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Abstract

For a positive integer t and a graph F , the numbers ERt(F ) and V Rt(F ) of F are the minimum positive integer n such
that every red-blue coloring of the edges of the complete graph Kn results in t pairwise edge-disjoint and vertex-disjoint,
respectively, monochromatic copies of F in Kn. The number ERt(F ) is determined when F = K3 for t ≤ 4 and when F is the
path P3 of order 3 for every positive integer t, while V Rt(F ) is determined when F ∈ {K3, P3} for every positive integer t.
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1. Introduction

In a red-blue coloring of a graph G, every edge of G is colored red or blue. For two graphs F and H, the well-known
Ramsey number R(F,H) is the minimum positive integer n such that for every red-blue coloring of the complete graph Kn

of order n, there is either a subgraph of Kn isomorphic to F all of whose edges are colored red (a red F ) or a subgraph
of Kn isomorphic to H all of whose edges are colored blue (a blue H). Therefore, for a single graph F , the Ramsey number
R(F, F ), also denoted by R(F ), is the minimum positive integer n such that for every red-blue coloring of Kn, there is a
subgraph of Kn isomorphic to F all of whose edges are colored the same (a monochromatic F ). That these numbers exist
for every graph F is due to Ramsey [3]. We refer to the book [1] for notation and terminology not defined here.

An introduction to Ramsey numbers in graph theory often begins with a question that is sometimes stated in the
following manner.

How many people must be present at a party to be guaranteed that there are three mutual acquaintances or three
mutual strangers?

It may already be clear that this question has a graph theory interpretation. For example, suppose that there are n people
at the party. These n people are the n vertices of the complete graph Kn. Two vertices are joined by a red edge if the two
people are acquaintances and joined by a blue edge if they are strangers. The question then becomes the following.

What is the smallest positive integer n such that if the
(
n
2

)
edges of Kn are colored red or blue in any manner

whatsoever, we are guaranteed that a subgraph K3 (a triangle) all of whose edges are colored red (a red triangle)
or colored blue (a blue triangle) appears?

In order to answer this question, it is useful to make the following observation.

Observation 1.1. Let there be given an arbitrary red-blue coloring of a complete graph Kn where n ≥ 4. If a vertex of Kn

is incident with three or more edges of the same color, then Kn contains a monochromatic triangle.

Proof. Suppose that a vertex v of Kn is incident with at least three edges of the same color, say vv1, vv2, vv3 are red. If any
two of v1, v2, v3 are joined by a red edge, then there is a red triangle; otherwise, (v1, v2, v3, v1) is a blue triangle.

First, n = 5 does not work. By Observation 1.1, any red-blue coloring of K5 in which some vertex is incident with at
least three edges of the same color results in a monochromatic triangle. Therefore, the only possible red-blue coloring of K5

without any monochromatic triangle is for every vertex to be incident with exactly two edges of each color. Consequently,
we have the next observation.
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Observation 1.2. The only red-blue coloring of the complete graph K5 for which there is no monochromatic triangle is one
that produces a red cycle C5 of order 5 and a blue C5.

This red-blue coloring of K5 is shown in Figure 1.1 where a bold edge represents a red edge and a thin edge represents
a blue edge.

Figure 1.1: A red-blue coloring of K5.

However, n = 6 does work. Every red-blue coloring of K6 results in at least three edges incident with each vertex colored
the same. By Observation 1.1, there is a red triangle or a blue triangle. Hence, the solution to the question above is the
Ramsey number R(K3) = 6, which appeared in [2]. This problem essentially appeared as Problem A2 in the 1953 Putnam
Exam.

A2. The complete graph with 6 points and 15 edges has each edge colored red or blue. Show that we can find 3 points such
that the 3 edges joining them are the same color.

Not only does every red-blue coloring of K6 always produce a monochromatic triangle, it always produces at least two
monochromatic triangles. To see this, let there be given a red-blue coloring of G = K6 with red subgraph Gr and blue
subgraph Gb. First, suppose that there is a vertex v that is incident with four edges of the same color, say vv1, vv2, vv3, vv4

are red. If there are two red edges in the subgraph G[{v1, v2, v3, v4}] of G induced by the set {v1, v2, v3, v4}, then there
are two red triangles. If at most one edge, say v1v2, is colored red, then {v1, v3, v4} and {v2, v3, v4} are the vertices of two
blue triangles. Next, suppose that Gr is 3-regular. Then Gr is either the Cartesian product K3 � K2 of K3 and K2 or the
complete bipartite graph K3,3. If Gr = K3 � K2, then Gr has two triangles; while if Gr = K3,3, then Gb = 2K3 (the union
of two vertex-disjoint copies of K3) also contains two triangles.

Finally, suppose that neither Gr nor Gb contains a vertex of degree 4 or more or is 3-regular. Then each of these graphs
must contain only vertices of degree 2 or 3, necessarily some of each. Since every graph contains an even number of odd
vertices, one of these two graphs contains four vertices of degree 3 and two vertices of degree 2 while the other contains
two vertices of degree 3 and four vertices of degree 2. Suppose that Gb contains four vertices of degree 3 and two vertices u

and v of degree 2. Thus, Gb is one of graphs shown in Figures 1.2(a), (b), and (c).
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Figure 1.2: Three possible blue subgraphs Gb.

If (a) occurs, then u and v are adjacent and Gb has two triangles. If (b) occurs, then (v, w, z, v) and (u, x, y, u) are two red
triangles. If (c) occurs, then (x, y, z, x) is a blue triangle and (u, x, y, u) is a red triangle. Therefore, we have the following.

In every red-blue coloring of the edges of K6, there are always at least two monochromatic triangles.

2. Monochromatic triangles

The red-blue coloring of K6 with red subgraph K2,4 and blue subgraph K2+K4 has four monochromatic triangles, all blue.
However, every two blue triangles have an edge in common. When n = 7, however, every red-blue coloring of K7 results in
two edge-disjoint monochromatic triangles.
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Proposition 2.1. Every red-blue coloring of K7 results in two edge-disjoint monochromatic triangles.

Proof. Let there be given an arbitrary red-blue coloring of G = K7. Since R(K3,K3) = 6, there is a monochromatic trian-
gle T in G. Let V (T ) = {u1, u2, u3} and let V (G) − V (T ) = {v1, v2, v3, v4}. Let Fi = G[{ui, v1, v2, v3, v4}] = K5 for i = 1, 2, 3.
If any Fi contains a monochromatic triangle, then G contains two edge-disjoint (in fact, vertex-disjoint) monochromatic
triangles. Thus, we may assume that no Fi (i = 1, 2, 3) contains a monochromatic triangle. It follows by Observation 1.2
that each Fi consists of a red C5 and a blue C5 for i = 1, 2, 3. Assume, without loss of generality, that (u1, v1, v2, v3, v4, u1) is
a red C5 in F1 and (u1, v2, v4, v1, v3, u1) is a blue C5 in F1. We now consider Fi for i = 2, 3. Since

(a) (v1, v2, v3, v4) is a red P4 in Fi and (v2, v4, v1, v3) is a blue P4 in Fi and

(b) Fi consists of a red C5 and a blue C5,

it follows that uiv1, uiv4 are red and uiv2, uiv3 are blue . If T is a red triangle, then (u1, v1, u2, u1) and (u2, v4, u3, u2) are two
edge-disjoint red triangles in G; while if T is a blue triangle, then (u1, v2, u2, u1) and (u2, v3, u3, u2) are two edge-disjoint
blue triangles in G. Therefore, G contains two edge-disjoint monochromatic triangles.

Consequently, 6 is the smallest order n of a complete graph Kn for which every red-blue coloring of Kn results in
a monochromatic triangle (or two monochromatic triangles which may have an edge in common), while 7 is the smallest
order n of a complete graphKn for which every red-blue coloring ofKn results in two edge-disjoint monochromatic triangles.
These facts suggest the problem of determining the smallest positive integer n such that every red-blue coloring of Kn

results in two vertex-disjoint monochromatic triangles.
The red-blue coloring of K7 with red subgraph K5 + K2 and blue subgraph K2,5 does not contain two vertex-disjoint

monochromatic copies of K3. When n = 8, however, every red-blue coloring of K8 results in two vertex-disjoint monochro-
matic triangles.

Proposition 2.2. Every red-blue coloring of K8 results in two vertex-disjoint monochromatic triangles.

Proof. Let there be given an arbitrary red-blue coloring of G = K8 with vertex set {v1, v2,. . ., v8}. Since R(K3,K3) =

6, there is a monochromatic copy of K3 in G. Let T be a monochromatic triangle in G where V (T ) = {v1, v2, v3}. Let
F = G[{v4, v5, v6, v7v8} = K5. If F contains a monochromatic triangle, then G contains two vertex-disjoint monochromatic
triangles. Suppose that F does not contain a monochromatic triangle. Then F consists of a red C5 and a blue C5. We may
assume that the red C5 is (v4, v5, v6, v7, v8, v4) and the blue C5 is (v4, v6, v8, v5, v7, v4). Since v1 is jointed to at least three
vertices of V (F ) = {v4, v5, v6, v7, v8} by edges of the same color, we may assume that v1 is adjacent to three vertices of V (F )

by red edges. Necessarily, v1 is joined to two adjacent vertices of V (F ) that are joined by a red edge. Consequently, we may
assume that v1v4 and v1v5 are red. See Figure 2.1.
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Figure 2.1: A step in the proof of Proposition 2.2.
.

Let H = G[{v2, v3, v6, v7, v8}] = K5. If H contains a monochromatic triangle, then G contains two vertex-disjoint
monochromatic triangles. Suppose that H does not contain a monochromatic triangle and so H consists of a red subgraph
Hr = C5 and a blue subgraph Hb = C5. First, suppose that T is blue. Since degHr

v7 = 2, it follows that v2v6, v2v8, v3v6, v3v8
are red. However then, degHr

v6 = degHr
v8 = 3, a contradiction. We may assume that T is red. We may further assume

that Hr = (v2, v3, v8, v7, v6, v2) and Hb = (v2, v8, v6, v3, v7, v2). We consider two cases, according to whether v1v6 is red or v1v6
is blue.

Case 1. v1v6 is red. This implies that v2v4 is red for otherwise, there are two vertex-disjoint monochromatic triangles
(v1, v5, v6, v1) and (v2, v4, v7, v2). Also, this implies that v3v4 is red for otherwise, there are two vertex-disjoint monochro-
matic triangles (v1, v5, v6, v1) and (v3, v4, v8, v3). However then, there are two vertex-disjoint monochromatic triangles
(v1, v5, v6, v1) and (v2, v3, v4, v2).
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Case 2. v1v6 is blue. First, suppose that v1v8 is red. So, v2v5 is blue, for otherwise there are two vertex-disjoint monochro-
matic triangles (v1, v4, v8, v1) and (v2, v5, v6, v2). Then (v1, v4, v8, v1) and (v2, v5, v7, v2) are two vertex-disjoint monochromatic
triangles. Next, suppose that v1v8 is blue. If v2v5 is blue, then there are two vertex-disjoint monochromatic triangles
(v2, v5, v7, v2) and (v1, v6, v8, v1). Thus, we may assume that v2v5 is red. If v2v4 is blue, then there are two vertex-disjoint
monochromatic triangles (v2, v4, v7, v2) and (v1, v6, v8, v1). Thus, we may assume that v2v4 is red. Then there are two
vertex-disjoint monochromatic triangles (v2, v4, v5, v2) and (v1, v6, v8, v1).

The results above concerning two edge-disjoint and vertex-disjoint monochromatic triangles in an edge-colored complete
graph suggest more general concepts. Let t be a positive integer and let F be a graph without isolated vertices. The vertex-
disjoint Ramsey number V Rt(F ) is the minimum positive integer n such that every red-blue coloring ofKn results in at least
t pairwise vertex-disjoint monochromatic copies of F . Then V R1(K3) = R(K3) = 6 and V R2(K3) = 8 by Proposition 2.2 and
the red-blue coloring of K7 with red subgraph K5 +K2 and blue subgraph K2,5. For a graph F without isolated vertices,
V Rt(F ) ≥ t|V (F )| and the Ramsey number R(tF ) exists where tF is a union of t vertex-disjoint copies of F . Hence, we
have the following observation.

Observation 2.1. For every graph F without isolated vertices and every positive integer t, the number V Rt(F ) exists and
t|V (F )| ≤ V Rt(F ) ≤ R(tF ). Furthermore, V Rt(F ) ≤ V Rt+1(F ).

Theorem 2.1. For an integer t ≥ 2, V Rt(K3) = 3t+ 2.

Proof. We proceed by induction on t. We saw that V R2(K3) = 8 and so the result is true for t = 2. Assume that V Rk(K3) =

3k+2 for an integer k ≥ 2. We show that V Rk+1(K3) = 3k+5. The red-blue coloring of K3k+4 with red subgraph K3k+2+K2

and blue subgraph K2,3k+2 has k vertex-disjoint red triangles and no blue triangle. Thus, V Rk+1(K3) ≥ 3k + 5. Next, let
there be given a red-blue coloring of K3k+5. Since 3k + 5 ≥ 11 > 6 and R(K3) = 6, there is a monochromatic triangle T .
Let H = K3k+5 − V (T ) = K3k+2. Since V Rk(K3) = 3k + 2, it follows that H contains k vertex-disjoint monochromatic
triangles. Hence, there are k+1 vertex-disjoint monochromatic triangles in K3k+5 and so V Rk+1(K3) ≤ 3k+5. Therefore,
V Rk+1(K3) = 3k + 5.

Let t be a positive integer and let F be a graph without isolated vertices. The edge-disjoint Ramsey number ERt(F ) of
F is the minimum positive integer n such that for every red-blue coloring of Kn, there are at least t pairwise edge-disjoint
monochromatic copies of F . Hence, ER1(F ) is the Ramsey number R(F ). Therefore, ER1(K3) = 6 and ER2(K3) = 7 by
Proposition 2.1 and the red-blue coloring of K6 with red subgraph K2,4 and blue subgraph K2+K4. There is an observation
for edge-disjoint Ramsey numbers similar to Observation 2.1.

Observation 2.2. For every graph F without isolated vertices and every positive integer t, the number ERt(F ) exists and
ERt(F ) ≤ V Rt(F ). Furthermore, ERt(F ) ≤ ERt+1(F ).

We now determine ERt(K3) for t = 3, 4. First, we present a useful lemma.

Lemma 2.1. For each positive integer t, ERt+1(K3) ≤ ERt(K3) + 2.

Proof. Let ERt(K3) = k. Let there be given an arbitrary red-blue coloring of G = Kk+2. Then there is a monochromatic
copy F0 of K3 in G. Let u, v ∈ V (F0) and let H = G−{u, v}. Then H = Kk contains no edge of F0. Since ERt(K3) = k, there
are t pairwise edge-disjoint monochromatic copies F1, F2, . . ., Ft of K3 in H that are edge-disjoint from F0. Therefore, F0,
F1, F2, . . ., Ft are t+1 pairwise edge-disjoint monochromatic copies of K3 in G and so ERt+1(K3) ≤ k+2 = ERt(K3)+2.

Both strict inequality and equality in Lemma 2.1 can occur, as we show next.

Proposition 2.3. ER3(K3) = 9

Proof. Since ER3(K3) ≤ ER2(K3) + 2 = 9 by Lemma 2.1 and Proposition 2.1, it remains to show that ER3(K3) ≥ 9. For
the red-blue coloring of K8 with red subgraph K4,4 and blue graph 2K4, there is no red triangle and only two edge-disjoint
blue triangles. Since this red-blue coloring of K8 does not produce three pairwise edge-disjoint monochromatic triangles,
it follows that ER3(K3) ≥ 9 and so ER3(K3) = 9.

Theorem 2.2. ER4(K3) = 10.

Proof. The red-blue coloring of K9 with red subgraph K5,4 and blue subgraph K5 +K4 contains no red triangle and three
edge-disjoint blue triangles. Since this red-blue coloring of K9 does not produce four pairwise edge-disjoint monochromatic
triangles, it follows that ER4(K3) ≥ 10.
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It remains to show that ER4(K3) ≤ 10. First, we verify the following claim.

Claim: For every red-blue coloring of G = K10 containing two edge-disjoint monochromatic triangles T and T ′

having a vertex in common, there are four pairwise edge-disjoint monochromatic triangles in G.

To verify the claim, consider a red-blue coloring of G with two edge-disjoint monochromatic triangles T = (v1, v2, v3, v1) and
T ′ = (v1, v4, v5, v1). Let H = G[V (G)− {v1, v2, v4}] = K7. Since ER2(K3) = 7 by Proposition 2.1, there are two edge-disjoint
monochromatic triangles T1 and T2 in H edge-disjoint from T and T ′. Thus, T, T ′, T1, T2 are four pairwise edge-disjoint
monochromatic triangles in G and so the claim is true.

Next, we show that every red-blue coloring of G = K10 produces four pairwise edge-disjoint monochromatic triangles
in G. Let there be given a red-blue coloring of G. Since ER3(K3) = 9, it follows that G contains three pairwise edge-disjoint
monochromatic triangles T1, T2, T3. We show that G contains a fourth monochromatic triangle edge-disjoint from T1, T2, T3.
By the claim, we may assume that T1, T2, T3 are pairwise vertex-disjoint. Hence, the subgraph F of G induced by E(T1) ∪
E(T2) ∪ E(T3) is 3K3. Let T1 = (v1, v2, v3, v1), T2 = (v4, v5, v6, v4), T3 = (v7, v8, v9, v7), and let v be the vertex of G not in F .
Furthermore, let H = G − E(F ) be the spanning subgraph of G whose edge set consists of all edges not belonging to any
of T1, T2, and T3. Then H ∼= K1,3,3,3 and degH v = 9. Let r be the number of red edges incident with v and b the number of
blue edges incident with v. Then r + b = 9. We may assume that b ≤ r and so 5 ≤ r ≤ 9.

First, suppose that there is a red edge joining v to at least one vertex in each of T1, T2, T3. We may assume without
loss of generality that vv1, vv4, vv7 are red. If there is a red edge joining two vertices in {v1, v4, v7}, say v1v4 is red, then
(v, v1, v4, v) is a red triangle edge-disjoint from T1, T2, T3; while if every two vertices in {v1, v4, v7} is joined by a blue edge,
then (v1, v4, v7, v1) is a blue triangle edge-disjoint from T1, T2, T3. Thus, we may assume that v is joined to exactly two of
T1, T2, T3 by red edges. Hence, r = 5, 6 and we may further assume that vvi is red for i = 1, 2, 3, 4, 5 and vv6 is either red or
blue.

Let H ′ = K2,3 be the complete bipartite subgraph of H with partite sets {v1, v2, v3} and {v4, v5}. If H ′ contains a red
edge, say v1v4 is red, then (v, v1, v4, v) is a red triangle edge-disjoint from T1, T2, T3. Thus, we may assume that H ′ is a
blue K2,3. If T1 is blue, then (v1, v4, v2, v1) and (v1, v5, v3, v1) are two edge-disjoint blue triangles having the vertex v1 in
common. It then follows by the claim that G contains four pairwise edge-disjoint monochromatic triangles. Thus, we may
assume that T1 is red. If T2 is red, then (v1, v, v2, v1) and (v4, v, v5, v4) are two edge-disjoint red triangles having the vertex v

in common; while if T2 is blue, then (v1, v2, v3, v1) and (v1, v4, v5, v1) are two edge-disjoint monochromatic triangles having
the vertex v1 in common. Again, by the claim, G contains four pairwise edge-disjoint monochromatic triangles. Therefore,
ER4(K3) ≤ 10 and so ER4(K3) = 10.

We close this section with the following conjecture.

Conjecture 2.1. For every integer t ≥ 4, ERt(K3) ≤ ERt+1(K3) ≤ ERt(K3) + 1.

3. Monochromatic paths of order 3

We now turn our attention to the other connected graph of order 3, namely the path P3 of order 3. Of course,

R1(P3) = V R1(P3) = ER1(P3) = 3.

First, we determine V Rt(P3) for every positive integer t.

Theorem 3.1. For every positive integer t, V Rt(P3) = 3t.

Proof. Since V Rt(P3) ≥ 3t by Observation 2.1, it remains to show that V Rt(P3) ≤ 3t. We proceed by induction on t.
Since V R1(P3) = R(P3) = 3, the result is true for t = 1. Assume that V Rk(P3) ≤ 3k for a positive integer k. We show
that V Rk+1(P3) ≤ 3k + 3. Let there be given a red-blue coloring of Kk+3. Then there is a monochromatic copy P of P3.
Let H = K3k+3 − V (P ) = K3k. Since V Rk(P3) = 3k, it follows that H contains k vertex-disjoint monochromatic copies
of P3. Hence, there are k + 1 vertex-disjoint monochromatic copies of P3 in K3k and so V Rk+1(P3) ≤ 3k + 3. Therefore,
V Rk+1(P3) = 3k + 3.

Next, we determine ERt(P3) for every positive integer t, beginning with t = 2, 3.

Proposition 3.1. ER2(P3) = 4 and ER3(P3) = 5.

Proof. First, we show that ER2(P3) = 4. Since K3 has size 3, it follows that ER2(P3) ≥ 4. Let there be given a red-blue
coloring of K4 with V (K4) = {v1, v2, v3, v4}. At least two edges incident with v1 are colored the same, say v1v2 and v1v3,
resulting in a monochromatic copy of P3. The same is true for v4. Thus, ER2(P4) ≤ 4 and so ER2(P3) = 4.
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Next, we show that ER3(P3) = 5. The red-blue coloring of K4 with red subgraph 2K2 and blue subgraph C4 has only
two edge-disjoint monochromatic copies of P3 and so ER3(P3) ≥ 5. Let there be given a red-blue coloring of G = K5 with
V (K5) = {v1, v2, v3, v4, v5}. Let S = {v1, v2, v3, v4}. Then H = G[S] = K4. Since ER2(P3) = 4, it follows that H contains two
edge-disjoint monochromatic copies F1 and F2 of P3. At least two edges incident with v5 are colored the same, producing a
monochromatic copy of P3 edge-disjoint from F1 and F2. Thus, ER3(P3) ≤ 5 and so ER3(P3) = 5.

We now determine ERt(P3) for all positive integers t. For every positive integer t, there exists a unique nonnegative
integer k such that k2 − k < t ≤ k2 + k.

Theorem 3.2. For a positive integer t, let k be the unique integer with k2 − k < t ≤ k2 + k.

(1) If k2 − k < t ≤ k2, then ERt(P3) = 2k + 1.

(2) If k2 < t ≤ k2 + k, then ERt(P3) = 2k + 2.

Proof. First, we verify (1). Since ER1(P3) = 3, we may assume that t ≥ 2 is an integer such that k2 − k + 1 ≤ t ≤ k2 for a
unique integer k ≥ 2. We show that ERt(P3) = 2k + 1. By Observation 2.2, if k2 − k + 1 ≤ t ≤ k2, then

ERk2−k+1(P3) ≤ ERt(P3) ≤ ERk2(P3).

Hence, it suffices to show that ERk2−k+1(P3) ≥ 2k + 1 and ERk2(P3) ≤ 2k + 1.
First, we show that ERk2−k+1(P3) ≥ 2k + 1. Let c be the red-blue coloring of K2k with red subgraph kK2 and blue

subgraph K2k − kK2. The red subgraph contains no P3. Since the size of K2k − kK2 is
(
2k
2

)
− k = 2(k2 − k), the blue

subgraph contains at most k2−k pairwise edge-disjoint copies of P3. Since the coloring c of K2k does not produce k2−k+1

pairwise edge-disjoint monochromatic copies of P3, it follows that ERk2−k+1(P3) ≥ 2k + 1.
To show that ERk2(P3) ≤ 2k + 1, we proceed by induction on k ≥ 1. The statement is true for k = 1, 2, 3. Assume that

ERk2(P3) ≤ 2k + 1 where k ≥ 3. We show that ER(k+1)2(P3) ≤ 2k + 3. Let there be given a red-blue coloring of G = K2k+3,
where Gr and Gb are the red and blue subgraphs of G, respectively. Since Gr has odd order, Gr contains a vertex u of even
degree, say degGr

u = 2a + 2 for a nonnegative integer a. Let uv be a red edge of G and let H = G − {u, v} = K2k+1. By
the induction hypothesis, H contains k2 pairwise edge-disjoint monochromatic copies F1, F2, . . ., Fk2 of P3. The vertex u is
incident with 2a + 1 red edges that join u to vertices in H and (2k − 2a) blue edges that join u to vertices in H. Together
with the red edge uv, there are a+ 1 pairwise edge-disjoint red copies of P3 centered at u and k − a pairwise edge-disjoint
blue copies of P3 centered at u. Hence, there are (a + 1) + (k − a) = k + 1 pairwise edge-disjoint monochromatic copies
of P3 centered at u. Regardless of the colors of these 2k + 1 edges incident with v, there are k pairwise edge-disjoint
monochromatic copies of P3 centered at v. Hence, G contains 2k + 1 pairwise edge-disjoint monochromatic copies of P3

centered at either u or v that are edge-disjoint from F1, F2, . . ., Fk2 . Thus, G contains k2 + 2k + 1 = (k + 1)2 pairwise
edge-disjoint monochromatic copies of P3 and so ER(k+1)2(P3) ≤ 2k + 3. Therefore, ERt(P3) = 2k + 1 for k2 − k < t ≤ k2.

Next, we verify (2). Let t ≥ 2 be an integer and let k be the unique integer such that k2 + 1 ≤ t ≤ k2 + k. We show that
ERt(P3) = 2k + 2. By Observation 2.2, if k2 + 1 ≤ t ≤ k2 + k, then ERk2+1(P3) ≤ ERt(P3) ≤ ERk2+k(P3). Hence, it suffices
to show that ERk2+1(P3) ≥ 2k + 2 and ERk2+k(P3) ≤ 2k + 2.

First, we show that ERk2+1(P3) ≥ 2k + 2. Let c be the red-blue coloring of K2k+1 with red subgraph kK2 and blue
subgraph K2k+1 − kK2. The red subgraph contains no P3. Since the size of K2k+1 − kK2 is

(
2k+1

2

)
− k = 2k2, the blue

subgraph contains at most k2 pairwise edge-disjoint copies of P3. Since the coloring c of K2k+1 does not produce k2 + 1

pairwise edge-disjoint monochromatic copies of P3, it follows that ERk2+1(P3) ≥ 2k + 2.
To show that ERk2+k(P3) ≤ 2k + 2, we proceed by induction on k ≥ 1. The statement is true for k = 1, 2, 3. Assume

that ERk2+k(P3) ≤ 2k + 2 where k ≥ 3. We show that ER(k+1)2+(k+1)(P3) ≤ 2k + 4. Let there be given a red-blue coloring
of G = K2k+4, where Gr and Gb are the red and blue subgraphs of G, respectively. Let x be a vertex of G. Regardless of
the colors of these 2k+3 edges incident with x, there are k+1 pairwise edge-disjoint monochromatic copies of P3 centered
at x in G. Let G′ = G − x = K2k+3 where G′r and G′b are the red and blue subgraphs of G′, respectively. Since G′ has
odd order, there is a vertex y in G′ such that the degree degG′

r
y of y in G′r is even, say degG′

r
y = 2a for some nonnegative

integer a. LetH = G−{x, y} = K2k+2. By the induction hypothesis, H contains k2+k pairwise edge-disjoint monochromatic
copies F1, F2, . . ., Fk2+k of P3. The vertex y is incident with 2a red edges that join y to vertices in H and incident with
(2k + 2 − 2a) = 2(k + 1 − a) blue edges that join y to vertices in H. Thus, G′ contains a pairwise edge-disjoint red copies
of P3 centered at y and k + 1 − a pairwise edge-disjoint blue copies of P3 centered at y. Hence, there are k + 1 pairwise
edge-disjoint monochromatic copies of P3 centered at y in G′ = G − x. Thus, G contains 2k + 2 pairwise edge-disjoint
monochromatic copies of P3 centered at either x or y that are edge-disjoint from F1, F2, . . ., Fk2+k. Thus, G contains
k2+k+2k+2 = (k+1)2+(k+1) pairwise edge-disjoint monochromatic copies of P3 and so ERk2+k(P3) ≤ 2k+2. Therefore,
ERt(P3) = 2k + 2 for k2 < t ≤ k2 + k.
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Corollary 3.1. For a positive integer t, ERt(P3) =
⌈
2
√
t+ 1

⌉
.

Proof. Let t be a positive integer. Then there is a unique integer k such that k2 − k + 1 ≤ t ≤ k2 + k. We consider two
cases, according to whether k2 − k + 1 ≤ t ≤ k2 or k2 + 1 ≤ t ≤ k2 + k.

Case 1. k2 − k + 1 ≤ t ≤ k2. By Theorem 3.2, ERt(P3) = 2k + 1. Since k2 − k + 1 >
(
k − 1

2

)2, it follows that√
k2 − k + 1 > k − 1

2
.

Thus, 2
√
k2 − k + 1 + 1 > 2

(
k − 1

2

)
+ 1 = 2k and so

⌈
2
√
k2 − k + 1 + 1

⌉
≥ 2k + 1. Since 2

√
k2 + 1 = 2k + 1, it follows that⌈

2
√
k2 + 1

⌉
= 2k + 1. For each integer t with k2 − k + 1 ≤ t ≤ k2,

2k + 1 ≤
⌈
2
√
k2 − k + 1 + 1

⌉
≤
⌈
2
√
t+ 1

⌉
≤
⌈
2
√
k2 + 1

⌉
= 2k + 1.

Therefore,
⌈
2
√
t+ 1

⌉
= 2k + 1 = Rt(P3).

Case 2. k2 + 1 ≤ t ≤ k2 + k. By Theorem 3.2, ERt(P3) = 2k+ 2. Since k2 + k <
(
k + 1

2

)2, it follows that
√
k2 + k < k+ 1

2 .
Thus, 2

√
k2 + k + 1 < 2

(
k + 1

2

)
+ 1 = 2k + 2 and so

⌈
2
√
k2 + k + 1

⌉
≤ 2k + 2. Since

√
k2 + 1 > k, it follows that

2
√

k2 + 1 + 1 > 2k + 1

and so
⌈
2
√
k2 + 1 + 1

⌉
≥ 2k + 2. For each integer t with k2 + 1 ≤ t ≤ k2 + k,

2k + 2 ≤
⌈
2
√
k2 + 1 + 1

⌉
≤
⌈
2
√
t+ 1

⌉
≤
⌈
2
√

k2 + k + 1
⌉
≤ 2k + 2.

Therefore,
⌈
2
√
t+ 1

⌉
= 2k + 2 = ERt(P3).

References
[1] G. Chartrand, P. Zhang, Chromatic Graph Theory, Second Edition, Chapman & Hall/CRC Press, Boca Raton, 2020.
[2] R. E. Greenwood, A. M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955) 1–7.
[3] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930) 264–286.

68


	Introduction
	Monochromatic triangles
	Monochromatic paths of order 3

