
Electronic Journal of Mathematics
www.shahindp.com/locate/ejm

Electron. J. Math. 1 (2021) 101–107
DOI: 10.47443/ejm.2021.0014

Research Article

Some new bounds on the first Zagreb index
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Abstract
In this paper, new inequalities involving the first Zagreb index, inverse degree index and modified first Zagreb index are
established. Some new and old bounds on the first Zagreb index are given as corollaries of the obtained inequalities.
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1. Introduction

A graph invariant is any property of graphs that depends only on the abstract structure, not on graph representations such
as particular labellings or drawings of the considered graph. A graph invariant may be a polynomial (e.g., the characteristic
polynomial), a set of numbers (e.g., the spectrum of a graph), or a numerical value. Numerical graph invariants that
quantitate topological characteristics of graphs are called topological indices [2]. Topological indices are powerful tools
in the description of chemical and other properties of molecules. Topological indices generally characterize both the size
and shape of chemical compounds. Over the years, many topological indices were proposed and studied based on degrees,
distances and other parameters of graphs.

Let G = (V,E), V = {v1, v2, . . . , vn}, be a simple connected graph of order n ≥ 2 and size m. Denote by

∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ > 0,

the vertex degree sequence of G given in a nonincreasing order, where di = d(vi).
The first Zagreb index is the degree–based index introduced in [17] during the study of total π-electron energy of

alternant hydrocarbons. It is defined as

M1(G) =

n∑
i=1

d2
i .

During the years, the first Zagreb index became one of the most popular and most extensively studied graph-based molec-
ular structure descriptors. More on its applications and mathematical properties can be found in surveys [1,3,14,16,41].

A generalization of the first Zagreb index, known as zeroth–order Randić index, is defined [20] as

0Rα(G) =

n∑
i=1

dαi ,
0R0(G) = n ,

where α is an arbitrary real number. This index can be found in the literature under the name variable first Zagreb
index [26], or first general Zagreb index [30]. Some special cases include the inverse degree index [11] obtained for α = −1,
that is

ID(G) =

n∑
i=1

1

di
,

and the so called modified first Zagreb index [41] (see also [18,30]) obtained for α = −2, that is

mM1(G) =

n∑
i=1

1

d2
i

.

More on ID(G) and its properties can be found in [8,10,36].
In this paper, we consider a relationship between M1(G), ID(G) and mM1(G). A number of old/new bounds for M1(G)

are obtained as special cases.
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2. Preliminaries

In this section, we recall some results from the literature that will be used in the subsequent considerations.

Lemma 2.1. [23, 38] Let p = (pi), i = 1, 2, . . . , n, be a sequence of non–negative real numbers and a = (ai), i = 1, 2, . . . , n,
sequence of positive real numbers. Then, for any r, r ≤ 0 or r ≥ 1, holds(

n∑
i=1

pi

)r−1 n∑
i=1

pia
r
i ≥

(
n∑
i=1

piai

)r
. (1)

When 0 ≤ r ≤ 1 the opposite inequality is valid. Equality holds if and only if either r = 0, or r = 1, or a1 = a2 = · · · = an, or
p1 = p2 = · · · = pt = 0 and at+1 = · · · = an, or pt+1 = · · · = pn = 0 and a1 = a2 = · · · = at, for some t, 1 ≤ t ≤ n− 1.

The inequality (1) is known in the literature as Jensen’s inequality. This is only one of many variations of this inequality.
For the history of this inequality one can refer to [39] as well as monograph [37].

The next two results refer to lower and upper bound on the first Zagreb index of connected graphs. In [9] (see also
[4,22,24,43]) the following lower bound for M1(G) was determined.

Lemma 2.2. [9] Let G be a connected graph with n ≥ 2 vertices and m edges. Then

M1(G) ≥ 4m2

n
. (2)

Equality holds if and only if G is a regular graph.

In [6] (see also [15,19,21,25,32]) the following upper bound was obtained.

Lemma 2.3. [6] Let G be a connected graph with n ≥ 2 vertices and m edges. Then

M1(G) ≤ 2m(∆ + δ)− n∆δ . (3)

Equality holds if and only if di ∈ {∆, δ}, for every i, 1 ≤ i ≤ n.

Some generalizations of inequalities (2) and (3) can be found in [3,5,12,28,28,29,31,33,34,40].

3. Main results

In the following theorem, we determine a relationship between M1(G), mM1(G) and ID(G).

Theorem 3.1. Let G be a connected graph with n ≥ 3 vertices and m edges, and let a be an arbitrary real number. If di = a

for i = 2, . . . , n− 1, then
M1(G) = ∆2 + δ2 + (n− 2)a2 .

If di 6= a, for at least one i, 2 ≤ i ≤ n− 1, then

M1(G) ≥ 4am− a2n+ (∆− a)2 + (δ − a)2+

+

(
a2ID(G)− 2an+ 2m− (∆−a)2

∆ − (δ−a)2

δ

)2

mM1(G)a2 − 2aID(G) + n− (∆−a)2

∆2 − (δ−a)2

δ2

.

(4)

Equality holds if and only if either d2 = · · · = dn−1 6= a, or a = d2 = · · · = dt > dt+1 = · · · = dn−1, or

d2 = · · · = dt > dt+1 = · · · = dn−1 = a,

for some t, 2 ≤ t ≤ n− 2.

Proof. The inequality (1) can be considered in the following form(
n−1∑
i=2

pi

)r−1 n−1∑
i=2

pia
r
i ≥

(
n−1∑
i=2

piai

)r
. (5)

For r = 2, pi = (di−a)2

d2i
, ai = di, i = 2, . . . , n− 1, the above inequality becomes

n−1∑
i=2

(di − a)2

d2
i

n−1∑
i=2

(di − a)2 ≥

(
n−1∑
i=2

(di − a)2

di

)2

. (6)
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Since
n−1∑
i=2

(di − a)2

d2
i

=

n∑
i=1

(di − a)2

d2
i

− (∆− a)2

∆2
− (δ − a)2

δ2
=

=

n∑
i=1

(
a2

d2
i

− 2a

di
+ 1

)
− (∆− a)2

∆2
− (δ − a)2

δ2
=

= mM1(G)a2 − 2aID(G) + n− (∆− a)2

∆2
− (δ − a)2

δ2
,

n−1∑
i=2

(di − a)2 =

n∑
i=1

(di − a)2 − (∆− a)2 − (δ − a)2 =

=

n∑
i=1

(d2
i − 2adi + a2)− (∆− a)2 − (δ − a)2 =

= M1(G)− 4am+ a2n− (∆− a)2 − (δ − a)2 ,

and
n−1∑
i=2

(di − a)2

di
=

n∑
i=1

(di − a)2

di
− (∆− a)2

∆
− (δ − a)2

δ
=

=

n∑
i=1

(
di − 2a+

a2

di

)
− (∆− a)2

∆
− (δ − a)2

δ
=

= a2ID(G)− 2an+ 2m− (∆− a)2

∆
− (δ − a)2

δ
,

from the above results and Equation (6) we get(
mM1(G)a2 − 2aID(G) + n− (∆− a)2

∆2
− (δ − a)2

δ2

)
(M1(G)− 4am+ a2n− (∆− a)2 − (δ − a)2) ≥

(
a2ID(G)− 2an+ 2m− (∆− a)2

∆
− (δ − a)2

δ

)2

.

(7)

If di = a for every i, 2 ≤ i ≤ n− 1, then equality in (7) is attained. If di 6= a for at least one i, 2 ≤ i ≤ n− 1, then

mM1(G)a2 − 2aID(G) + n− (∆− a)2

∆2
− (δ − a)2

δ2
> 0 ,

and from (7) the inequality (4) is obtained.
If di 6= a for at least one i, 2 ≤ i ≤ n− 1, then equality in (7), and consequently in (4), holds if and only if

d2 = · · · = dn−1 6= a,

or
a = d2 = · · · = dt > dt+1 = · · · = dn−1,

or
d2 = · · · = dt > dt+1 = · · · = dn−1 = a,

for some t, 2 ≤ t ≤ n− 2.

For a = 0 we get the following corollary of Theorem 3.1.

Corollary 3.1. Let G be a connected graph with n ≥ 3 vertices and m edges. Then

M1(G) ≥ ∆2 + δ2 +
(2m−∆− δ)2

n− 2
, (8)

with equality if and only if d2 = · · · = dn−1.

The inequality (8) was proven in [5].
For a = ∆ and a = δ, respectively, we get the following corollary of Theorem 3.1.
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Corollary 3.2. Let G be a connected graph with n ≥ 3 vertices and m edges. If G is not regular, then

M1(G) ≥ (∆− δ)2 + max{A,B} ,

where

A = 4∆m−∆2n+

(
∆2ID(G)− 2n∆ + 2m− (∆−δ)2

δ

)2

mM1(G)∆2 − 2∆ID(G) + n− (∆−δ)2
δ2

,

and

B = 4δm− δ2n+

(
δ2ID(G)− 2nδ + 2m− (∆−δ)2

∆

)2

mM1(G)δ2 − 2δID(G) + n− (∆−δ)2
∆2

.

Equality holds if and only if ∆ = d1 = · · · = dt > dt+1 = · · · = dn−1, for some t, 1 ≤ t ≤ n− 2, or

d2 = · · · = dt > dt+1 = · · · = dn = δ,

for some t, 2 ≤ t ≤ n− 1.

For a = 1 we get the following corollary of Theorem 3.1.

Corollary 3.3. Let G be a connected graph with n ≥ 3 vertices and m edges. If G ∼= K1,n−1 then

M1(G) = n(n− 1) .

If G � K1,n−1, then

M1(G) ≥ 4m− n+ (∆− 1)2 + (δ − 1)2 +

(
ID(G)− 2n+ 2m− (∆−1)2

∆ − (δ−1)2

δ

)2

mM1(G)− 2ID(G) + n− (∆−1)2

∆2 − (δ−1)2

δ2

.

Equality holds if and only if d2 = · · · = dt > dt+1 = · · · = dn = δ = 1, for some t, 2 ≤ t ≤ n− 1.

For a = n− 1 we get the following corollary of Theorem 3.1.

Corollary 3.4. Let G be a connected graph with n ≥ 3 vertices and m edges. If G ∼= Kn then

M1(G) = n(n− 1)2 .

If G � Kn, then

M1(G) ≥ 4m(n− 1)− n(n− 1)2 + (n− 1−∆)2 + (n− 1− δ)2+

+

(
(n− 1)2ID(G)− 2n(n− 1) + 2m− (n−1−∆)2

∆ − (n−1−δ)2
δ

)2

mM1(G)(n− 1)2 − 2(n− 1)ID(G) + n− (n−1−∆)2

∆2 − (n−1−δ)2
δ2

.

Equality holds if and only if d2 = · · · = dn−1 6= n − 1, or n − 1 = ∆ = d1 = · · · = dt > dt+1 = · · · = dn−1, for some t,
1 ≤ t ≤ n− 2.

The proofs of the next two theorems are analogous to that of Theorem 3.1, hence omitted.

Theorem 3.2. Let G be a connected graph with n ≥ 3 vertices and m edges, and let a be an arbitrary real number. If
d2 = · · · = dn = a = δ, then

M1(G) = ∆2 + (n− 1)δ2 .

If di 6= a, for at least one i, 2 ≤ i ≤ n, then

M1(G) ≥ 4am− a2n+ (∆− a)2 +

(
a2ID(G)− 2na+ 2m− (∆−a)2

∆

)2

mM1(G)a2 − 2aID(G) + n− (∆−a)2

∆2

. (9)

Equality holds if and only if either ∆ = d1 ≥ d2 = · · · = dn = δ 6= a, or a = d2 = · · · = dt > dt+1 = · · · = dn = δ, or
d2 = · · · = dt > dt+1 = · · · = dn = δ = a, for some t, 2 ≤ t ≤ n− 1.
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Theorem 3.3. Let G be a connected graph with n ≥ 3 vertices and m edges, and let a be an arbitrary real number. If di = a

for every i, 1 ≤ i ≤ n, then
M1(G) = n∆2 .

If di 6= a for at least one i, 1 ≤ i ≤ n, then

M1(G) ≥ 4am− a2n+
(a2ID(G)− 2na+ 2m)2

mM1(G)a2 − 2aID(G) + n
. (10)

Equality holds if and only if either d1 = d2 = · · · = dn 6= a, or a = ∆ = d1 = · · · = dt > dt+1 = · · · = dn = δ, or
∆ = d1 = · · · = dt > dt+1 = · · · = dn = δ = a, for some t, 1 ≤ t ≤ n− 1.

For a = 0, we get the following corollary of Theorem 3.2.

Corollary 3.5. Let G be a connected graph with n ≥ 2 vertices and m edges. Then

M1(G) ≥ ∆2 +
(2m−∆)2

n− 1
. (11)

Equality holds if and only if d2 = d3 = · · · = dn = δ.

The inequality (11) was proven in [7] (see also [40]). Also, for a = 0, from (10) the inequality (2) is obtained.

Corollary 3.6. Let G be a connected graph with n ≥ 2 vertices and m edges. If G is regular, then

M1(G) =
4m2

n
.

If G is not regular, then

M1(G) ≥ 4m2

n
+

(
2m
n ID(G)− n

)2
mM1(G)− n3

4m2

. (12)

Proof. In [27] it was proven that
0Rα(G)0R−α(G) ≥ n2 ,

where α is an arbitrary real number. For α = 1, we get

ID(G) ≥ n2

2m
, (13)

with equality holding if and only if G is regular. Taking a = 2m
n , from the above and inequality (10) we arrive at (12).

A graphG is regular if and only if d1 = d2 = · · · = dn > 0. A connected graph is called irregular if it contains at least two
vertices with different degrees. In many applications and problems it is of importance to know how much a given graph
deviates from being regular, i.e., how great its irregularity is. For this purpose, various quantitative measure of graph
irregularity have been proposed.

Remark 3.1. Denote with I(G) a topological index such that I(G) ≥ 0 if G is irregular, and I(G) = 0 if and only if G is a
regular graph (see e.g. [13,35]). From the inequality (2) an irregularity measure can be defined as [42]

irr1(G) = M1(G)− 4m2

n
.

Similarly, from the inequality (13), one can define an irregularity measure as

irr2(G) =
2m

n
ID(G)− n .

or, from the inequality
mM1(G) ≥ n3

4m2
,

with equality holding if and only if G is regular, the following irregularity measure is defined

irr3(G) =mM1(G)− n3

4m2
.

The inequality (12) gives a connection between these irregularity measures, that is

irr2(G) ≤
√
irr1(G)irr3(G) .
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For a = 1 and G ∼= U , where U is an unicyclic graph, we get the following corollary of Theorem 3.3.

Corollary 3.7. Let U be a connected unicyclic graph with n ≥ 3 vertices. Then

M1(U) ≥ 3n+
ID(U)2

mM1(U)− 2ID(U) + n
.

Equality holds if and only if U ∼= Cn, or ∆ = d1 = · · · = dt > dt+1 = · · · = dn = 1, for some t, 3 ≤ t ≤ n−∆.

For a = 1 and G is a tree, i.e. G ∼= T , we get the following corollary of Theorem 3.3.

Corollary 3.8. Let T be a tree with n ≥ 3 vertices. Then

M1(T ) ≥ 3n− 4 +
(ID(T )− 2)2

mM1(T )− 2ID(T ) + n
.

Equality holds if and only if ∆ = d1 = · · · = dt > dt+1 = · · · = dn = 1, for some t, 1 ≤ t ≤ n− 1.

Theorem 3.4. Let G be a connected graph with n ≥ 3 vertices and m edges. If di ∈ {∆, δ}, for every i, 1 ≤ i ≤ n, then

M1(G) = p∆2 + qδ2 , p+ q = n .

If di /∈ {∆, δ}, for at least one i, 2 ≤ i ≤ n− 1, then

M1(G) ≤ 2m(∆ + δ)− n∆δ − (n(∆ + δ)− 2m−∆δID(G))2

(∆ + δ)ID(G)− n−mM1(G)∆δ
. (14)

Equality holds if and only if ∆ = d1 = · · · = dt > dt+1 = · · · = dr > dr+1 = · · · = dn = δ, for some t and r, 1 ≤ t ≤ n− 2 and
t+ 1 ≤ r ≤ n− 1.

Proof. For r = 2, pi = (∆−di)(di−δ)
d2i

, ai = di, i = 2, . . . , n− 1, the inequality (5) becomes

n−1∑
i=2

(∆− di)(di − δ)
d2
i

n−1∑
i=2

(∆− di)(di − δ) ≥

(
n−1∑
i=2

(∆− di)(di − δ)
di

)2

. (15)

Since
n−1∑
i=2

(∆− di)(di − δ)
d2
i

=

n∑
i=1

(∆− di)(di − δ)
d2
i

= (∆ + δ)ID(G)− n−mM1(G)∆δ ,

n−1∑
i=2

(∆− di)(di − δ) =

n∑
i=1

(∆− di)(di − δ) = 2m(∆ + δ)− n∆δ −M1(G) ,

n−1∑
i=2

(∆− di)(di − δ)
di

=

n∑
i=1

(∆− di)(di − δ)
di

= n(∆ + δ)− 2m−∆δID(G) ,

from the above results and Equation (15) we get
((∆ + δ)ID(G)− n−mM1(G)∆δ) (2m(∆ + δ)− n∆δ −M1(G)) ≥

≥ (n(∆ + δ)− 2m−∆δID(G))
2
.

(16)

If di ∈ {∆, δ}, for 1 ≤ i ≤ n, then in (16) equality is attained. If di /∈ {∆, δ}, for at least one i, 2 ≤ i ≤ n− 1, then

(∆ + δ)ID(G)− n−mM1(G)∆δ > 0 ,

and from (16) we obtain (14).
If di /∈ {∆, δ}, for at least one i, 2 ≤ i ≤ n − 1, then equality in (16), and consequently in (14), holds if and only if

∆ = d1 = · · · = dt > dt+1 = · · · = dr > dr+1 = · · · = dn = δ, for some t and r, 1 ≤ t ≤ n− 1 and t+ 1 ≤ r ≤ n− 1.

If di /∈ {∆, δ}, for at least one i, 2 ≤ i ≤ n− 1, then inequality (14) is stronger than (3).
When G is a tree we get the following corollary of Theorem 3.4.

Corollary 3.9. Let T be a tree with n ≥ 3 vertices. If di ∈ {∆, 1}, for 1 ≤ i ≤ n, then

M1(T ) = p∆2 + q , p+ q = n .

If di /∈ {∆, 1}, for at least one i, 2 ≤ i ≤ n− 1,

M1(T ) ≤ (n− 2)∆ + 2(n− 1)− (n∆− n+ 2−∆ID(T ))2

(∆ + 1)ID(T )− n−mM1(T )∆
.

Equality holds if and only if ∆ = d1 = · · · = dt > dt+1 = · · · = dr > dr+1 = · · · = dn = 1, for some t and r, 1 ≤ t ≤ n−∆− 1

and t+ 1 ≤ r ≤ n−∆.
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[32] E. I. Milovanović, M. M. Matejić, I. Ž. Milovanović, Remark on lower bound for forgotten topological index, Sci. Publ. State Univ. Novi Pazar, Ser. A:

Math. Inform. Mechan. 9 (2017) 19–24.
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