T is a tree of diameter 6 with γ̃(T ) = 4, then every minimum irregular dominating labeling of T produces
one of the labeled minimal subtrees in Figure 9.
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Figure 9: Minimal trees in a tree T with diam(T ) = 6 and γ̃(T ) = 4.

Theorem 3.8. If T is a tree of diameter 7 with γ̃(T ) = 4, then every minimum irregular dominating labeling of T produces
one of the labeled minimal subtrees in Figure 10.
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Figure 10: Minimal trees in a tree T with diam(T ) = 7 and γ̃(T ) = 4.

References
[1] A. Ali, G. Chartrand, P. Zhang, Irregularity in Graphs, Springer, New York, 2021.
[2] P. Broe, G. Chartrand, P. Zhang, Irregular orbital domination in graphs, Preprint.
[3] G. Chartrand, M. A. Henning, K. Schultz, On orbital domination numbers of graphs, J. Combin. Math. Combin. Comput. 37 (2001) 3–26.
[4] G. Chartrand, P. Zhang, Chromatic Graph Theory, Second Edition, Chapman & Hall/CRC Press, Boca Raton, 2020.
[5] E. J. Cockayne, R. M. Dawes, S. T. Hedetniemi, Total domination in graphs, Networks 10 (1977) 211–219.
[6] L. Hayes, K. Schultz, J. Yates, Universal domination sequences of graphs, Util. Math. 54 (1998) 193–209.
[7] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.

100


	Introduction
	Irregular domination numbers of trees
	Trees of small irregular domination number

