Research Article **A degree sum condition for Hamiltonian graphs**

Rao Li[∗](#page-0-0),[†](#page-0-1)

Department of Mathematical Sciences, University of South Carolina Aiken, Aiken, SC 29801, USA

(Received: 1 June 2021. Received in revised form: 21 August 2021. Accepted: 8 September 2021. Published online: 17 September 2021.)

 \degree 2021 the author. This is an open access article under the CC BY (International 4.0) license (<www.creativecommons.org/licenses/by/4.0/>).

Abstract

A graph is called Hamiltonian if it has a Hamiltonian cycle, where a Hamiltonian cycle is a cycle containing all vertices of the graph. It is shown in this note that if G is a 2-connected graph of order $n > 13$ such that $d(u) + d(v) > 2n - \delta - \kappa - 4$ for any pair of nonadjacent vertices u and v in G then either G is Hamiltonian or G belongs to some special families of graphs, where δ and κ are the minimum degree and connectivity of G, respectively.

Keywords: degree sum; minimum degree; connectivity; Hamiltonian graph.

2020 Mathematics Subject Classification: 05C45.

1. Introduction

In this note, only finite undirected graphs without loops or multiple edges are considered. The notation and terminology not defined here follow those in [\[2\]](#page-3-0). For a graph $G = (V, E)$, its order $|V|$ is denoted by n. The complement of a graph G is denoted by G^c . Denote by $\delta(G)$, $\alpha(G)$ and $\kappa(G)$ the minimum degree, independence number and connectivity of a graph G, respectively. For a vertex x in G, $N(x)$ denotes the set of those vertices which are adjacent to x in G. For a nonempty subset S of the vertex set V of G, denote by $G[S]$ the subgraph of G induced by S. Denote by G_r a graph of order r. For two disjoint graphs H and K, denote by $H \vee K$ the join of H and K.

A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all the vertices of G . A graph G is called Hamiltonian if G has a Hamiltonian cycle. A cycle C in a graph G is called a dominating cycle if the order of each component in the graph $G[V(G)-V(C)]$ is less than 2. If C is a cycle of G with a given orientation, we use x^+ to denote the successor of a vertex x on C along the orientation of $C.$ We also use x^{++} to denote the successor of a vertex x^+ on C along the orientation of C. If $A \subseteq V(C)$, A^+ is defined as $\{v^+ : v \in A\}$. For a graph G and an integer s, if $\alpha \geq s$, $\sigma_s(G)$ is defined as

 $\min\{d(u_1)+d(u_2)+\ldots+d(u_s): \{u_1,u_2,\ldots,u_s\} \text{ is an independent set in } G\};$

and if $\alpha < s$, $\sigma_s(G)$ is defined as $+\infty$. Also, we define

$$
\mathcal{A}_{\alpha}(n) := \left\{ G : G \text{ is } G_{\frac{n-2}{2}} \vee \left(K_{\frac{n-2}{2}}^c \cup K_2 \right) \right\},\
$$

$$
\mathcal{A}_{\beta}(n) := \{ G : V(G) = A_{\beta}, E(G) = B_{\beta} \}
$$

where

$$
A_{\beta} = V\left(G_{\frac{n-2}{2}} \vee K_{\frac{n-2}{2}}^{c}\right) \cup \{x, y\}
$$

and

$$
B_{\beta} = E\left(G_{\frac{n-2}{2}} \vee K_{\frac{n-2}{2}}^c\right) \cup \left\{xy\right\} \cup \left\{xu : u \in V\left(G_{\frac{n-2}{2}}\right) - \left\{a\right\}, a \in V\left(G_{\frac{n-2}{2}}\right)\right\} \cup \left\{yv : v \in V\left(G_{\frac{n-2}{2}}\right)\right\},\
$$

$$
\mathcal{A}_{\gamma}(n) := \left\{G : V(G) = A_{\gamma}, E(G) = B_{\gamma}\right\},\
$$

where

and

$$
A_{\gamma}=V\left(G_{\frac{n-2}{2}}\vee K_{\frac{n-2}{2}}^{c}\right)\cup\left\{ \,x,y\,\right\}
$$

$$
B_{\gamma}=E\left(G_{\frac{n-2}{2}}\vee K_{\frac{n-2}{2}}^{c}\right)\cup \left\{ xy\right\} \cup \left\{ xu:u\in V\left(G_{\frac{n-2}{2}}\right)\right\} \cup \left\{ yv:v\in V\left(G_{\frac{n-2}{2}}\right)-\left\{ b\right\} ,b\in V\left(G_{\frac{n-2}{2}}\right)\right\} ,
$$

[∗]E-mail address: raol@usca.edu

†Selected publications: <https://web.archive.org/web/20190618022820/http://sciences.usca.edu/math/~mathdept/rli/pub.htm>

 $\left(\mathbf{S} \right)$ Shahin

$$
\mathcal{A}_{\epsilon}(n) := \{ G : V(G) = A_{\epsilon}, E(G) = B_{\epsilon} \},
$$

where

$$
A_{\epsilon} = V\left(G_{\frac{n-2}{2}} \vee K_{\frac{n-2}{2}}^{c}\right) \cup \{x, y\}
$$

and

$$
B_{\epsilon} = E\left(G_{\frac{n-2}{2}} \vee (K_{\frac{n-2}{2}}^c) \cup \{xy\} \cup \left\{xu : u \in V\left(G_{\frac{n-2}{2}}\right) - \{a\}, a \in V\left(G_{\frac{n-2}{2}}\right)\right\} \cup \left\{yv : v \in V\left(G_{\frac{n-2}{2}}\right) - \{b\}, b \in V\left(G_{\frac{n-2}{2}}\right)\right\},\right\}
$$

provided that $a \neq b$,

$$
\mathcal{A}(n) := \mathcal{A}_{\alpha}(n) \cup \mathcal{A}_{\beta}(n) \cup \mathcal{A}_{\gamma}(n) \cup \mathcal{A}_{\epsilon}(n),
$$

$$
\mathcal{B}(n) := \left\{ G : G \text{ is } G_{\frac{n-2}{2}} \vee K_{\frac{n+2}{2}}^c \right\},
$$

$$
\mathcal{C}(n) := \left\{ G : G \text{ is } G_{\frac{n-1}{2}} \vee K_{\frac{n+1}{2}}^c \right\}.
$$

In this note, we present the following sufficient condition involving σ_2 , δ , and κ for Hamiltonian graphs.

Theorem 1.1. Let G be a 2-connected graph of order $n \geq 13$. If $\sigma_2 \geq 2n - \delta - \kappa - 4$, then either G is Hamiltonian or G is in $\mathcal{A}(n) \cup \mathcal{B}(n) \cup \mathcal{C}(n)$.

2. Lemmas

In order to prove Theorem [1.1,](#page-1-0) we need the following known results. The first one follows from the proof of Theorem 1 in [\[3\]](#page-3-1).

Lemma 2.1. *Let* G *be a graph of order* $n \geq 3$ *. If* $\alpha \leq \kappa$ *, then* G *is Hamiltonian.*

The next lemma can be found in [\[4\]](#page-3-2). It was also used in [\[5\]](#page-3-3).

Lemma 2.2. Let G be a 2-connected graph. If $d(u) + d(v) \geq n - 1$ for each pair of nonadjacent vertices u, v then either G is *Hamiltonian or G is in* $C(n)$ *.*

The next result follows from Theorem 7 and the proof of Theorem 10 in [\[1\]](#page-3-4).

Lemma 2.3. Let G be a 2-connected graph of order n such that $\sigma_3 > n + 2$. Then every longest cycle C in G is a dominating *cycle and*

$$
\max\{ d(v) : v \in V(G) - V(C) \} \ge \frac{\sigma_3}{3}.
$$

The next result is Lemma 8 in [\[1\]](#page-3-4).

Lemma 2.4. Let G be a graph of order n such that $\delta \geq 2$ and $\sigma_3 \geq n$. Let G contain a longest cycle C which is a dominating *cycle. If* $v_0 \in V(G) - V(C)$ *and* $A = N(v_0)$ *, then* $(V(G) - V(C)) \cup A^+$ *is an independent set of vertices in* G.

3. Proof of Theorem [1.1](#page-1-0)

Let G be a graph satisfying the conditions of Theorem [1.1.](#page-1-0) Suppose that G is not Hamiltonian. From Lemma [2.1,](#page-1-1) it follows that $\alpha \geq \kappa + 1 \geq 3$. If $\sigma_2 \geq n - 1$ then Lemma [2.2](#page-1-2) implies that G is in $\mathcal{C}(n)$. From now on, we assume that $\sigma_2 \leq n - 2$. Suppose u is a vertex in an independent set I in G with $|I| = \alpha$. Then $N(u)$ is a subset of of $V - I$. Thus,

$$
\delta \le d(u) = |N(u)| \le |V - I|
$$

and hence $\delta \leq n - \alpha$, or $\alpha \leq n - \delta$. Now,

$$
n-2 \geq \sigma_2
$$

\n
$$
\geq 2n - \delta - \kappa - 4
$$

\n
$$
\geq n + n - \delta - \kappa - 4
$$

\n
$$
\geq n + \alpha - \kappa - 4
$$

\n
$$
\geq n + \kappa + 1 - \kappa - 4
$$

\n
$$
= n - 3.
$$

Thus, we have three possible cases of $n - \delta = \alpha$ and $\alpha = \kappa + 1$, $n - \delta = \alpha + 1$ and $\alpha = \kappa + 1$, or $n - \delta = \alpha$ and $\alpha = \kappa + 2$.

Let $\{x, y, z\}$ be an independent set in G such that $\sigma_3 = d(x) + d(y) + d(z)$. Then

$$
\sigma_3 = d(x) + d(y) + d(z)
$$

=
$$
\frac{(d(x) + d(y)) + (d(y) + d(z)) + (d(z) + d(x))}{2}
$$

$$
\geq \frac{\sigma_2 + \sigma_2 + \sigma_2}{2}
$$

=
$$
\frac{3\sigma_2}{2}
$$

$$
\geq \frac{3(n-3)}{2}
$$

$$
\geq n + 2.
$$

Let C be a longest cycle in G with a given orientation. From Lemma [2.3,](#page-1-3) it follows that C is also a dominating cycle. Suppose that $V(G) - V(C) = \{v_0, v_1, \ldots, v_r\}$. Without loss of generality, we assume that $d(v_0) \geq d(v_1) \geq \cdots \geq d(v_r)$. Set $A = N(v_0) = \{z_1, \ldots, z_s\}$. Then, Lemma [2.4](#page-1-4) implies that $(V(G) - V(C)) \cup A^+$ is an independent set of vertices in G. Hence,

$$
\alpha \ge |(V(G) - V(C)) \cup A^+| = |(V(G) - V(C))| + |A^+| = n - |V(C)| + d(v_0).
$$

Next, we divide the remaining proof into the following cases.

Case 1. $n - \delta = \alpha$ and $\alpha = \kappa + 1$.

In this case, we have $n - \delta = \kappa + 1 = \alpha \ge n - |V(C)| + d(v_0) \ge 1 + \delta \ge 1 + \kappa$. Thus, $\kappa = \delta = d(v_0)$ and $n - |V(C)| = 1$. Notice that $n - \delta = \kappa + 1$. We have $\kappa = \delta = d(v_0) = (n - 1)/2$. This leads to $n - 1 = 2\delta \le \sigma_2 \le n - 2$, a contradiction.

Case 2. $n - \delta = \alpha + 1$ and $\alpha = \kappa + 1$.

In this case, we have $n - \delta - 1 = \kappa + 1 = \alpha \ge n - |V(C)| + d(v_0) \ge 1 + \delta \ge 1 + \kappa$. Thus, $\kappa = \delta = d(v_0)$ and $n - |V(C)| = 1$. Notice that $n - \delta - 1 = \kappa + 1$. We have $\kappa = \delta = d(v_0) = s = (n - 2)/2$. Since C is longest cycle in G, C must be in the following form

$$
C = z_1 z_1^+ z_2 z_2^+ \cdots z_i z_i^+ z_i^+ z_{i+1}^+ z_{i+1}^+ \cdots z_s z_s^+ z_1.
$$

Set

$$
V\left(K_{\frac{n-2}{2}}^c\right) := \{v_0, z_1^+, \dots, z_{i-1}^+, z_{i+1}^+, \dots, z_s^+\},
$$

$$
V\left(G_{\frac{n-2}{2}}\right) := \{z_1, z_2, \dots, z_s\},
$$

 $x=z_i^+$, and $y=z_i^{++}$ in $\mathcal{A}(n)$. It can be verified that in this case G belongs to $\mathcal{A}(n)$.

Case 3. $n - \delta = \alpha$ and $\alpha = \kappa + 2$.

In this case, we first note that $\sigma_2 = n - 2$. We further have $n - \delta = \kappa + 2 = \alpha \ge n - |V(C)| + d(v_0) \ge 1 + \delta \ge 1 + \kappa$. We therefore have the following subcases.

Case 3.1. $n - |V(C)| = 2$ and $\kappa = \delta = d(v_0)$.

In this subcase, we have $n - \delta = \kappa + 2$. We further have $\kappa = \delta = d(v_0) = s = (n - 2)/2$. Since $d(v_0) + d(v_1) \ge \sigma_2 = n - 2$, $d(v_0) = s = (n-2)/2$, and $d(v_0) \geq d(v_1)$, $d(v_0) = d(v_1) = (n-2)/2$. Since C is longest cycle in G, C must be in the following form

$$
C = z_1 z_1^+ z_2 z_2^+ \cdots z_i z_i^+ z_{i+1} z_{i+1}^+ \cdots z_s z_s^+ z_1.
$$

Set

$$
V\left(K_{\frac{n+2}{2}}^c\right) := \{v_0, v_1, z_1^+, \dots, z_i^+, \dots, z_s^+\}
$$

and

$$
V\left(G_{\frac{n-2}{2}}\right) := \{z_1, z_2, \ldots, z_s\}
$$

in $\mathcal{B}(n)$. It is easy to verify that in this subcase G belongs to $\mathcal{B}(n)$.

Case 3.2. $n - |V(C)| = 1$ and $\kappa = \delta$, $d(v_0) = \delta + 1$.

In this subcase, we have $n - \delta = \kappa + 2$. We further have $\kappa = \delta = (n - 2)/2$. Thus, $d(v_0) = \delta + 1 = n/2$. This leads to $|V(C)| \geq 2d(v_0) = n$, a contradiction.

Case 3.3. $n - |V(C)| = 1$ and $\kappa + 1 = \delta$, $d(v_0) = \delta$.

In this subcase, we have $n - \delta = \kappa + 2$. We further have $\kappa = (n - 3)/2$. Thus, $d(v_0) = \delta = \kappa + 1 = (n - 1)/2$. This leads to $n-1=2\delta\leq \sigma_2=n-2$, a contradiction.

Hence, the proof of Theorem [1.1](#page-1-0) is complete.

Remark. Let k be an integer such that $k \geq 6$. Construct a graph $G = (V, E)$ where

$$
V = \{x_1, x_2, \dots, x_k, y_1, y_2, \dots, y_k, y_{k+1}, y_{k+2}\}
$$

and

$$
E = \{ x_i y_j : 1 \le i \le k, 1 \le j \le k+2 \} \cup \{ y_1 y_2, y_{k+1} y_{k+2} \}.
$$

Then $n = 2k + 2$, $\delta = k$, $\kappa = k$, $\sigma_2(G) = 2k = n - 2 > 2n - \delta - \kappa - 4$. So, one can use Theorem [1.1](#page-1-0) to conclude that G is Hamiltonian. However, one cannot use the Ore's condition and Lemma [2.2](#page-1-2) to decide that G is Hamiltonian.

References

- [1] D. Bauer, H. J. Veldman, A. Morgana, E. F. Schmeichel, Long cycles in graphs with large degree sums, *Discrete Math.* **79** (1989/1990) 59–70.
- [2] J. A. Bondy, U. S. R. Murty, *Graph Theory with Applications*, Elsevier, New York, 1976.
- [3] V. Chavátal, P. Erdős, A note on Hamiltonian circuits, *Discrete Math.* 2 (1972) 111-113.
- [4] C. Nara, On sufficient conditions for a graph to be Hamiltonian, *Natur. Sci. Rep. Ochanomizu Univ.* **31** (1980) 75–80.
- [5] Z. G. Nikoghosyan, A size bound for Hamilton cycles, *arXiv*:1107.2201 [math.CO], (2011).