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Abstract
A graph is called Hamiltonian if it has a Hamiltonian cycle, where a Hamiltonian cycle is a cycle containing all vertices of
the graph. It is shown in this note that if G is a 2-connected graph of order n ≥ 13 such that d(u) + d(v) ≥ 2n− δ− κ− 4 for
any pair of nonadjacent vertices u and v in G then either G is Hamiltonian or G belongs to some special families of graphs,
where δ and κ are the minimum degree and connectivity of G, respectively.

Keywords: degree sum; minimum degree; connectivity; Hamiltonian graph.

2020 Mathematics Subject Classification: 05C45.

1. Introduction

In this note, only finite undirected graphs without loops or multiple edges are considered. The notation and terminology
not defined here follow those in [2]. For a graph G = (V, E), its order |V | is denoted by n. The complement of a graph G

is denoted by Gc. Denote by δ(G), α(G) and κ(G) the minimum degree, independence number and connectivity of a graph
G, respectively. For a vertex x in G, N(x) denotes the set of those vertices which are adjacent to x in G. For a nonempty
subset S of the vertex set V of G, denote by G[S] the subgraph of G induced by S. Denote by Gr a graph of order r. For two
disjoint graphs H and K, denote by H ∨K the join of H and K.

A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all the vertices of G. A graph G is called
Hamiltonian ifG has a Hamiltonian cycle. A cycleC in a graphG is called a dominating cycle if the order of each component
in the graphG[V (G)−V (C)] is less than 2. If C is a cycle ofGwith a given orientation, we use x+ to denote the successor of
a vertex x on C along the orientation of C. We also use x++ to denote the successor of a vertex x+ on C along the orientation
of C. If A ⊆ V (C), A+ is defined as {v+ : v ∈ A}. For a graph G and an integer s, if α ≥ s, σs(G) is defined as

min{d(u1) + d(u2) + . . .+ d(us) : {u1, u2, . . . , us} is an independent set in G};

and if α < s, σs(G) is defined as +∞. Also, we define

Aα(n) :=
{
G : G is Gn−2

2
∨
(
Kc

n−2
2

∪K2

)}
,

Aβ(n) := {G : V (G) = Aβ , E(G) = Bβ}

where
Aβ = V

(
Gn−2

2
∨Kc

n−2
2

)
∪ {x, y }

and
Bβ = E

(
Gn−2

2
∨Kc

n−2
2

)
∪ {xy } ∪

{
xu : u ∈ V

(
Gn−2

2

)
− { a } , a ∈ V

(
Gn−2

2

)}
∪
{
yv : v ∈ V

(
Gn−2

2

)}
,

Aγ(n) := {G : V (G) = Aγ , E(G) = Bγ },

where
Aγ = V

(
Gn−2

2
∨Kc

n−2
2

)
∪ {x, y }

and
Bγ = E

(
Gn−2

2
∨Kc

n−2
2

)
∪ {xy } ∪

{
xu : u ∈ V

(
Gn−2

2

)}
∪
{
yv : v ∈ V

(
Gn−2

2

)
− { b }, b ∈ V

(
Gn−2

2

)}
,
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Aε(n) := {G : V (G) = Aε, E(G) = Bε},

where
Aε = V

(
Gn−2

2
∨Kc

n−2
2

)
∪ {x, y }

and

Bε = E
(
Gn−2

2
∨ (Kc

n−2
2

)
∪{xy }∪

{
xu : u ∈ V

(
Gn−2

2

)
− { a }, a ∈ V

(
Gn−2

2

)}
∪
{
yv : v ∈ V

(
Gn−2

2

)
− { b }, b ∈ V

(
Gn−2

2

)}
,

provided that a 6= b,
A(n) := Aα(n) ∪ Aβ(n) ∪ Aγ(n) ∪ Aε(n),

B(n) :=
{
G : G is Gn−2

2
∨Kc

n+2
2

}
,

C(n) :=
{
G : G is Gn−1

2
∨Kc

n+1
2

}
.

In this note, we present the following sufficient condition involving σ2, δ, and κ for Hamiltonian graphs.

Theorem 1.1. Let G be a 2-connected graph of order n ≥ 13. If σ2 ≥ 2n− δ − κ− 4, then either G is Hamiltonian or G is in
A(n)∪B(n) ∪ C(n).

2. Lemmas

In order to prove Theorem 1.1, we need the following known results. The first one follows from the proof of Theorem 1
in [3].

Lemma 2.1. Let G be a graph of order n ≥ 3. If α ≤ κ, then G is Hamiltonian.

The next lemma can be found in [4]. It was also used in [5].

Lemma 2.2. Let G be a 2-connected graph. If d(u) + d(v) ≥ n− 1 for each pair of nonadjacent vertices u, v then either G is
Hamiltonian or G is in C(n).

The next result follows from Theorem 7 and the proof of Theorem 10 in [1].

Lemma 2.3. Let G be a 2-connected graph of order n such that σ3 ≥ n+ 2. Then every longest cycle C in G is a dominating
cycle and

max{ d(v) : v ∈ V (G)− V (C) } ≥ σ3
3
.

The next result is Lemma 8 in [1].

Lemma 2.4. Let G be a graph of order n such that δ ≥ 2 and σ3 ≥ n. Let G contain a longest cycle C which is a dominating
cycle. If v0 ∈ V (G)− V (C) and A = N(v0), then (V (G)− V (C)) ∪A+ is an independent set of vertices in G.

3. Proof of Theorem 1.1

Let G be a graph satisfying the conditions of Theorem 1.1. Suppose that G is not Hamiltonian. From Lemma 2.1, it follows
that α ≥ κ+ 1 ≥ 3. If σ2 ≥ n− 1 then Lemma 2.2 implies that G is in C(n). From now on, we assume that σ2 ≤ n− 2.

Suppose u is a vertex in an independent set I in G with |I| = α. Then N(u) is a subset of of V − I. Thus,

δ ≤ d(u) = |N(u)| ≤ |V − I|

and hence δ ≤ n− α, or α ≤ n− δ. Now,

n− 2 ≥ σ2
≥ 2n− δ − κ− 4

≥ n+ n− δ − κ− 4

≥ n+ α− κ− 4

≥ n+ κ+ 1− κ− 4

= n− 3.

Thus, we have three possible cases of n− δ = α and α = κ+ 1, n− δ = α+ 1 and α = κ+ 1, or n− δ = α and α = κ+ 2.
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Let {x, y, z } be an independent set in G such that σ3 = d(x) + d(y) + d(z). Then

σ3 = d(x) + d(y) + d(z)

=
(d(x) + d(y)) + (d(y) + d(z)) + (d(z) + d(x))

2

≥ σ2 + σ2 + σ2
2

=
3σ2
2

≥ 3(n− 3)

2
≥ n+ 2.

Let C be a longest cycle in G with a given orientation. From Lemma 2.3, it follows that C is also a dominating cycle.
Suppose that V (G) − V (C) = { v0, v1, . . . , vr }. Without loss of generality, we assume that d(v0) ≥ d(v1) ≥ · · · ≥ d(vr). Set
A = N(v0) = { z1, . . . , zs }. Then, Lemma 2.4 implies that (V (G)−V (C))∪A+ is an independent set of vertices inG. Hence,

α ≥ |(V (G)− V (C)) ∪A+| = |(V (G)− V (C))|+ |A+| = n− |V (C)|+ d(v0).

Next, we divide the remaining proof into the following cases.

Case 1. n− δ = α and α = κ+ 1.

In this case, we have n− δ = κ+1 = α ≥ n− |V (C)|+ d(v0) ≥ 1+ δ ≥ 1+ κ. Thus, κ = δ = d(v0) and n− |V (C)| = 1. Notice
that n− δ = κ+ 1. We have κ = δ = d(v0) = (n− 1)/2. This leads to n− 1 = 2δ ≤ σ2 ≤ n− 2, a contradiction.

Case 2. n− δ = α+ 1 and α = κ+ 1.

In this case, we have n − δ − 1 = κ + 1 = α ≥ n − |V (C)| + d(v0) ≥ 1 + δ ≥ 1 + κ. Thus, κ = δ = d(v0) and n − |V (C)| = 1.
Notice that n − δ − 1 = κ + 1. We have κ = δ = d(v0) = s = (n − 2)/2. Since C is longest cycle in G, C must be in the
following form

C = z1z
+
1 z2z

+
2 · · · ziz

+
i z

++
i zi+1z

+
i+1 · · · zsz

+
s z1.

Set
V
(
Kc

n−2
2

)
:= { v0, z+1 , . . . , z

+
i−1, z

+
i+1, . . . , z

+
s },

V
(
Gn−2

2

)
:= { z1, z2, . . . , zs },

x = z+i , and y = z++
i in A(n). It can be verified that in this case G belongs to A(n).

Case 3. n− δ = α and α = κ+ 2.

In this case, we first note that σ2 = n − 2. We further have n − δ = κ + 2 = α ≥ n − |V (C)| + d(v0) ≥ 1 + δ ≥ 1 + κ. We
therefore have the following subcases.

Case 3.1. n− |V (C)| = 2 and κ = δ = d(v0).

In this subcase, we have n − δ = κ + 2. We further have κ = δ = d(v0) = s = (n − 2)/2. Since d(v0) + d(v1) ≥ σ2 = n − 2,
d(v0) = s = (n− 2)/2, and d(v0) ≥ d(v1), d(v0) = d(v1) = (n− 2)/2. Since C is longest cycle in G, C must be in the following
form

C = z1z
+
1 z2z

+
2 · · · ziz

+
i zi+1z

+
i+1 · · · zsz

+
s z1.

Set
V
(
Kc

n+2
2

)
:= { v0, v1, z+1 , . . . , z

+
i , . . . , z

+
s }

and
V
(
Gn−2

2

)
:= { z1, z2, . . . , zs }

in B(n). It is easy to verify that in this subcase G belongs to B(n).
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Case 3.2. n− |V (C)| = 1 and κ = δ, d(v0) = δ + 1.

In this subcase, we have n − δ = κ + 2. We further have κ = δ = (n − 2)/2. Thus, d(v0) = δ + 1 = n/2. This leads to
|V (C)| ≥ 2d(v0) = n, a contradiction.

Case 3.3. n− |V (C)| = 1 and κ+ 1 = δ, d(v0) = δ.

In this subcase, we have n − δ = κ + 2. We further have κ = (n − 3)/2. Thus, d(v0) = δ = κ + 1 = (n − 1)/2. This leads to
n− 1 = 2δ ≤ σ2 = n− 2, a contradiction.

Hence, the proof of Theorem 1.1 is complete.

Remark. Let k be an integer such that k ≥ 6. Construct a graph G = (V,E) where

V = {x1, x2, . . . , xk, y1, y2, . . . , yk, yk+1, yk+2 }

and
E = {xiyj : 1 ≤ i ≤ k, 1 ≤ j ≤ k + 2 } ∪ { y1y2, yk+1yk+2 }.

Then n = 2k + 2, δ = k, κ = k, σ2(G) = 2k = n − 2 ≥ 2n − δ − κ − 4. So, one can use Theorem 1.1 to conclude that G is
Hamiltonian. However, one cannot use the Ore’s condition and Lemma 2.2 to decide that G is Hamiltonian.
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