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Abstract

In this paper, by using the k-generalized fractional integrals, we establish certain integral inequalities for the Chebyshev
functional in case of synchronous function. The obtained inequalities generalize several known integral inequalities.

Keywords: generalized k-proportional fractional integral operators with general kernel; Chebyshev inequality; synchronous
functions.

2020 Mathematics Subject Classification: 26A33, 26D10, 47A63.

1. Introduction

One of the most developed mathematical areas in recent years is that of integral inequalities, particularly involving various
fractional and generalized integral operators; for example, see [1,5-8,10,15,17,18,21,25,31,43,44]. Recently, the gen-
eralized k-proportional fractional integral operators with general kernel were defined, which contain many of the known
fractional operators. In order to give detail of this work, we need to first present some preliminary results.

Throughout this paper, we use the functions I' (see [33,36,46,47]) and I';, (see [13]) defined as follows:

I'(z) :/ 7 leTTdr, R(2) >0
0

and 00
Tr(z) = / 7l R dr k> 0.
0

It is clear that if k¥ — 1 we have I'y(z) — I'(2), T(z) = (k)*'T (£) and Ty (z + k) = 2T'(2). Also, we define the k-beta
function as follows

1
=L [ 70t
k Jo
Notice that
u v
By (u,v) = k:B <k k:)
and
L (u)L (v)
B, Al ANV
(U, v) Th(ut 0)

The fractional integral operator of Riemann-Liouville are being extended and generalized in various ways. One of such
ways are presented in this paper. From the point of view of differential operators and by manipulating simple algebraic
identities, one can follow the idea of fractional differential operators of the Riemann-Liouville or Caputo type. From the

simple facts « =1+ a—1and a« = o — 1 + 1 we have
RLDaf {Jl a }
and of
Cra -«
D J
=i dt) ).

respectively.

Next, we present several definitions of fractional integrals, some very recent (with 0 < a; < 7 < az < o0). One of the
first operators that can be called fractional is the Riemann-Liouville fractional derivative of order oo € C, with Re(a) > 0,
defined as follows (see [16]).
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Definition 1.1. Let a; < as and f € L'((a1,az);R). The right and left side Riemann-Liouville fractional integrals of order
a, with Re(a) > 0, are defined, respectively, by

RLye (1) = %a) / (t — )" f(s)ds,

and as
M ) = e [ (=0 s
with t € (a1, az).

Other definitions of fractional integral operators are the following ones.

Definition 1.2. [19] Let a; < as and f € L'((a1,az2);R). The right and left side Hadamard fractional integrals of order a,
with Re(«) > 0, are defined, respectively, by

HE L f(t) = %a) /t (105 1) {as,

e 0= i | (ow7)” I

and

with t € (CLl, CLQ).
In [22], the author introduced new fractional integral operators, called the Katugampola fractional integrals, in the
following way.

Definition 1.3. Let 0 < a; < as, [ : [a1,a2] — R be an integrable function, and « € (0,1), p > 0 be two fixed real numbers.
The right and left side Katugampola fractional integrals of order o are defined, respectively, by

o plfoc t spfl
K200 = b | e s

and

l1—a az —1
K5 g0 = s [ e s

sP — tp)

with t € (al, ag).
The left-sided and right-sided Riemann-Liouville k-fractional integrals are given in [28].

Definition 1.4. Let f € Li[a1,az2]. Then the Riemann-Liouville k-fractional integrals of order a € C, R(«) > 0 and k > 0
are given by the expressions:

1

a[fl+f(u) = kfkm)/al (U—T)%_lf(T)dT, u > ar,

2

Iy f(u) = ﬁ(a) /:2 (t—w)* 1 f(r)dr, u<as.

A more general definition of the Riemann-Liouville fractional integrals is given in [24].

Definition 1.5. Let f : [a1,a2] — R be an integrable function. Also, let g be an increasing and positive function on (a1, as)
with a continuous derivative g' on (a1, as). The left and right sided fractional integrals of a function f with respect to another
function g on [a1, as] of order a € C, R(a) > 0, are expressed by:

o Lo f(u) = ﬁ /u (g(u) — g(T))a_lg’(T)f(T) dr, u> ai,

1

1 S0 = F

A k-fractional analogue of Definition 1.5 is given in the following (see [4, 26, 37]).

/ P (9(r) — 9(w) g (D) f () dr. u < an.
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Definition 1.6. Let f : [a1,a2] — R be an integrable function. Also, let g be an increasing and positive function on (a1, az)
with a continuous derivative g’ on (a1,a2). The left and right sided k-fractional integrals of a function f with respect to
another function g on [a1,as) of order a € C, R(a) > 0 and k > 0 are expressed by:

I fu) = ﬁ(a) /a (9w) = 9(m)* g (N f(r)dr, u>a,

1

) = s [ o) —g) O ar u<an

Next, we have the definition of the generalized proportional fractional (GPF) integral operator (see [38]).

Definition 1.7. Let U € X} (0,400), 0 < a1 < ao, and there be an increasing and positive monotone function ¥ defined
on [0,+00) having continuous derivative V' on [0,+00) with U(0) = 0. Then the left-sided and right-sided GPF-integral
operator of a function U in the sense of another function ¥ of order n are stated as:

W n,s _ 1 ° erp [% (\I’(g) - \Il(f))] ’
TU1+U(<) - g”F(n) /vl (\IJ(C) - \Il(é.))lfn U(E)\I] (£)d€7 v <,
d
an VTS U(6) = — / ne B O WO gy, ¢ <
V2T SIT() Ju,  (W(E) — W(e)) " ’ >

where the proportionality index ¢ € (0,1], n € C, Re(n) > 0, and T is the gamma function.
The functional space on which we develop our work is the following.

Definition 1.8. Let h € L1[0,+0o0) and F be a continuous and positive function on [0,+o00) with F(0) = 0. The space
X1.(0,400)(1 < ¢ < +00) consists of those real-valued Lebesgue measurable functions h on [0, +oco) for which

as H
|h||X;,=(/ |h<s>|QF<s>ds) <400, 1<g< oo,
a

1

and for the case ¢ = +0o0o

||h||X;io =ess sup [F(s)h(s)].
0<s<00

We are now in a position to define the generalized integral operators that we use in our work (see [30]).

Definition 1.9. Let h € X1.(0,+00) and F be a continuous and positive function on [0, +oo) with F(0) = 0. The right and
left side generalized k-proportional fractional integral operators with general kernel of order ~ of h are defined, respectively,
by

) (1)

I ) = e [ G L AFH)

TN S (P (ns) R

a1 [ GE () VERG)
200 = s . ) E ®

where the proportionality index A € (0,1), v € C, Re(y) > 0, x € (a1, a2),

and

P = [ * F(r)dr,

F_(s,x) = / CF(rr,

and
GF+(x,9),1) =G([F_(x,s),1) = 1.

Of course there are other integral fractional operators and their variations can be considered, however we do not discuss
them here.

Remark 1.1. Next, we will show how many integral operators are particular cases of (1) and (2).
1. Ifin Definition 1.9 we take k = 1, F' = 1, and \ = 1, we obtain the Riemann-Liouville operators given in Definition 1.1.

2. Under the above conditions, if k # 1 then, from Definition 1.9, the k-fractional operators defined in [28] are obtained.
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3. If F(s) = <, A= 1and k = 1, then the Hadamard fractional operator is reproduced, see Definition 1.2, and [19,23, 39].

4. If F(s) = L5, A=1, and k = 1, then we obtain the Katugampola’s fractional operator given in Definition 1.3, see [22].

5. The Choices A = 1, F(s) = ¢'(s), and k = 1, lead us to the integral operator defined in [24].

6. If we take F(s) =1, k # 1 and
_ A=l X
GFi(x,8),A) = exp [)\ <ln)} ,

S

then we obtain the integral operator defined in [35].

7. We can obtain an integral operator with a non-singular nucleus, of the Riemann-Liouville type, by putting v = k = 1,

F(t)=1, and
l-«o

GFy(x,s),a)=exp [— (x — s)} )
that is a slight modification of the operator defined in [3].
8. If we Choose \ £ 1, F(s) = ¢'(s), k=1and

GIF- (.80 = e | 252 (900 - ()]

then we obtain the integral operator defined in [38], known as GFP and is given in Definition 1.7.

2. Results

One of the best known integral inequalities is Chebyshev’s inequality (see [11]), which establishes relationships between
the integral of the product of two functions and the product of their integrals. This inequality is stated in the framework
of the classical Riemann integral:

b—a/ f(z da:>< —a/ f(z )(b_a/bg(x)dx>, (3)

where f and g are two integrable and synchronous functions on [a, V], a < b, a,b € R. Inequality (3) has many applications in

diverse research subjects such as numerical quadrature, transform theory, probability, existence of solutions of differential
equations and statistical problems. Many authors have investigated generalizations of the Chebyshev’s inequality (3),
which are called Chebyshev type inequalities (for example, see [2,9,12,14,20,27,29,32,34,41-43,45]). This inequality is
generalized also in the present paper by using the generalized operator of Definition 1.9, which contain many inequalities
reported in the literature as particular cases.

Definition 2.1. Two functions f and g are said to synchronous (asynchronous) on [0, ), if

((f(u) = f())(g(w) —g(v))) = (£)0,
for all u,v € [0, 400).

In Chebyshev’s work cited above, the following functional is presented, which has been the subject of researches:

dx—(b_a/f )( /abg(x)dac>, @

where f and g are two integrable functions which are synchronous on [a, ).
In our work, we consider the following generalization of the functional T'(f, g) (see (4)):

T(f

X JFk;u-‘rf( ) a1+g(X)
CH(F ) = T2 . (F9)() - ,
. Thinsl19 ( 7 00 )

with

T ()0 = 1 : )/X G(F+(X7U),A)F(U?(1)du'

AN ED k(v

Our first result is given in the form of following theorem.
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Theorem 2.1. Let f and g be two synchronous on [0,00). Then forall x > ay > 0,a > 0, € (0,1), and v € Cwith Re(y) > 0,
it holds that

Cf(f,g) >0

Proof. As f and g are synchronous functions on [0, 0), it follows that

(f(u) = f(v))(g(w) —g(v)) =0,
for all u,v > 0. Therefore,
f(u)g(u) + f(v)g(v) > f(u)g(v) + f(v)g(u). (5)

Multiplying both sides of (5) by
1 G(FJr (Xa U)7 A)F(’U’)

MERLR(Y) Py (xow)' 7
and integrating the result with respect to u over (aq, x), we get

1 / G(E+(x. w). NF(w)f (wg(u)du  [(v)g(v) / G(F.4 (x, u), \) F(u)du
ATRLk(7) (Fi(u)' ™ * NECR() Jar (Fy(xuw)' 7

g9(v) /X G4 (x, u), A f (u) F(u)du f() /X GFy (X, u), Ng(u) F(u)du
] :

NET(7) (Fe(pu)' ™ * ATRT k(v (Fy(x,u)'
We can write i N By .
TED L (F9)00 + F@)g)TEn (D) = g(0) T (D) + F©) T (9) (). )

Multiplying both sides of (6) by
1 G(FJr(va)v)‘)F(U)

NRLR() (4 (0)'

then integrating the resulting inequality with respect to v over (a4, x), we obtain

E L WOTE (90O + TEn  (F) ) TR (D ()

> TR @COTED (D0 +TEN (DOOTED L (9)(x) )

that is,
TEm (OO E (F9)00) = Thi (@) 00T E i (H(X).

Reordering it and taking into account the definition of A% (f,9), the desired inequality is obtained. This completes the
proof. O

Remark 2.1. Ifwe take k =1, a1 = 1land F(s) = % in Theorem 2.1 then we get the Hadamard Integral and the above result
cover Theorem 3.1 of [12].

Theorem 2.2. Let f and g be two synchronous functions on [0,00). Then for all x > a1 > 0,A € (0,1) and 7,6 € C with
Re(v) > 0, Re(d) > 0 it holds that

it (f.9) 2 0,
where
J%,/\ S S T S LD
i g(ﬂ g = p,lm;(fg)(x) N Jpéalj(fg)(x) B JF,a1+(g)(X)JF,aél§(f)(X) + ‘iF),\a1+(f)(X)JF,a1+(g)(X)
o+ M) JTps (D) TE o+ (WOO)I 5, (1) ()

is the generalization of the Functional T(f,g) for v and é.

Proof. Multiplying both sides of (6) by

L G+ 0). NF ()
METL@) (B (x0)'

then integrating the resulting inequality with respect to v over (a4, X), we obtain

> JE,;1+<9><x>J£,;1+<f><x> + JE,Q+(f)(X)Jp%,;Aﬁ(g)(x)- ®)
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Dividing both sides of (8) by
TEX LD0OTED L (D),
we get
T U900 | JEL 90 | TEL @00TEa (D00 +TE, (00 TE ()0
: - JE2 L W00IEE L (D) '

TN E3Y
JFk,ale(l)(X) J}};‘,al-&-(l)(X)
oy}
Reordering it and taking into account the definition of C /\7“ *(f,g), the desired inequality is obtained. This completes the
O

proof.

Remark 2.2. Note that
1. The setting v = 8 in Theorem 2.2 yields Theorem 2.1

2. If we take k = 1 and v = 6 = 1 in Theorem 2.2, then

rp

F
F(f9) =T(f,9)
be positive increasing function on [0,00). Then for all x > a1 > 0, X € (0,1) and v € C with

Theorem 2.3. Let (fi),_, 5,
Re(v) > 0, the following inequality holds

TEms <H f1>

Proof. We prove the result by induction on n. Clearly, for n = 1, it holds that
l’)\ R
Tha+ (F1) (X) = TED ()00

P/ NCVCS I | 7 SEALEY)

forall x > a1 >0, >0,) €(0,1) and v € C with Re(y) > 0.

For n = 2, applying Equation (7), we obtain

T 0 = [T 0] TR TR ()0,

By induction hypothesis, we have
A n—l T 2—n n—1 oY
Thne (H ﬁ-) 00 = [T e0] TT 7hm s (ko
i=1 i=1
forall x > a1 >0, >0, €(0,1) and v € C with Re(y) > 0
are positive increasing functions on [0, o), (H?:_ll fi) (x) is also a positive increasing function

Now, since (fi)i:1,2,..,n
on [0, c0). Therefore, by applying Theorem 2.1 to the functions g = ['_, f; and f = f,,, we obtain

Thins (Hﬂ-) 0 = Jﬁ;ﬁ(Hfzfn) Vs (9f) (X)
=1
[ 171 o2 2

> [Ea 0] TR @00TEn (DK

> [ 0] R, (H) COTE 4+ () 00
=1

> RN o] R o] HJ;“+ WVIED )00

> R o] TR G

i=1

This completes the proof.
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The previous results can be extended if we consider a certain positive “weight” function h.

Theorem 2.4. Let f and g be two synchronous functions on [0,00) and h > 0. Then for all x > a1 > 0,A > 0and v € C with
Re() > 0, the following inequality holds:

TEN L OOTED (Fah) () > TEN (90T (PO + T (NGO TE 4 (9h)(x0)

—TEN )OO TE i (0.
Proof. Since h > 0 and the functions f and g are synchronous on [0, o), we obtain
(f(u) = f(v)(g(uw) — g(v))(h(u) + h(v)) > 0,

for all u,v > 0. Then,
fuw)g(w)h(u) + f(v)g(v)h(v) = f(u)g(v)h(u)+ f(v)g(u)h(u) — f(v)g(v)h(u) — f(u)g(w)h(v)

+ f(w)g(v)h(v) + f(v)g(w)h(v). €)

Multiplying both sides of (9) by
1 GEFs (6w, N F ()
AETR() (B (u)'
then integrating the resulting inequality with respect to u over (a1, x), we obtain
1 /X G+ (x u), VEF(u)f(w)g(wh(u)du  f(v)g(v)h(v) /X G(F4 (X, u), A F(u)du
ATRL(Y) Jay (Fe(pu)'F AELR() o Falw) R

9(v) /X GE+ 06w, V@ f(wh(wdu () /X GEFL (x w), M F (w)g(w)h(u)du

5

ATRLR(Y) Jay (Fi(xu) ' 7 AKLE(Y) Jay (Fy(x,u) 7

~ f()g(v) /X G(Fy (¢ u), VF(wh(u)du  h(v) /" G(F+(x,w), N F (u) f (u)g(w)du
AETE(Y) Jay (Fy(x,u)' ™ * AEL(Y) Ja, (Fo(x,u)' "%

L 9(h(v) /X GEL (), N (W) f(u)du - f(v)h(v) /X G(F4 (X, u), \)F(u)g(u)du
AETL(Y) Ja, (F(x,u) "% AETE(Y) Jay (Fy(x, ) " * '

We can write as

TEX (Fgh) () + F@)g@h(@)TEN (D) > g@)TED L (FR)0) + F0)TED . (gh)(x)

v

— F(@)g(0) T (M) = h(o) T (f9)(X)

+g(@)hW) TN ()

+ F()h()TED L (9)(0)- (10)

Multiplying both sides of (10) by
1 G(F+(X7U)7A)F(’U)

MECK() (4 (ov)'F
then integrating the resulting inequality with respect to v over (aq, x), we obtain

TEX WOOTED L (Fah) )+ TED L (Fa)OOTED ()00 = TED (@) 0OTED L (fR)(x)

FIED L NOOTES (ah)00 — TE (P C0TES (D00

—TED L OOTED L (F9) 00 + TED L (g 0O TED L (H()

A A
+Jp o+ (TR ), 4 (9)(X)-
That is,

TER COOTEDN L (Fa) () = TEN (@ OOTED LR + T (NOOTED (gh) () = TEN  (F)OOTED () (x).
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Remark 2.3. If we take h = 1 in Theorem 2.4, we obtain Theorem 2.1.

Theorem 2.5. Let f and g be two synchronous functions on [0,00), h > 0. Then for all x > a1 > 0, A € (0,1), v € C with
Re() > 0and § € Cwith Re(d) > 0, the following inequality holds:

TEDN L DCOTED L (Fah)() + TED  (Fah) ) TEn () (X)

@ OOTE ()00 + TE (P OTED  (9h) (0)-

Proof. Multiplying both sides of (10) by
1 G(F+ (X7 ’U), )‘)F(U)
METLO) (B (x0)'

then integrating the resulting inequality with respect to v over (a1, ), we obtain
TER COOTED (Fa) )+ TEN ,(Fam)0)TEm (D00 2 TE (@) C0TED L (F()

FTEN (DCOTEN (a0 — TED L (F9) ) TFm () (X)

—TE L WOOTED L)) + T (gh) C0TE ()60

IR LR OOITED L (9)00).

O
Remark 2.4. For h = 1, Theorem 2.5 gives Theorem 2.2.
More precise results can be obtained, if in the previous Theorem we impose additional conditions on the function h.
Theorem 2.6. Let f, g and h be three monotonic functions defined on [0, c0) satisfying the following inequality
(f(uw) = f(0))(g(u) — g(v))(h(u) — h(v)) =0
for all u,v € [a1, x]. Then, for all x > a1 >0, A € (0,1), v € Cwith Re(v) > 0and § € C with Re(d) > 0, it holds that
7 A A
JFa1+( YO)TEm  (fah) () + Fa1+(fgh)( ) (D00 = TEm (900 TE0  (F)(X)
A 7 7oA
+ g0+ (N (X )JFa1+(gh)(X) Fa1+(fg)( ) fay 4 () (X)
S A
J§a1+(h)( ) Fa1+(f9)( )+ Ty (9 )Ty 4 (F)(X)
oA A
+ I F 0y (SR X)TE 4, 4 (9) (X)-
Proof. As in the proof of Theorem 2.5, if we multiply both sides of (10) by
1 G(F+ (X? U)7 )‘)F(/U)
MELR@) - (F (0)
then integrate the resulting inequality with respect to v over (a1, x), we obtain the desired inequality. O

An inequality involving the square of the functions f and g can be stated as follows.

Theorem 2.7. Let f and g be defined on [0,00), then for all x > a; > 0, A € (0,1) and v € C with Re(vy) > 0, the following
inequalities hold

EA A 2 2 2
Tie R 200 + T g? (0] 2 2757 FOO T 9(x) an
and
A I 2
Tine 2005 g (00 = [ (F9) 00T (12)

Proof. Since

we have

F2(u) + g*(v) = 2f(u)g(v). (13)
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Gy (X, u), ) F(u)

Multiplying both sides of (13) by
1
MELR(Y) (Fy(x,w)' 77
then integrating the resulting inequality with respect to u and v over (a1, x), we obtain (11).
(f(w)g(v) = f(v)g(w))* = 0,
O

On the other hand, since

then by using the same arguments as before, we have (12).
Theorem 2.8. Let f and g be defined on [0,00). Then for all x > a1 > 0,A € (0,1), v € C with Re(v) > 0 and § € C with
(14)

Re(0) > 0, the following inequalities hold
20X S A S A S
Tie P07 (D) + T ()0 9% (0) 2 2757 FOOT 7 g(x)
and ; .
A S ¢ A T L3P
T P07 0700 + T 5 FPO0TE 50" (00 = 2017 (Fa) 00T (F9) (). (15)
(16)

Proof. Like before, since (f(u) — g(v))? > 0, we have
P2 () + g%(v) > 2f (u)g(v).

Multiplying both sides of (16) by
ARLR(Y) (Fy(w)'

I GFL (o) V)

ARERE) (B4 (o))

and
then integrating the resulting inequality with respect to v and v over (a1, x) respectively, we obtain (14).

On the other hand, since
(f(w)g(v) = f(v)g(u))* >0,

then by using the same arguments as before, we have (15).

Remark 2.5. If we take v = 6 we obtain Theorem 2.7.

Theorem 2.9. Let f : R — R with
fw= [ Fesre

u>ay >0, A€ (0,1) and v € Cwith Re(vy) > 0. Then, for v > k > 0 it holds that
My)\ 1 2N =
T TOO = 1 Tra, F(X)-

X G(F (0w NP ()

Proof. Here
A F _ 1

Tear T = 00 /a F, (o)t

_ 1 XG(Fy(x,u), \)F(u) [* (e du

= N0 / )2 / F(z.)/(2)dz du.

Then, by Dirichlet’s formula, the last expression becomes
1 X X .
MED(7) /a1 (Z7S)f(z)/z G(Fo(x,u), \)F(u)(Fi(x,u)) du dz

¥ G(FL (6 0, VF () ()

1
Rt (F: (o)

This complete the proof.
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3.

Conclusion

In this paper, we present a generalized formulation of the Riemann-Liouville fractional integral, which contains as particu-

lar cases many of the integral operators reported in the literature. We present several integral inequalities that generalize

several known inequalities.

We highlight the strength of Definition 1.9 by pointing out the following fact. If we consider the kernel

F(x,s)=x"""*

and G = 1, we obtain a variant of the (k, s)-Riemann-Liouville fractional integral defined in [40]:

gt .
itz = CEian [ e i

This opens up wide possibilities of obtaining new integral inequalities.
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