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Abstract

A graph is called Hamiltonian if it has a Hamiltonian cycle, where a Hamiltonian cycle is a cycle containing all vertices of
the graph. It is shown in this note that if G is a 2-connected graph of order n > 13 such that d(u) + d(v) > 2n —§ — k — 4 for
any pair of nonadjacent vertices v and v in G then either GG is Hamiltonian or G belongs to some special families of graphs,
where ¢ and « are the minimum degree and connectivity of G, respectively.
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1. Introduction

In this note, only finite undirected graphs without loops or multiple edges are considered. The notation and terminology
not defined here follow those in [2]. For a graph G = (V, E), its order |V| is denoted by n. The complement of a graph G
is denoted by G°. Denote by 6(G), a(G) and £(G) the minimum degree, independence number and connectivity of a graph
G, respectively. For a vertex = in G, N(x) denotes the set of those vertices which are adjacent to = in G. For a nonempty
subset S of the vertex set V of G, denote by G[S] the subgraph of G induced by S. Denote by G.. a graph of order r. For two
disjoint graphs H and K, denote by H Vv K the join of H and K.

A cycle C in a graph G is called a Hamiltonian cycle of G if C' contains all the vertices of G. A graph G is called
Hamiltonian if G has a Hamiltonian cycle. A cycle C in a graph G is called a dominating cycle if the order of each component
in the graph G[V(G)—V (C)] is less than 2. If C'is a cycle of G with a given orientation, we use x* to denote the successor of
a vertex x on C along the orientation of C. We also use 27+ to denote the successor of a vertex 2+ on C along the orientation
of C. If ACV(C), A" is defined as {v* : v € A}. For a graph G and an integer s, if a > s, 04(G) is defined as

min{d(uy) + d(uz) + ... + d(us) : {ui,us,...,us} is an independent set in G};
and if « < s, 04(G) is defined as +co. Also, we define

Aun)i={G: G is Gua v (K52 UK},

Ag(n) :={G: V(G) = Ap, E(G) = Bg}

where
AB:V(GnTn vm%?) U{zy)}
and
BﬁzE(G% \/Ki%z) U{a:y}U{xu:uEV(Gn;Q) —{a},aEV(G%)}U{yv:veV(G%) },
A, (n) == {G: V(G) = Ay, B(G) = B, },
where
A, :V<G% \/Ki%) U{z,y}
and

BV:E(GnT_Q\/KLf>U{xy}U{xu:ueV(GnT—z)}U{yv:vEV(GnT—z)—{b},bEV(G%)},
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Ae(n) :={G: V(G) = A, E(G) = Bc},

where
A=V (GH vKi,2) U{z,y}
2 2

and
Be=E<GnT—2\/(K?L%z)u{xy}u{xu:uEV(GnT-z) —{a},aGV(GnT—z) }U{yv:vGV(GnT—z) —{b},bev(a%ﬂ)},

provided that a # b,
A(n) == Aa(n) UAg(n) U Ay(n) U Ad(n),

B(n)i={G: G is G2 VKLY,
C(n) == {G:G is G vm%}.
In this note, we present the following sufficient condition involving o5, d, and x for Hamiltonian graphs.
Theorem 1.1. Let G be a 2-connected graph of order n > 13. If o5 > 2n — § — k — 4, then either G is Hamiltonian or G is in

A(n)UB(n)U C(n).

2. Lemmas

In order to prove Theorem 1.1, we need the following known results. The first one follows from the proof of Theorem 1
in [3].

Lemma 2.1. Let G be a graph of order n > 3. If a < k, then G is Hamiltonian.
The next lemma can be found in [4]. It was also used in [5].

Lemma 2.2. Let G be a 2-connected graph. If d(u) + d(v) > n — 1 for each pair of nonadjacent vertices u, v then either G is
Hamiltonian or G is in C(n).

The next result follows from Theorem 7 and the proof of Theorem 10 in [1].

Lemma 2.3. Let G be a 2-connected graph of order n such that o3 > n+ 2. Then every longest cycle C in G is a dominating

cycle and
max{d(v):v e V(G)-V(C)} > % .

The next result is Lemma 8 in [1].

Lemma 2.4. Let G be a graph of order n such that 6 > 2 and o3 > n. Let G contain a longest cycle C which is a dominating
cycle. If vg € V(G) — V(C) and A = N(vg), then (V(G) — V(C)) U A" is an independent set of vertices in G.

3. Proof of Theorem 1.1

Let G be a graph satisfying the conditions of Theorem 1.1. Suppose that G is not Hamiltonian. From Lemma 2.1, it follows
that « > Kk +1 > 3. If 05 > n — 1 then Lemma 2.2 implies that G is in C(n). From now on, we assume that oo < n — 2.
Suppose u is a vertex in an independent set I in G with |/| = «. Then N(u) is a subset of of V' — I. Thus,

d<d(u)=|N)| < V-1
and hence § <n — a, or a < n — 4. Now,
n—2> o0y
>Mm—0—Kk—4
>n4+n—0—k—4
>n+a—kKk—4
>n+k+1—r—4

=n-3.

Thus, we have three possible cases of n —d =aanda=k+1,n—d=a+landa=k+1l,orn—d=cand a =k + 2.
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Let { z,y, z } be an independent set in G such that o3 = d(z) + d(y) + d(z). Then

S9

(z) + d(y) + d(2)
(d(z) + d(y)) + (d(y) + d(2)) + (d(2) + d(=))
2

03 =

09 + 09 + 02
- 2
02
2
3(n—3)

2
>n+ 2.

(8}

>

Let C be a longest cycle in G with a given orientation. From Lemma 2.3, it follows that C is also a dominating cycle.
Suppose that V(G) — V(C) = {vo,v1,...,v, }. Without loss of generality, we assume that d(vy) > d(v1) > --- > d(v,). Set
A= N(v)={2,...,2s }. Then, Lemma 2.4 implies that (V(G) —V(C))UA™ is an independent set of vertices in G. Hence,

a > |(V(G) = V(C) UAT| = |(V(G) = V(O)| + |AT| = n — [V(C)] + d(vo)-

Next, we divide the remaining proof into the following cases.
Casel. n—d=cacanda=«x+1.

In this case, we haven —d =rk+1=a>n—|V(C)|+d(vg) > 14+ > 1+ k. Thus, Kk = = d(v9) and n — |V (C)| = 1. Notice
thatn — 6 =k + 1. We have k =0 = d(vg) = (n — 1)/2. This leads ton — 1 = 26 < g3 < n — 2, a contradiction.

Case2. n—-d=a+landa=«k-+1.

In this case, wehaven —d —1=rk+1=a>n—|V(C)|+d(vg) > 1+ > 1+ k. Thus, xk = § = d(vy) and n — |V (C)| = 1.
Notice that n — 0 — 1 =k + 1. We have kK = § = d(vg) = s = (n — 2)/2. Since C is longest cycle in G, C must be in the

following form

_ + + + 4+ + +
C = z12{ 2225 -+ 232 2; Zit12741 """ ZsZg 21

Set

c — + + 4+ +
V( n,g) ={v0, 275 2 2 %8 b

\%4 (G%) ={z1,22,..., % },
=2z, and y = 2;'" in A(n). It can be verified that in this case G belongs to A(n).

Case3. n—d=canda=kx+2.

In this case, we first note that oo = n — 2. We furtherhaven —d =x+2=a>n—|V(C)|+d(vg) > 146 > 1+ k. We
therefore have the following subcases.

Case3.1. n—|V(C)|=2and k= 4§ = d(vp).

In this subcase, we have n — § = k + 2. We further have k = § = d(vy) = s = (n — 2)/2. Since d(vg) + d(v1) > 09 = n — 2,
d(vg) = s = (n—2)/2, and d(vy) > d(v1), d(vg) = d(v1) = (n —2)/2. Since C is longest cycle in G, C must be in the following
form

C= 2’12’1+ZQZ; e ZiZjZi+1Z,;:_1 e zszjzl.
Set

V( i%) = {wo,v1, 21,2,z )
and

\% (G%) ={z1,29,...,25 }
in B(n). It is easy to verify that in this subcase G belongs to B(n).
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Case3.2. n—|V(C)|=1and k=4, d(vp) =6+ 1.

In this subcase, we have n — § = x + 2. We further have xk = § = (n — 2)/2. Thus, d(vy) = 6 + 1 = n/2. This leads to
[V (C)| > 2d(vp) = n, a contradiction.

Case33. n—|V(C)|=1land k+1=9,d(vg) =9.

In this subcase, we have n — 6 = k + 2. We further have x = (n — 3)/2. Thus, d(vg) = § = k +1 = (n — 1)/2. This leads to
n—1=20 <oy =n—2,acontradiction.

Hence, the proof of Theorem 1.1 is complete.

Remark. Let & be an integer such that & > 6. Construct a graph G = (V, E) where

V= {$1a$27-~-7$k»y1792a~~7ykayk+1»yk+2}

and
E={zy;:1<i<k1<j<Ek+2}U{y1y2 Yer1Yrt2 }-

Thenn =2k+2,0 =k, k =k, 02(G) =2k =n—2 > 2n—§ — k — 4. So, one can use Theorem 1.1 to conclude that G is
Hamiltonian. However, one cannot use the Ore’s condition and Lemma 2.2 to decide that G is Hamiltonian.
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