Research Article

Monochromatic subgraphs in graphs

Gary Chartrand, Emma Jent, Ping Zhang*
Department of Mathematics, Western Michigan University, Kalamazoo, Michigan 49008-5248, USA

(Received: 10 June 2024. Accepted: 2 July 2024. Published online: 3 July 2024.)
© 2024 the authors. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

For a positive integer t and a graph F, the numbers $E R_{t}(F)$ and $V R_{t}(F)$ of F are the minimum positive integer n such that every red-blue coloring of the edges of the complete graph K_{n} results in t pairwise edge-disjoint and vertex-disjoint, respectively, monochromatic copies of F in K_{n}. The number $E R_{t}(F)$ is determined when $F=K_{3}$ for $t \leq 4$ and when F is the path P_{3} of order 3 for every positive integer t, while $V R_{t}(F)$ is determined when $F \in\left\{K_{3}, P_{3}\right\}$ for every positive integer t.

Keywords: red-blue coloring; edge-disjoint and vertex-disjoint monochromatic graphs.
2020 Mathematics Subject Classification: 05C15, 05C35, 05C55.

1. Introduction

In a red-blue coloring of a graph G, every edge of G is colored red or blue. For two graphs F and H, the well-known Ramsey number $R(F, H)$ is the minimum positive integer n such that for every red-blue coloring of the complete graph K_{n} of order n, there is either a subgraph of K_{n} isomorphic to F all of whose edges are colored red (a red F) or a subgraph of K_{n} isomorphic to H all of whose edges are colored blue (a blue H). Therefore, for a single graph F, the Ramsey number $R(F, F)$, also denoted by $R(F)$, is the minimum positive integer n such that for every red-blue coloring of K_{n}, there is a subgraph of K_{n} isomorphic to F all of whose edges are colored the same (a monochromatic F). That these numbers exist for every graph F is due to Ramsey [3]. We refer to the book [1] for notation and terminology not defined here.

An introduction to Ramsey numbers in graph theory often begins with a question that is sometimes stated in the following manner.

How many people must be present at a party to be guaranteed that there are three mutual acquaintances or three mutual strangers?

It may already be clear that this question has a graph theory interpretation. For example, suppose that there are n people at the party. These n people are the n vertices of the complete graph K_{n}. Two vertices are joined by a red edge if the two people are acquaintances and joined by a blue edge if they are strangers. The question then becomes the following.

What is the smallest positive integer n such that if the $\binom{n}{2}$ edges of K_{n} are colored red or blue in any manner whatsoever, we are guaranteed that a subgraph K_{3} (a triangle) all of whose edges are colored red (a red triangle) or colored blue (a blue triangle) appears?

In order to answer this question, it is useful to make the following observation.
Observation 1.1. Let there be given an arbitrary red-blue coloring of a complete graph K_{n} where $n \geq 4$. If a vertex of K_{n} is incident with three or more edges of the same color, then K_{n} contains a monochromatic triangle.

Proof. Suppose that a vertex v of K_{n} is incident with at least three edges of the same color, say $v v_{1}, v v_{2}, v v_{3}$ are red. If any two of v_{1}, v_{2}, v_{3} are joined by a red edge, then there is a red triangle; otherwise, $\left(v_{1}, v_{2}, v_{3}, v_{1}\right)$ is a blue triangle.

First, $n=5$ does not work. By Observation 1.1, any red-blue coloring of K_{5} in which some vertex is incident with at least three edges of the same color results in a monochromatic triangle. Therefore, the only possible red-blue coloring of K_{5} without any monochromatic triangle is for every vertex to be incident with exactly two edges of each color. Consequently, we have the next observation.

[^0]Observation 1.2. The only red-blue coloring of the complete graph K_{5} for which there is no monochromatic triangle is one that produces a red cycle C_{5} of order 5 and a blue C_{5}.

This red-blue coloring of K_{5} is shown in Figure 1.1 where a bold edge represents a red edge and a thin edge represents a blue edge.

Figure 1.1: A red-blue coloring of K_{5}.
However, $n=6$ does work. Every red-blue coloring of K_{6} results in at least three edges incident with each vertex colored the same. By Observation 1.1, there is a red triangle or a blue triangle. Hence, the solution to the question above is the Ramsey number $R\left(K_{3}\right)=6$, which appeared in [2]. This problem essentially appeared as Problem A2 in the 1953 Putnam Exam.

A2. The complete graph with 6 points and 15 edges has each edge colored red or blue. Show that we can find 3 points such that the 3 edges joining them are the same color.

Not only does every red-blue coloring of K_{6} always produce a monochromatic triangle, it always produces at least two monochromatic triangles. To see this, let there be given a red-blue coloring of $G=K_{6}$ with red subgraph G_{r} and blue subgraph G_{b}. First, suppose that there is a vertex v that is incident with four edges of the same color, say $v v_{1}, v v_{2}, v v_{3}, v v_{4}$ are red. If there are two red edges in the subgraph $G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right]$ of G induced by the set $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, then there are two red triangles. If at most one edge, say $v_{1} v_{2}$, is colored red, then $\left\{v_{1}, v_{3}, v_{4}\right\}$ and $\left\{v_{2}, v_{3}, v_{4}\right\}$ are the vertices of two blue triangles. Next, suppose that G_{r} is 3-regular. Then G_{r} is either the Cartesian product $K_{3} \square K_{2}$ of K_{3} and K_{2} or the complete bipartite graph $K_{3,3}$. If $G_{r}=K_{3} \square K_{2}$, then G_{r} has two triangles; while if $G_{r}=K_{3,3}$, then $G_{b}=2 K_{3}$ (the union of two vertex-disjoint copies of K_{3}) also contains two triangles.

Finally, suppose that neither G_{r} nor G_{b} contains a vertex of degree 4 or more or is 3-regular. Then each of these graphs must contain only vertices of degree 2 or 3 , necessarily some of each. Since every graph contains an even number of odd vertices, one of these two graphs contains four vertices of degree 3 and two vertices of degree 2 while the other contains two vertices of degree 3 and four vertices of degree 2 . Suppose that G_{b} contains four vertices of degree 3 and two vertices u and v of degree 2. Thus, G_{b} is one of graphs shown in Figures 1.2(a), (b), and (c).

Figure 1.2: Three possible blue subgraphs G_{b}.

If (a) occurs, then u and v are adjacent and G_{b} has two triangles. If (b) occurs, then (v, w, z, v) and (u, x, y, u) are two red triangles. If (c) occurs, then (x, y, z, x) is a blue triangle and (u, x, y, u) is a red triangle. Therefore, we have the following.

In every red-blue coloring of the edges of K_{6}, there are always at least two monochromatic triangles.

2. Monochromatic triangles

The red-blue coloring of K_{6} with red subgraph $K_{2,4}$ and blue subgraph $K_{2}+K_{4}$ has four monochromatic triangles, all blue. However, every two blue triangles have an edge in common. When $n=7$, however, every red-blue coloring of K_{7} results in two edge-disjoint monochromatic triangles.

Proposition 2.1. Every red-blue coloring of K_{7} results in two edge-disjoint monochromatic triangles.
Proof. Let there be given an arbitrary red-blue coloring of $G=K_{7}$. Since $R\left(K_{3}, K_{3}\right)=6$, there is a monochromatic triangle T in G. Let $V(T)=\left\{u_{1}, u_{2}, u_{3}\right\}$ and let $V(G)-V(T)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Let $F_{i}=G\left[\left\{u_{i}, v_{1}, v_{2}, v_{3}, v_{4}\right\}\right]=K_{5}$ for $i=1,2,3$. If any F_{i} contains a monochromatic triangle, then G contains two edge-disjoint (in fact, vertex-disjoint) monochromatic triangles. Thus, we may assume that no $F_{i}(i=1,2,3)$ contains a monochromatic triangle. It follows by Observation 1.2 that each F_{i} consists of a red C_{5} and a blue C_{5} for $i=1,2,3$. Assume, without loss of generality, that $\left(u_{1}, v_{1}, v_{2}, v_{3}, v_{4}, u_{1}\right)$ is a red C_{5} in F_{1} and $\left(u_{1}, v_{2}, v_{4}, v_{1}, v_{3}, u_{1}\right)$ is a blue C_{5} in F_{1}. We now consider F_{i} for $i=2,3$. Since
(a) $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ is a red P_{4} in F_{i} and $\left(v_{2}, v_{4}, v_{1}, v_{3}\right)$ is a blue P_{4} in F_{i} and
(b) F_{i} consists of a red C_{5} and a blue C_{5},
it follows that $u_{i} v_{1}, u_{i} v_{4}$ are red and $u_{i} v_{2}, u_{i} v_{3}$ are blue. If T is a red triangle, then $\left(u_{1}, v_{1}, u_{2}, u_{1}\right)$ and $\left(u_{2}, v_{4}, u_{3}, u_{2}\right)$ are two edge-disjoint red triangles in G; while if T is a blue triangle, then $\left(u_{1}, v_{2}, u_{2}, u_{1}\right)$ and $\left(u_{2}, v_{3}, u_{3}, u_{2}\right)$ are two edge-disjoint blue triangles in G. Therefore, G contains two edge-disjoint monochromatic triangles.

Consequently, 6 is the smallest order n of a complete graph K_{n} for which every red-blue coloring of K_{n} results in a monochromatic triangle (or two monochromatic triangles which may have an edge in common), while 7 is the smallest order n of a complete graph K_{n} for which every red-blue coloring of K_{n} results in two edge-disjoint monochromatic triangles. These facts suggest the problem of determining the smallest positive integer n such that every red-blue coloring of K_{n} results in two vertex-disjoint monochromatic triangles.

The red-blue coloring of K_{7} with red subgraph $K_{5}+K_{2}$ and blue subgraph $K_{2,5}$ does not contain two vertex-disjoint monochromatic copies of K_{3}. When $n=8$, however, every red-blue coloring of K_{8} results in two vertex-disjoint monochromatic triangles.

Proposition 2.2. Every red-blue coloring of K_{8} results in two vertex-disjoint monochromatic triangles.
Proof. Let there be given an arbitrary red-blue coloring of $G=K_{8}$ with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{8}\right\}$. Since $R\left(K_{3}, K_{3}\right)=$ 6, there is a monochromatic copy of K_{3} in G. Let T be a monochromatic triangle in G where $V(T)=\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $F=G\left[\left\{v_{4}, v_{5}, v_{6}, v_{7} v_{8}\right\}=K_{5}\right.$. If F contains a monochromatic triangle, then G contains two vertex-disjoint monochromatic triangles. Suppose that F does not contain a monochromatic triangle. Then F consists of a red C_{5} and a blue C_{5}. We may assume that the red C_{5} is $\left(v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{4}\right)$ and the blue C_{5} is $\left(v_{4}, v_{6}, v_{8}, v_{5}, v_{7}, v_{4}\right)$. Since v_{1} is jointed to at least three vertices of $V(F)=\left\{v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\}$ by edges of the same color, we may assume that v_{1} is adjacent to three vertices of $V(F)$ by red edges. Necessarily, v_{1} is joined to two adjacent vertices of $V(F)$ that are joined by a red edge. Consequently, we may assume that $v_{1} v_{4}$ and $v_{1} v_{5}$ are red. See Figure 2.1.

Figure 2.1: A step in the proof of Proposition 2.2.

Let $H=G\left[\left\{v_{2}, v_{3}, v_{6}, v_{7}, v_{8}\right\}\right]=K_{5}$. If H contains a monochromatic triangle, then G contains two vertex-disjoint monochromatic triangles. Suppose that H does not contain a monochromatic triangle and so H consists of a red subgraph $H_{r}=C_{5}$ and a blue subgraph $H_{b}=C_{5}$. First, suppose that T is blue. Since $\operatorname{deg}_{H_{r}} v_{7}=2$, it follows that $v_{2} v_{6}, v_{2} v_{8}, v_{3} v_{6}, v_{3} v_{8}$ are red. However then, $\operatorname{deg}_{H_{r}} v_{6}=\operatorname{deg}_{H_{r}} v_{8}=3$, a contradiction. We may assume that T is red. We may further assume that $H_{r}=\left(v_{2}, v_{3}, v_{8}, v_{7}, v_{6}, v_{2}\right)$ and $H_{b}=\left(v_{2}, v_{8}, v_{6}, v_{3}, v_{7}, v_{2}\right)$. We consider two cases, according to whether $v_{1} v_{6}$ is red or $v_{1} v_{6}$ is blue.

Case 1. $v_{1} v_{6}$ is red. This implies that $v_{2} v_{4}$ is red for otherwise, there are two vertex-disjoint monochromatic triangles $\left(v_{1}, v_{5}, v_{6}, v_{1}\right)$ and $\left(v_{2}, v_{4}, v_{7}, v_{2}\right)$. Also, this implies that $v_{3} v_{4}$ is red for otherwise, there are two vertex-disjoint monochromatic triangles $\left(v_{1}, v_{5}, v_{6}, v_{1}\right)$ and $\left(v_{3}, v_{4}, v_{8}, v_{3}\right)$. However then, there are two vertex-disjoint monochromatic triangles $\left(v_{1}, v_{5}, v_{6}, v_{1}\right)$ and $\left(v_{2}, v_{3}, v_{4}, v_{2}\right)$.

Case 2. $v_{1} v_{6}$ is blue. First, suppose that $v_{1} v_{8}$ is red. So, $v_{2} v_{5}$ is blue, for otherwise there are two vertex-disjoint monochromatic triangles $\left(v_{1}, v_{4}, v_{8}, v_{1}\right)$ and $\left(v_{2}, v_{5}, v_{6}, v_{2}\right)$. Then $\left(v_{1}, v_{4}, v_{8}, v_{1}\right)$ and $\left(v_{2}, v_{5}, v_{7}, v_{2}\right)$ are two vertex-disjoint monochromatic triangles. Next, suppose that $v_{1} v_{8}$ is blue. If $v_{2} v_{5}$ is blue, then there are two vertex-disjoint monochromatic triangles $\left(v_{2}, v_{5}, v_{7}, v_{2}\right)$ and $\left(v_{1}, v_{6}, v_{8}, v_{1}\right)$. Thus, we may assume that $v_{2} v_{5}$ is red. If $v_{2} v_{4}$ is blue, then there are two vertex-disjoint monochromatic triangles $\left(v_{2}, v_{4}, v_{7}, v_{2}\right)$ and $\left(v_{1}, v_{6}, v_{8}, v_{1}\right)$. Thus, we may assume that $v_{2} v_{4}$ is red. Then there are two vertex-disjoint monochromatic triangles $\left(v_{2}, v_{4}, v_{5}, v_{2}\right)$ and $\left(v_{1}, v_{6}, v_{8}, v_{1}\right)$.

The results above concerning two edge-disjoint and vertex-disjoint monochromatic triangles in an edge-colored complete graph suggest more general concepts. Let t be a positive integer and let F be a graph without isolated vertices. The vertexdisjoint Ramsey number $V R_{t}(F)$ is the minimum positive integer n such that every red-blue coloring of K_{n} results in at least t pairwise vertex-disjoint monochromatic copies of F. Then $V R_{1}\left(K_{3}\right)=R\left(K_{3}\right)=6$ and $V R_{2}\left(K_{3}\right)=8$ by Proposition 2.2 and the red-blue coloring of K_{7} with red subgraph $K_{5}+K_{2}$ and blue subgraph $K_{2,5}$. For a graph F without isolated vertices, $V R_{t}(F) \geq t|V(F)|$ and the Ramsey number $R(t F)$ exists where $t F$ is a union of t vertex-disjoint copies of F. Hence, we have the following observation.

Observation 2.1. For every graph F without isolated vertices and every positive integer t, the number $V R_{t}(F)$ exists and $t|V(F)| \leq V R_{t}(F) \leq R(t F)$. Furthermore, $V R_{t}(F) \leq V R_{t+1}(F)$.

Theorem 2.1. For an integer $t \geq 2, V R_{t}\left(K_{3}\right)=3 t+2$.
Proof. We proceed by induction on t. We saw that $V R_{2}\left(K_{3}\right)=8$ and so the result is true for $t=2$. Assume that $V R_{k}\left(K_{3}\right)=$ $3 k+2$ for an integer $k \geq 2$. We show that $V R_{k+1}\left(K_{3}\right)=3 k+5$. The red-blue coloring of $K_{3 k+4}$ with red subgraph $K_{3 k+2}+K_{2}$ and blue subgraph $K_{2,3 k+2}$ has k vertex-disjoint red triangles and no blue triangle. Thus, $V R_{k+1}\left(K_{3}\right) \geq 3 k+5$. Next, let there be given a red-blue coloring of $K_{3 k+5}$. Since $3 k+5 \geq 11>6$ and $R\left(K_{3}\right)=6$, there is a monochromatic triangle T. Let $H=K_{3 k+5}-V(T)=K_{3 k+2}$. Since $V R_{k}\left(K_{3}\right)=3 k+2$, it follows that H contains k vertex-disjoint monochromatic triangles. Hence, there are $k+1$ vertex-disjoint monochromatic triangles in $K_{3 k+5}$ and so $V R_{k+1}\left(K_{3}\right) \leq 3 k+5$. Therefore, $V R_{k+1}\left(K_{3}\right)=3 k+5$.

Let t be a positive integer and let F be a graph without isolated vertices. The edge-disjoint Ramsey number $E R_{t}(F)$ of F is the minimum positive integer n such that for every red-blue coloring of K_{n}, there are at least t pairwise edge-disjoint monochromatic copies of F. Hence, $E R_{1}(F)$ is the Ramsey number $R(F)$. Therefore, $E R_{1}\left(K_{3}\right)=6$ and $E R_{2}\left(K_{3}\right)=7$ by Proposition 2.1 and the red-blue coloring of K_{6} with red subgraph $K_{2,4}$ and blue subgraph $K_{2}+K_{4}$. There is an observation for edge-disjoint Ramsey numbers similar to Observation 2.1.

Observation 2.2. For every graph F without isolated vertices and every positive integer t, the number $E R_{t}(F)$ exists and $E R_{t}(F) \leq V R_{t}(F)$. Furthermore, $E R_{t}(F) \leq E R_{t+1}(F)$.

We now determine $E R_{t}\left(K_{3}\right)$ for $t=3$, 4. First, we present a useful lemma.
Lemma 2.1. For each positive integer $t, E R_{t+1}\left(K_{3}\right) \leq E R_{t}\left(K_{3}\right)+2$.
Proof. Let $E R_{t}\left(K_{3}\right)=k$. Let there be given an arbitrary red-blue coloring of $G=K_{k+2}$. Then there is a monochromatic copy F_{0} of K_{3} in G. Let $u, v \in V\left(F_{0}\right)$ and let $H=G-\{u, v\}$. Then $H=K_{k}$ contains no edge of F_{0}. Since $E R_{t}\left(K_{3}\right)=k$, there are t pairwise edge-disjoint monochromatic copies $F_{1}, F_{2}, \ldots, F_{t}$ of K_{3} in H that are edge-disjoint from F_{0}. Therefore, F_{0}, $F_{1}, F_{2}, \ldots, F_{t}$ are $t+1$ pairwise edge-disjoint monochromatic copies of K_{3} in G and so $E R_{t+1}\left(K_{3}\right) \leq k+2=E R_{t}\left(K_{3}\right)+2$.

Both strict inequality and equality in Lemma 2.1 can occur, as we show next.
Proposition 2.3. $E R_{3}\left(K_{3}\right)=9$
Proof. Since $E R_{3}\left(K_{3}\right) \leq E R_{2}\left(K_{3}\right)+2=9$ by Lemma 2.1 and Proposition 2.1, it remains to show that $E R_{3}\left(K_{3}\right) \geq 9$. For the red-blue coloring of K_{8} with red subgraph $K_{4,4}$ and blue graph $2 K_{4}$, there is no red triangle and only two edge-disjoint blue triangles. Since this red-blue coloring of K_{8} does not produce three pairwise edge-disjoint monochromatic triangles, it follows that $E R_{3}\left(K_{3}\right) \geq 9$ and so $E R_{3}\left(K_{3}\right)=9$.

Theorem 2.2. $E R_{4}\left(K_{3}\right)=10$.
Proof. The red-blue coloring of K_{9} with red subgraph $K_{5,4}$ and blue subgraph $K_{5}+K_{4}$ contains no red triangle and three edge-disjoint blue triangles. Since this red-blue coloring of K_{9} does not produce four pairwise edge-disjoint monochromatic triangles, it follows that $E R_{4}\left(K_{3}\right) \geq 10$.

It remains to show that $E R_{4}\left(K_{3}\right) \leq 10$. First, we verify the following claim.
Claim: For every red-blue coloring of $G=K_{10}$ containing two edge-disjoint monochromatic triangles T and T^{\prime} having a vertex in common, there are four pairwise edge-disjoint monochromatic triangles in G.

To verify the claim, consider a red-blue coloring of G with two edge-disjoint monochromatic triangles $T=\left(v_{1}, v_{2}, v_{3}, v_{1}\right)$ and $T^{\prime}=\left(v_{1}, v_{4}, v_{5}, v_{1}\right)$. Let $H=G\left[V(G)-\left\{v_{1}, v_{2}, v_{4}\right\}\right]=K_{7}$. Since $E R_{2}\left(K_{3}\right)=7$ by Proposition 2.1, there are two edge-disjoint monochromatic triangles T_{1} and T_{2} in H edge-disjoint from T and T^{\prime}. Thus, $T, T^{\prime}, T_{1}, T_{2}$ are four pairwise edge-disjoint monochromatic triangles in G and so the claim is true.

Next, we show that every red-blue coloring of $G=K_{10}$ produces four pairwise edge-disjoint monochromatic triangles in G. Let there be given a red-blue coloring of G. Since $E R_{3}\left(K_{3}\right)=9$, it follows that G contains three pairwise edge-disjoint monochromatic triangles T_{1}, T_{2}, T_{3}. We show that G contains a fourth monochromatic triangle edge-disjoint from T_{1}, T_{2}, T_{3}. By the claim, we may assume that T_{1}, T_{2}, T_{3} are pairwise vertex-disjoint. Hence, the subgraph F of G induced by $E\left(T_{1}\right) \cup$ $E\left(T_{2}\right) \cup E\left(T_{3}\right)$ is $3 K_{3}$. Let $T_{1}=\left(v_{1}, v_{2}, v_{3}, v_{1}\right), T_{2}=\left(v_{4}, v_{5}, v_{6}, v_{4}\right), T_{3}=\left(v_{7}, v_{8}, v_{9}, v_{7}\right)$, and let v be the vertex of G not in F. Furthermore, let $H=G-E(F)$ be the spanning subgraph of G whose edge set consists of all edges not belonging to any of T_{1}, T_{2}, and T_{3}. Then $H \cong K_{1,3,3,3}$ and $\operatorname{deg}_{H} v=9$. Let r be the number of red edges incident with v and b the number of blue edges incident with v. Then $r+b=9$. We may assume that $b \leq r$ and so $5 \leq r \leq 9$.

First, suppose that there is a red edge joining v to at least one vertex in each of T_{1}, T_{2}, T_{3}. We may assume without loss of generality that $v v_{1}, v v_{4}, v v_{7}$ are red. If there is a red edge joining two vertices in $\left\{v_{1}, v_{4}, v_{7}\right\}$, say $v_{1} v_{4}$ is red, then $\left(v, v_{1}, v_{4}, v\right)$ is a red triangle edge-disjoint from T_{1}, T_{2}, T_{3}; while if every two vertices in $\left\{v_{1}, v_{4}, v_{7}\right\}$ is joined by a blue edge, then $\left(v_{1}, v_{4}, v_{7}, v_{1}\right)$ is a blue triangle edge-disjoint from T_{1}, T_{2}, T_{3}. Thus, we may assume that v is joined to exactly two of T_{1}, T_{2}, T_{3} by red edges. Hence, $r=5,6$ and we may further assume that $v v_{i}$ is red for $i=1,2,3,4,5$ and $v v_{6}$ is either red or blue.

Let $H^{\prime}=K_{2,3}$ be the complete bipartite subgraph of H with partite sets $\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left\{v_{4}, v_{5}\right\}$. If H^{\prime} contains a red edge, say $v_{1} v_{4}$ is red, then $\left(v, v_{1}, v_{4}, v\right)$ is a red triangle edge-disjoint from T_{1}, T_{2}, T_{3}. Thus, we may assume that H^{\prime} is a blue $K_{2,3}$. If T_{1} is blue, then $\left(v_{1}, v_{4}, v_{2}, v_{1}\right)$ and $\left(v_{1}, v_{5}, v_{3}, v_{1}\right)$ are two edge-disjoint blue triangles having the vertex v_{1} in common. It then follows by the claim that G contains four pairwise edge-disjoint monochromatic triangles. Thus, we may assume that T_{1} is red. If T_{2} is red, then $\left(v_{1}, v, v_{2}, v_{1}\right)$ and $\left(v_{4}, v, v_{5}, v_{4}\right)$ are two edge-disjoint red triangles having the vertex v in common; while if T_{2} is blue, then $\left(v_{1}, v_{2}, v_{3}, v_{1}\right)$ and $\left(v_{1}, v_{4}, v_{5}, v_{1}\right)$ are two edge-disjoint monochromatic triangles having the vertex v_{1} in common. Again, by the claim, G contains four pairwise edge-disjoint monochromatic triangles. Therefore, $E R_{4}\left(K_{3}\right) \leq 10$ and so $E R_{4}\left(K_{3}\right)=10$.

We close this section with the following conjecture.
Conjecture 2.1. For every integer $t \geq 4, E R_{t}\left(K_{3}\right) \leq E R_{t+1}\left(K_{3}\right) \leq E R_{t}\left(K_{3}\right)+1$.

3. Monochromatic paths of order 3

We now turn our attention to the other connected graph of order 3, namely the path P_{3} of order 3 . Of course,

$$
R_{1}\left(P_{3}\right)=V R_{1}\left(P_{3}\right)=E R_{1}\left(P_{3}\right)=3
$$

First, we determine $V R_{t}\left(P_{3}\right)$ for every positive integer t.
Theorem 3.1. For every positive integer $t, V R_{t}\left(P_{3}\right)=3 t$.
Proof. Since $V R_{t}\left(P_{3}\right) \geq 3 t$ by Observation 2.1, it remains to show that $V R_{t}\left(P_{3}\right) \leq 3 t$. We proceed by induction on t. Since $V R_{1}\left(P_{3}\right)=R\left(P_{3}\right)=3$, the result is true for $t=1$. Assume that $V R_{k}\left(P_{3}\right) \leq 3 k$ for a positive integer k. We show that $V R_{k+1}\left(P_{3}\right) \leq 3 k+3$. Let there be given a red-blue coloring of K_{k+3}. Then there is a monochromatic copy P of P_{3}. Let $H=K_{3 k+3}-V(P)=K_{3 k}$. Since $V R_{k}\left(P_{3}\right)=3 k$, it follows that H contains k vertex-disjoint monochromatic copies of P_{3}. Hence, there are $k+1$ vertex-disjoint monochromatic copies of P_{3} in $K_{3 k}$ and so $V R_{k+1}\left(P_{3}\right) \leq 3 k+3$. Therefore, $V R_{k+1}\left(P_{3}\right)=3 k+3$.

Next, we determine $E R_{t}\left(P_{3}\right)$ for every positive integer t, beginning with $t=2,3$.
Proposition 3.1. $E R_{2}\left(P_{3}\right)=4$ and $E R_{3}\left(P_{3}\right)=5$.
Proof. First, we show that $E R_{2}\left(P_{3}\right)=4$. Since K_{3} has size 3, it follows that $E R_{2}\left(P_{3}\right) \geq 4$. Let there be given a red-blue coloring of K_{4} with $V\left(K_{4}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. At least two edges incident with v_{1} are colored the same, say $v_{1} v_{2}$ and $v_{1} v_{3}$, resulting in a monochromatic copy of P_{3}. The same is true for v_{4}. Thus, $E R_{2}\left(P_{4}\right) \leq 4$ and so $E R_{2}\left(P_{3}\right)=4$.

Next, we show that $E R_{3}\left(P_{3}\right)=5$. The red-blue coloring of K_{4} with red subgraph $2 K_{2}$ and blue subgraph C_{4} has only two edge-disjoint monochromatic copies of P_{3} and so $E R_{3}\left(P_{3}\right) \geq 5$. Let there be given a red-blue coloring of $G=K_{5}$ with $V\left(K_{5}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$. Let $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Then $H=G[S]=K_{4}$. Since $E R_{2}\left(P_{3}\right)=4$, it follows that H contains two edge-disjoint monochromatic copies F_{1} and F_{2} of P_{3}. At least two edges incident with v_{5} are colored the same, producing a monochromatic copy of P_{3} edge-disjoint from F_{1} and F_{2}. Thus, $E R_{3}\left(P_{3}\right) \leq 5$ and so $E R_{3}\left(P_{3}\right)=5$.

We now determine $E R_{t}\left(P_{3}\right)$ for all positive integers t. For every positive integer t, there exists a unique nonnegative integer k such that $k^{2}-k<t \leq k^{2}+k$.
Theorem 3.2. For a positive integer t, let k be the unique integer with $k^{2}-k<t \leq k^{2}+k$.
(1) If $k^{2}-k<t \leq k^{2}$, then $E R_{t}\left(P_{3}\right)=2 k+1$.
(2) If $k^{2}<t \leq k^{2}+k$, then $E R_{t}\left(P_{3}\right)=2 k+2$.

Proof. First, we verify (1). Since $E R_{1}\left(P_{3}\right)=3$, we may assume that $t \geq 2$ is an integer such that $k^{2}-k+1 \leq t \leq k^{2}$ for a unique integer $k \geq 2$. We show that $E R_{t}\left(P_{3}\right)=2 k+1$. By Observation 2.2 , if $k^{2}-k+1 \leq t \leq k^{2}$, then

$$
E R_{k^{2}-k+1}\left(P_{3}\right) \leq E R_{t}\left(P_{3}\right) \leq E R_{k^{2}}\left(P_{3}\right) .
$$

Hence, it suffices to show that $E R_{k^{2}-k+1}\left(P_{3}\right) \geq 2 k+1$ and $E R_{k^{2}}\left(P_{3}\right) \leq 2 k+1$.
First, we show that $E R_{k^{2}-k+1}\left(P_{3}\right) \geq 2 k+1$. Let c be the red-blue coloring of $K_{2 k}$ with red subgraph $k K_{2}$ and blue subgraph $K_{2 k}-k K_{2}$. The red subgraph contains no P_{3}. Since the size of $K_{2 k}-k K_{2}$ is $\binom{2 k}{2}-k=2\left(k^{2}-k\right)$, the blue subgraph contains at most $k^{2}-k$ pairwise edge-disjoint copies of P_{3}. Since the coloring c of $K_{2 k}$ does not produce $k^{2}-k+1$ pairwise edge-disjoint monochromatic copies of P_{3}, it follows that $E R_{k^{2}-k+1}\left(P_{3}\right) \geq 2 k+1$.

To show that $E R_{k^{2}}\left(P_{3}\right) \leq 2 k+1$, we proceed by induction on $k \geq 1$. The statement is true for $k=1,2,3$. Assume that $E R_{k^{2}}\left(P_{3}\right) \leq 2 k+1$ where $k \geq 3$. We show that $E R_{(k+1)^{2}}\left(P_{3}\right) \leq 2 k+3$. Let there be given a red-blue coloring of $G=K_{2 k+3}$, where G_{r} and G_{b} are the red and blue subgraphs of G, respectively. Since G_{r} has odd order, G_{r} contains a vertex u of even degree, say $\operatorname{deg}_{G_{r}} u=2 a+2$ for a nonnegative integer a. Let $u v$ be a red edge of G and let $H=G-\{u, v\}=K_{2 k+1}$. By the induction hypothesis, H contains k^{2} pairwise edge-disjoint monochromatic copies $F_{1}, F_{2}, \ldots, F_{k^{2}}$ of P_{3}. The vertex u is incident with $2 a+1$ red edges that join u to vertices in H and $(2 k-2 a)$ blue edges that join u to vertices in H. Together with the red edge $u v$, there are $a+1$ pairwise edge-disjoint red copies of P_{3} centered at u and $k-a$ pairwise edge-disjoint blue copies of P_{3} centered at u. Hence, there are $(a+1)+(k-a)=k+1$ pairwise edge-disjoint monochromatic copies of P_{3} centered at u. Regardless of the colors of these $2 k+1$ edges incident with v, there are k pairwise edge-disjoint monochromatic copies of P_{3} centered at v. Hence, G contains $2 k+1$ pairwise edge-disjoint monochromatic copies of P_{3} centered at either u or v that are edge-disjoint from $F_{1}, F_{2}, \ldots, F_{k^{2}}$. Thus, G contains $k^{2}+2 k+1=(k+1)^{2}$ pairwise edge-disjoint monochromatic copies of P_{3} and so $E R_{(k+1)^{2}}\left(P_{3}\right) \leq 2 k+3$. Therefore, $E R_{t}\left(P_{3}\right)=2 k+1$ for $k^{2}-k<t \leq k^{2}$.

Next, we verify (2). Let $t \geq 2$ be an integer and let k be the unique integer such that $k^{2}+1 \leq t \leq k^{2}+k$. We show that $E R_{t}\left(P_{3}\right)=2 k+2$. By Observation 2.2, if $k^{2}+1 \leq t \leq k^{2}+k$, then $E R_{k^{2}+1}\left(P_{3}\right) \leq E R_{t}\left(P_{3}\right) \leq E R_{k^{2}+k}\left(P_{3}\right)$. Hence, it suffices to show that $E R_{k^{2}+1}\left(P_{3}\right) \geq 2 k+2$ and $E R_{k^{2}+k}\left(P_{3}\right) \leq 2 k+2$.

First, we show that $E R_{k^{2}+1}\left(P_{3}\right) \geq 2 k+2$. Let c be the red-blue coloring of $K_{2 k+1}$ with red subgraph $k K_{2}$ and blue subgraph $K_{2 k+1}-k K_{2}$. The red subgraph contains no P_{3}. Since the size of $K_{2 k+1}-k K_{2}$ is $\binom{2 k+1}{2}-k=2 k^{2}$, the blue subgraph contains at most k^{2} pairwise edge-disjoint copies of P_{3}. Since the coloring c of $K_{2 k+1}$ does not produce $k^{2}+1$ pairwise edge-disjoint monochromatic copies of P_{3}, it follows that $E R_{k^{2}+1}\left(P_{3}\right) \geq 2 k+2$.

To show that $E R_{k^{2}+k}\left(P_{3}\right) \leq 2 k+2$, we proceed by induction on $k \geq 1$. The statement is true for $k=1,2,3$. Assume that $E R_{k^{2}+k}\left(P_{3}\right) \leq 2 k+2$ where $k \geq 3$. We show that $E R_{(k+1)^{2}+(k+1)}\left(P_{3}\right) \leq 2 k+4$. Let there be given a red-blue coloring of $G=K_{2 k+4}$, where G_{r} and G_{b} are the red and blue subgraphs of G, respectively. Let x be a vertex of G. Regardless of the colors of these $2 k+3$ edges incident with x, there are $k+1$ pairwise edge-disjoint monochromatic copies of P_{3} centered at x in G. Let $G^{\prime}=G-x=K_{2 k+3}$ where G_{r}^{\prime} and G_{b}^{\prime} are the red and blue subgraphs of G^{\prime}, respectively. Since G^{\prime} has odd order, there is a vertex y in G^{\prime} such that the degree $\operatorname{deg}_{G_{r}^{\prime}} y$ of y in G_{r}^{\prime} is even, say $\operatorname{deg}_{G_{r}^{\prime}} y=2 a$ for some nonnegative integer a. Let $H=G-\{x, y\}=K_{2 k+2}$. By the induction hypothesis, H contains $k^{2}+k$ pairwise edge-disjoint monochromatic copies $F_{1}, F_{2}, \ldots, F_{k^{2}+k}$ of P_{3}. The vertex y is incident with $2 a$ red edges that join y to vertices in H and incident with $(2 k+2-2 a)=2(k+1-a)$ blue edges that join y to vertices in H. Thus, G^{\prime} contains a pairwise edge-disjoint red copies of P_{3} centered at y and $k+1-a$ pairwise edge-disjoint blue copies of P_{3} centered at y. Hence, there are $k+1$ pairwise edge-disjoint monochromatic copies of P_{3} centered at y in $G^{\prime}=G-x$. Thus, G contains $2 k+2$ pairwise edge-disjoint monochromatic copies of P_{3} centered at either x or y that are edge-disjoint from $F_{1}, F_{2}, \ldots, F_{k^{2}+k}$. Thus, G contains $k^{2}+k+2 k+2=(k+1)^{2}+(k+1)$ pairwise edge-disjoint monochromatic copies of P_{3} and so $E R_{k^{2}+k}\left(P_{3}\right) \leq 2 k+2$. Therefore, $E R_{t}\left(P_{3}\right)=2 k+2$ for $k^{2}<t \leq k^{2}+k$.

Corollary 3.1. For a positive integer t, $E R_{t}\left(P_{3}\right)=\lceil 2 \sqrt{t}+1\rceil$.
Proof. Let t be a positive integer. Then there is a unique integer k such that $k^{2}-k+1 \leq t \leq k^{2}+k$. We consider two cases, according to whether $k^{2}-k+1 \leq t \leq k^{2}$ or $k^{2}+1 \leq t \leq k^{2}+k$.

Case 1. $k^{2}-k+1 \leq t \leq k^{2}$. By Theorem 3.2, $E R_{t}\left(P_{3}\right)=2 k+1$. Since $k^{2}-k+1>\left(k-\frac{1}{2}\right)^{2}$, it follows that

$$
\sqrt{k^{2}-k+1}>k-\frac{1}{2} .
$$

Thus, $2 \sqrt{k^{2}-k+1}+1>2\left(k-\frac{1}{2}\right)+1=2 k$ and so $\left\lceil 2 \sqrt{k^{2}-k+1}+1\right\rceil \geq 2 k+1$. Since $2 \sqrt{k^{2}}+1=2 k+1$, it follows that $\left\lceil 2 \sqrt{k^{2}}+1\right\rceil=2 k+1$. For each integer t with $k^{2}-k+1 \leq t \leq k^{2}$,

$$
2 k+1 \leq\left\lceil 2 \sqrt{k^{2}-k+1}+1\right\rceil \leq\lceil 2 \sqrt{t}+1\rceil \leq\left\lceil 2 \sqrt{k^{2}}+1\right\rceil=2 k+1 .
$$

Therefore, $\lceil 2 \sqrt{t}+1\rceil=2 k+1=R_{t}\left(P_{3}\right)$.
Case 2. $k^{2}+1 \leq t \leq k^{2}+k$. By Theorem 3.2, $E R_{t}\left(P_{3}\right)=2 k+2$. Since $k^{2}+k<\left(k+\frac{1}{2}\right)^{2}$, it follows that $\sqrt{k^{2}+k}<k+\frac{1}{2}$. Thus, $2 \sqrt{k^{2}+k}+1<2\left(k+\frac{1}{2}\right)+1=2 k+2$ and so $\left\lceil 2 \sqrt{k^{2}+k}+1\right\rceil \leq 2 k+2$. Since $\sqrt{k^{2}+1}>k$, it follows that

$$
2 \sqrt{k^{2}+1}+1>2 k+1
$$

and so $\left\lceil 2 \sqrt{k^{2}+1}+1\right\rceil \geq 2 k+2$. For each integer t with $k^{2}+1 \leq t \leq k^{2}+k$,

$$
2 k+2 \leq\left\lceil 2 \sqrt{k^{2}+1}+1\right\rceil \leq\lceil 2 \sqrt{t}+1\rceil \leq\left\lceil 2 \sqrt{k^{2}+k}+1\right\rceil \leq 2 k+2 .
$$

Therefore, $\lceil 2 \sqrt{t}+1\rceil=2 k+2=E R_{t}\left(P_{3}\right)$.

References

[1] G. Chartrand, P. Zhang, Chromatic Graph Theory, Second Edition, Chapman \& Hall/CRC Press, Boca Raton, 2020.
[2] R. E. Greenwood, A. M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955) 1-7.
[3] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930) 264-286.

[^0]: *Corresponding author (ping.zhang@wmich.edu).

