Monochromatic subgraphs in graphs

Gary Chartrand, Emma Jent, Ping Zhang

Department of Mathematics, Western Michigan University, Kalamazoo, Michigan 49008-5248, USA

(Received: 10 June 2024. Accepted: 2 July 2024. Published online: 3 July 2024.)

© 2024 the authors. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

For a positive integer \(t \) and a graph \(F \), the numbers \(ER_t(F) \) and \(VR_t(F) \) of \(F \) are the minimum positive integer \(n \) such that every red-blue coloring of the edges of the complete graph \(K_n \), results in \(t \) pairwise edge-disjoint and vertex-disjoint, respectively, monochromatic copies of \(F \) in \(K_n \). The number \(ER_t(F) \) is determined when \(F = K_3 \) for \(t \leq 4 \) and when \(F \) is the path \(P_3 \) of order 3 for every positive integer \(t \), while \(VR_t(F) \) is determined when \(F \in \{ K_3, P_3 \} \) for every positive integer \(t \).

Keywords: red-blue coloring; edge-disjoint and vertex-disjoint monochromatic graphs.

2020 Mathematics Subject Classification: 05C15, 05C35, 05C55.

1. Introduction

In a red-blue coloring of a graph \(G \), every edge of \(G \) is colored red or blue. For two graphs \(F \) and \(H \), the well-known Ramsey number \(R(F, H) \) is the minimum positive integer \(n \) such that for every red-blue coloring of the complete graph \(K_n \), of order \(n \), there is either a subgraph of \(K_n \) isomorphic to \(F \) all of whose edges are colored red (a red \(F \)) or a subgraph of \(K_n \) isomorphic to \(H \) all of whose edges are colored blue (a blue \(H \)). Therefore, for a single graph \(F \), the Ramsey number \(R(F, F) \), also denoted by \(R(F) \), is the minimum positive integer \(n \) such that for every red-blue coloring of \(K_n \), there is a subgraph of \(K_n \) isomorphic to \(F \) all of whose edges are colored the same (a monochromatic \(F \)). That these numbers exist for every graph \(F \) is due to Ramsey [3]. We refer to the book [1] for notation and terminology not defined here.

An introduction to Ramsey numbers in graph theory often begins with a question that is sometimes stated in the following manner.

\textbf{How many people must be present at a party to be guaranteed that there are three mutual acquaintances or three mutual strangers?}

It may already be clear that this question has a graph theory interpretation. For example, suppose that there are \(n \) people at the party. These \(n \) people are the \(n \) vertices of the complete graph \(K_n \). Two vertices are joined by a red edge if the two people are acquaintances and joined by a blue edge if they are strangers. The question then becomes the following.

\textbf{What is the smallest positive integer \(n \) such that if the \(\binom{n}{2} \) edges of \(K_n \) are colored red or blue in any manner whatsoever, we are guaranteed that a subgraph \(K_3 \) (a triangle) all of whose edges are colored red (a red triangle) or colored blue (a blue triangle) appears?}

In order to answer this question, it is useful to make the following observation.

\textbf{Observation 1.1.} Let there be given an arbitrary red-blue coloring of a complete graph \(K_n \) where \(n \geq 4 \). If a vertex of \(K_n \) is incident with three or more edges of the same color, then \(K_n \) contains a monochromatic triangle.

\textbf{Proof.} Suppose that a vertex \(v \) of \(K_n \) is incident with at least three edges of the same color, say \(vv_1, vv_2, vv_3 \) are red. If any two of \(v_1, v_2, v_3 \) are joined by a red edge, then there is a red triangle; otherwise, \((v_1, v_2, v_3, v_1)\) is a blue triangle. \qed

First, \(n = 5 \) does not work. By Observation 1.1, any red-blue coloring of \(K_5 \) in which some vertex is incident with at least three edges of the same color results in a monochromatic triangle. Therefore, the only possible red-blue coloring of \(K_5 \) without any monochromatic triangle is for every vertex to be incident with exactly two edges of each color. Consequently, we have the next observation.

\textbf{*Corresponding author (ping.zhang@wmich.edu).}
Observation 1.2. The only red-blue coloring of the complete graph K_5 for which there is no monochromatic triangle is one that produces a red cycle C_5 of order 5 and a blue C_5.

This red-blue coloring of K_5 is shown in Figure 1.1 where a bold edge represents a red edge and a thin edge represents a blue edge.

![Figure 1.1: A red-blue coloring of K_5.](image)

However, $n = 6$ does work. Every red-blue coloring of K_6 results in at least three edges incident with each vertex colored the same. By Observation 1.1, there is a red triangle or a blue triangle. Hence, the solution to the question above is the Ramsey number $R(K_3) = 6$, which appeared in [2]. This problem essentially appeared as Problem A2 in the 1953 Putnam Exam.

A2. The complete graph with 6 points and 15 edges has each edge colored red or blue. Show that we can find 3 points such that the 3 edges joining them are the same color.

Not only does every red-blue coloring of K_6 always produce a monochromatic triangle, it always produces at least two monochromatic triangles. To see this, let there be given a red-blue coloring of $G = K_6$ with red subgraph G_r and blue subgraph G_b. First, suppose that there is a vertex v that is incident with four edges of the same color, say vv_1, vv_2, vv_3, vv_4 are red. If there are two red edges in the subgraph $G[(v_1, v_2, v_3, v_4)]$ of G induced by the set $\{v_1, v_2, v_3, v_4\}$, then there are two red triangles. If at most one edge, say v_1v_2, is colored red, then $\{v_1, v_2, v_3\}$ and $\{v_2, v_3, v_4\}$ are the vertices of two blue triangles. Next, suppose that G_r is 3-regular. Then G_r is either the Cartesian product $K_3 \square K_2$ of K_3 and K_2 or the complete bipartite graph $K_{3,3}$. If $G_r = K_3 \square K_2$, then G_r has two triangles; while if $G_r = K_{3,3}$, then $G_b = 2K_3$ (the union of two vertex-disjoint copies of K_3) also contains two triangles.

Finally, suppose that neither G_r nor G_b contains a vertex of degree 4 or more or is 3-regular. Then each of these graphs must contain only vertices of degree 2 or 3, necessarily some of each. Since every graph contains an even number of odd vertices, one of these two graphs contains four vertices of degree 3 and two vertices of degree 2 while the other contains two vertices of degree 3 and four vertices of degree 2. Suppose that G_b contains four vertices of degree 3 and two vertices u and v of degree 2. Thus, G_b is one of graphs shown in Figures 1.2(a), (b), and (c).

![Figure 1.2: Three possible blue subgraphs G_b.](image)

If (a) occurs, then u and v are adjacent and G_b has two triangles. If (b) occurs, then (v, w, z, v) and (u, x, y, u) are two red triangles. If (c) occurs, then (x, y, z, x) is a blue triangle and (u, x, y, u) is a red triangle. Therefore, we have the following.

In every red-blue coloring of the edges of K_6, there are always at least two monochromatic triangles.

2. Monochromatic triangles

The red-blue coloring of K_6 with red subgraph $K_{2,4}$ and blue subgraph $K_2 + K_4$ has four monochromatic triangles, all blue. However, every two blue triangles have an edge in common. When $n = 7$, however, every red-blue coloring of K_7 results in two edge-disjoint monochromatic triangles.
Proposition 2.1. Every red-blue coloring of K_7 results in two edge-disjoint monochromatic triangles.

Proof. Let there be given an arbitrary red-blue coloring of $G = K_7$. Since $R(K_3, K_3) = 6$, there is a monochromatic triangle T in G. Let $V(T) = \{u_1, u_2, u_3\}$ and let $V(G) - V(T) = \{v_1, v_2, v_3, v_4\}$. Let $F_i = G[[u_1, v_1, v_2, v_3, v_4]] = K_5$ for $i = 1, 2, 3$. If any F_i contains a monochromatic triangle, then G contains two edge-disjoint (in fact, vertex-disjoint) monochromatic triangles. Thus, we may assume that no F_i $(i = 1, 2, 3)$ contains a monochromatic triangle. It follows by Observation 1.2 that each F_i consists of a red C_5 and a blue C_5 for $i = 1, 2, 3$. Assume, without loss of generality, that $(u_1, v_1, v_2, v_3, v_4)$ is a red C_5 in F_1 and $(u_1, v_2, v_4, v_1, v_3)$ is a blue C_5 in F_1. We now consider F_i for $i = 2, 3$. Since

(a) (v_1, v_2, v_3, v_4) is a red P_4 in F_i and (v_2, v_4, v_1, v_3) is a blue P_4 in F_i and

(b) F_i consists of a red C_5 and a blue C_5,

it follows that u_1v_1, u_1v_4 are red and u_1v_2, u_1v_3 are blue. If T is a red triangle, then (u_1, v_1, u_2, u_1) and (u_2, v_4, u_3, u_2) are two edge-disjoint red triangles in G; while if T is a blue triangle, then (u_1, v_2, u_2, u_1) and (u_2, v_3, u_3, u_2) are two edge-disjoint blue triangles in G. Therefore, G contains two edge-disjoint monochromatic triangles.

Consequently, 6 is the smallest order n of a complete graph K_n for which every red-blue coloring of K_n results in a monochromatic triangle (or two monochromatic triangles which may have an edge in common), while 7 is the smallest order n of a complete graph K_n for which every red-blue coloring of K_n results in two edge-disjoint monochromatic triangles. These facts suggest the problem of determining the smallest positive integer n such that every red-blue coloring of K_n results in two vertex-disjoint monochromatic triangles.

The red-blue coloring of K_7 with red subgraph $K_5 + K_2$ and blue subgraph $K_{2,5}$ does not contain two vertex-disjoint monochromatic copies of K_3. When $n = 8$, however, every red-blue coloring of K_8 results in two vertex-disjoint monochromatic triangles.

Proposition 2.2. Every red-blue coloring of K_8 results in two vertex-disjoint monochromatic triangles.

Proof. Let there be given an arbitrary red-blue coloring of $G = K_8$ with vertex set $\{v_1, v_2, \ldots, v_8\}$. Since $R(K_3, K_3) = 6$, there is a monochromatic copy of K_3 in G. Let T be a monochromatic triangle in G where $V(T) = \{v_1, v_2, v_3\}$. Let $F = G[[v_4, v_5, v_6, v_7, v_8]] = K_5$. If F contains a monochromatic triangle, then G contains two vertex-disjoint monochromatic triangles. Suppose that F does not contain a monochromatic triangle. Then F consists of a red C_5 and a blue C_5. We may assume that the red C_5 is $(v_4, v_5, v_6, v_7, v_8)$ and the blue C_5 is $(v_4, v_5, v_6, v_7, v_8)$. Since v_1 is joined to at least three vertices of $V(F) = \{v_4, v_5, v_6, v_7, v_8\}$ by edges of the same color, we may assume that v_1 is adjacent to three vertices of $V(F)$ by red edges. Necessarily, v_1 is joined to two adjacent vertices of $V(F)$ that are joined by a red edge. Consequently, we may assume that v_1v_4 and v_1v_5 are red. See Figure 2.1.

Let $H = G[[v_2, v_3, v_6, v_7, v_8]] = K_5$. If H contains a monochromatic triangle, then G contains two vertex-disjoint monochromatic triangles. Suppose that H does not contain a monochromatic triangle and so H consists of a red subgraph $H_r = C_5$ and a blue subgraph $H_b = C_5$. First, suppose that T is blue. Since $\deg_{H_r} v_7 = 2$, it follows that $v_2v_6, v_2v_8, v_3v_6, v_3v_8$ are red. However, then $\deg_{H_b} v_6 = \deg_{H_b} v_8 = 3$, a contradiction. We may assume that T is red. We may further assume that $H_r = (v_2, v_3, v_6, v_7, v_6)$ and $H_b = (v_2, v_8, v_6, v_3, v_7, v_2)$. We consider two cases, according to whether v_1v_6 is red or v_1v_6 is blue.

Case 1. v_1v_6 is red. This implies that v_2v_4 is red for otherwise, there are two vertex-disjoint monochromatic triangles (v_1, v_5, v_6, v_1) and (v_2, v_4, v_7, v_2). Also, this implies that v_3v_4 is red for otherwise, there are two vertex-disjoint monochromatic triangles (v_1, v_5, v_6, v_1) and (v_3, v_4, v_8, v_3). However then, there are two vertex-disjoint monochromatic triangles (v_1, v_5, v_6, v_1) and (v_2, v_3, v_4, v_2).
Case 2. \(v_1v_6\) is blue. First, suppose that \(v_1v_6\) is red. So, \(v_2v_3\) is blue, for otherwise there are two vertex-disjoint monochromatic triangles \(\{v_1, v_4, v_8, v_1\}\) and \(\{v_2, v_5, v_6, v_2\}\). Then \(\{v_1, v_4, v_8, v_1\}\) and \(\{v_2, v_5, v_6, v_2\}\) are two vertex-disjoint monochromatic triangles. Next, suppose that \(v_1v_8\) is blue. If \(v_2v_3\) is blue, then there are two vertex-disjoint monochromatic triangles \(\{v_2, v_5, v_7, v_2\}\) and \(\{v_1, v_6, v_8, v_1\}\). Thus, we may assume that \(v_2v_5\) is red. If \(v_2v_4\) is blue, then there are two vertex-disjoint monochromatic triangles \(\{v_2, v_4, v_7, v_2\}\) and \(\{v_1, v_6, v_8, v_1\}\). Thus, we may assume that \(v_2v_4\) is red. Then there are two vertex-disjoint monochromatic triangles \(\{v_2, v_4, v_5, v_2\}\) and \(\{v_1, v_6, v_8, v_1\}\).

The results above concerning two edge-disjoint and vertex-disjoint monochromatic triangles in an edge-colored complete graph suggest more general concepts. Let \(t\) be a positive integer and let \(F\) be a graph without isolated vertices. The vertex-disjoint Ramsey number \(VR_t(F)\) is the minimum positive integer \(n\) such that every red-blue coloring of \(K_n\) results in at least \(t\) pairwise vertex-disjoint monochromatic copies of \(F\). Then \(VR_1(K_3) = R(K_3) = 6\) and \(VR_2(K_3) = 8\) by Proposition 2.2 and the red-blue coloring of \(K_7\) with red subgraph \(K_5 + K_2\) and blue subgraph \(K_2,5\). For a graph \(F\) without isolated vertices, \(VR_t(F) \geq t|V(F)|\) and the Ramsey number \(R(tF)\) exists where \(tF\) is a union of \(t\) vertex-disjoint copies of \(F\). Hence, we have the following observation.

Observation 2.1. For every graph \(F\) without isolated vertices and every positive integer \(t\), the number \(VR_t(F)\) exists and \(t|V(F)| \leq VR_t(F) \leq R(tF)\). Furthermore, \(VR_t(F) \leq VR_{t+1}(F)\).

Theorem 2.1. For an integer \(t \geq 2\), \(VR_t(K_3) = 3t + 2\).

Proof. We proceed by induction on \(t\). We saw that \(VR_2(K_3) = 8\) and so the result is true for \(t = 2\). Assume that \(VR_k(K_3) = 3k + 2\) for an integer \(k \geq 2\). We show that \(VR_{k+1}(K_3) = 3k + 5\). The red-blue coloring of \(K_{3k+4}\) with red subgraph \(K_{3k+2} + K_2\) and blue subgraph \(K_{2,3k+2}\) has \(k\) vertex-disjoint red triangles and no blue triangle. Thus, \(VR_{k+1}(K_3) \geq 3k + 5\). Next, let there be given a red-blue coloring of \(K_{3k+5}\). Since \(3k + 5 \geq 11 > 6\) and \(R(K_3) = 6\), there is a monochromatic triangle \(T\). Let \(H = K_{3k+5} - V(T) = K_{3k+2}\). Since \(VR_k(K_3) = 3k + 2\), it follows that \(H\) contains \(k\) vertex-disjoint monochromatic triangles. Hence, there are \(k + 1\) vertex-disjoint monochromatic triangles in \(K_{3k+5}\) and so \(VR_{k+1}(K_3) \leq 3k + 5\). Therefore, \(VR_{k+1}(K_3) = 3k + 5\).

Let \(t\) be a positive integer and let \(F\) be a graph without isolated vertices. The edge-disjoint Ramsey number \(ER_t(F)\) of \(F\) is the minimum positive integer \(n\) such that for every red-blue coloring of \(K_n\), there are at least \(t\) pairwise edge-disjoint monochromatic copies of \(F\). Hence, \(ER_1(F)\) is the Ramsey number \(R(F)\). Therefore, \(ER_1(K_3) = 6\) and \(ER_2(K_3) = 7\) by Proposition 2.1 and the red-blue coloring of \(K_6\) with red subgraph \(K_{2,4}\) and blue subgraph \(K_{2,4}\). There is an observation for edge-disjoint Ramsey numbers similar to Observation 2.1.

Observation 2.2. For every graph \(F\) without isolated vertices and every positive integer \(t\), the number \(ER_t(F)\) exists and \(ER_t(F) \leq VR_t(F)\). Furthermore, \(ER_t(F) \leq ER_{t+1}(F)\).

We now determine \(ER_t(K_3)\) for \(t = 3, 4\). First, we present a useful lemma.

Lemma 2.1. For each positive integer \(t\), \(ER_{t+1}(K_3) \leq ER_t(K_3) + 2\).

Proof. Let \(ER_t(K_3) = k\). Let there be given an arbitrary red-blue coloring of \(G = K_{k+2}\). Then there is a monochromatic copy \(F_0\) of \(K_3\) in \(G\). Let \(u, v \in V(F_0)\) and let \(H = G - \{u, v\}\). Then \(H = K_k\) contains no edge of \(F_0\). Since \(ER_t(K_3) = k\), there are \(t\) pairwise edge-disjoint monochromatic copies \(F_1, F_2, \ldots, F_t\) of \(K_3\) in \(H\) that are edge-disjoint from \(F_0\). Therefore, \(F_0, F_1, F_2, \ldots, F_t\) are \(t + 1\) pairwise edge-disjoint monochromatic copies of \(K_3\) in \(G\) and so \(ER_{t+1}(K_3) \leq k + 2 = ER_t(K_3) + 2\).

Both strict inequality and equality in Lemma 2.1 can occur, as we show next.

Proposition 2.3. \(ER_3(K_3) = 9\)

Proof. Since \(ER_3(K_3) \leq ER_2(K_3) + 2 = 9\) by Lemma 2.1 and Proposition 2.1, it remains to show that \(ER_3(K_3) \geq 9\). For the red-blue coloring of \(K_9\) with red subgraph \(K_{5,4}\) and blue graph \(2K_4\), there is no red triangle and only two edge-disjoint blue triangles. Since this red-blue coloring of \(K_9\) does not produce three pairwise edge-disjoint monochromatic triangles, it follows that \(ER_3(K_3) \geq 9\) and so \(ER_3(K_3) = 9\).

Theorem 2.2. \(ER_4(K_3) = 10\).

Proof. The red-blue coloring of \(K_9\) with red subgraph \(K_{5,4}\) and blue subgraph \(K_{5} + K_4\) contains no red triangle and three edge-disjoint blue triangles. Since this red-blue coloring of \(K_9\) does not produce four pairwise edge-disjoint monochromatic triangles, it follows that \(ER_4(K_3) \geq 10\).
It remains to show that $ER_4(K_3) \leq 10$. First, we verify the following claim.

Claim: For every red-blue coloring of $G = K_{10}$ containing two edge-disjoint monochromatic triangles T and T' having a vertex in common, there are four pairwise edge-disjoint monochromatic triangles in G.

To verify the claim, consider a red-blue coloring of G with two edge-disjoint monochromatic triangles $T = (v_1, v_2, v_3, v_4)$ and $T' = (v_1, v_4, v_5, v_6)$. Let $H = G[V(G) - \{v_1, v_2, v_3\}] = K_7$. Since $ER_4(K_3) = 7$ by Proposition 2.1, there are two edge-disjoint monochromatic triangles T_1 and T_2 in H edge-disjoint from T and T'. Thus, T, T', T_1, T_2 are four pairwise edge-disjoint monochromatic triangles in G and so the claim is true.

Next, we show that every red-blue coloring of $G = K_{10}$ produces four pairwise edge-disjoint monochromatic triangles in G. By the claim, we may assume that T_1, T_2, T_3 are pairwise vertex-disjoint. Hence, the subgraph F of G induced by $E(T_1) \cup E(T_2) \cup E(T_3)$ is $3K_3$. Let $T_1 = (v_1, v_2, v_3, v_4) \cup (v_4, v_5, v_6, v_7)$, $T_2 = (v_1, v_5, v_6, v_4)$, $T_3 = (v_7, v_8, v_9, v_7)$, and let v be the vertex of G not in F. Furthermore, let $H = G - E(F)$ be the spanning subgraph of G whose edge set consists of all edges not belonging to any of T_1, T_2, T_3. Then $H \cong K_{1,3,3,3}$ and $\deg_H v = 9$. Let r be the number of red edges incident with v and b the number of blue edges incident with v. Then $r + b = 9$. We may assume that $b \leq r$ and so $5 \leq r \leq 9$.

First, suppose that there is a red edge joining v to at least one vertex in each of T_1, T_2, T_3. We may assume without loss of generality that v_1, v_2, v_4, v_7 are red. If there is a red edge joining two vertices in $\{v_1, v_4, v_7\}$, say v_1v_4 is red, then (v_1, v_1, v_4, v_7) is a red triangle edge-disjoint from T_1, T_2, T_3; while if every two vertices in $\{v_1, v_4, v_7\}$ is joined by a blue edge, then (v_1, v_4, v_7, v_1) is a blue triangle edge-disjoint from T_1, T_2, T_3. Thus, we may assume that v is joined to exactly two of T_1, T_2, T_3 by red edges. Hence, $r = 5, 6$ and we may further assume that v_1v_4 is red for $i = 1, 2, 3, 4, 5$ and v_1v_6 is either red or blue.

Let $H' = K_{2,3}$ be the complete bipartite subgraph of H with partite sets $\{v_1, v_2, v_3\}$ and $\{v_4, v_5\}$. If H' contains a red edge, say v_1v_4 is red, then (v, v_1, v_4, v) is a red triangle edge-disjoint from T_1, T_2, T_3. Thus, we may assume that H' is a blue $K_{2,3}$. If T_1 is blue, then (v_1, v_4, v_2, v_1) and (v_1, v_3, v_5, v_1) are two edge-disjoint blue triangles having the vertex v_1 in common. It then follows by the claim that G contains four pairwise edge-disjoint monochromatic triangles. Thus, we may assume that T_1 is red. If T_2 is red, then (v_1, v, v_2, v_1) and (v_4, v, v_5, v_4) are two edge-disjoint red triangles having the vertex v in common; while if T_2 is blue, then (v_1, v_2, v_4, v_1) and (v_4, v_5, v_1) are two edge-disjoint monochromatic triangles having the vertex v_1 in common. Again, by the claim, G contains four pairwise edge-disjoint monochromatic triangles. Therefore, $ER_4(K_3) \leq 10$ and so $ER_4(K_3) = 10$.

We close this section with the following conjecture.

Conjecture 2.1. For every integer $t \geq 4$, $ER_t(K_3) \leq ER_{t+1}(K_3) \leq ER_t(K_3) + 1$.

3. Monochromatic paths of order 3

We now turn our attention to the other connected graph of order 3, namely the path P_3 of order 3. Of course, $R_1(P_3) = VR_1(P_3) = ER_1(P_3) = 3$.

First, we determine $VR_t(P_3)$ for every positive integer t.

Theorem 3.1. For every positive integer t, $VR_t(P_3) = 3t$.

Proof. Since $VR_2(P_3) \geq 3t$ by Observation 2.1, it remains to show that $VR_t(P_3) \leq 3t$. We proceed by induction on t. Since $VR_1(P_3) = R(P_3) = 3$, the result is true for $t = 1$. Assume that $VR_k(P_3) \leq 3k$ for a positive integer k. We show that $VR_{k+1}(P_3) \leq 3k + 3$. Let there be given a red-blue coloring of K_{k+3}. Then there is a monochromatic copy P of P_3. Let $H = K_{3k+3} - V(P) = K_{3k}$. Since $VR_k(P_3) = 3k$, it follows that H contains k vertex-disjoint monochromatic copies of P_3. Hence, there are $k + 1$ vertex-disjoint monochromatic copies of P_3 in K_{3k} and so $VR_{k+1}(P_3) \leq 3k + 3$. Therefore, $VR_{k+1}(P_3) = 3k + 3$.

Next, we determine $ER_t(P_3)$ for every positive integer t, beginning with $t = 2, 3$.

Proposition 3.1. $ER_2(P_3) = 4$ and $ER_3(P_3) = 5$.

Proof. First, we show that $ER_2(P_3) = 4$. Since K_2 has size 3, it follows that $ER_2(P_3) \geq 4$. Let there be given a red-blue coloring of K_4 with $V(K_4) = \{v_1, v_2, v_3, v_4\}$. At least two edges incident with v_1 are colored the same, say v_1v_2 and v_1v_3, resulting in a monochromatic copy of P_3. The same is true for v_4. Thus, $ER_2(P_4) \leq 4$ and so $ER_2(P_3) = 4$.

Next, we show that $ER_3(P_3) = 5$. The red-blue coloring of K_4 with red subgraph $2K_2$ and blue subgraph C_4 has only two edge-disjoint monochromatic copies of P_3 and so $ER_3(P_3) > 5$. Let there be given a red-blue coloring of $G = K_5$ with $V(K_5) = \{v_1, v_2, v_3, v_4, v_5\}$. Then $S = \{v_1, v_2, v_3, v_4\}$. Then $H = G[S] = K_4$. Since $ER_2(P_3) = 4$, it follows that H contains two edge-disjoint monochromatic copies F_1 and F_2 of P_3. At least two edges incident with v_5 are colored the same, producing a monochromatic copy of P_3 edge-disjoint from F_1 and F_2. Thus, $ER_3(P_3) \leq 5$ and so $ER_3(P_3) = 5$.

We now determine $ER_t(P_3)$ for all positive integers t. For every positive integer t, there exists a unique nonnegative integer k such that $k^2 - k < t \leq k^2 + k$.

Theorem 3.2. For a positive integer k, let t be the unique integer with $k^2 - k < t \leq k^2 + k$.

(1) If $k^2 - k < t \leq k^2$, then $ER_t(P_3) = 2k + 1$.

(2) If $k^2 < t \leq k^2 + k$, then $ER_t(P_3) = 2k + 2$.

Proof. First, we verify (1). Since $ER_1(P_3) = 3$, we may assume that $t \geq 2$ is an integer such that $k^2 - k + 1 \leq t \leq k^2$ for a unique integer $k \geq 2$. We show that $ER_t(P_3) = 2k + 1$. By Observation 2.2, if $k^2 - k + 1 \leq t \leq k^2$, then $ER_{k^2-k+1+1}(P_3) \leq ER_t(P_3) \leq ER_{k^2}(P_3)$.

Hence, it suffices to show that $ER_{k^2-k+1}(P_3) \geq 2k + 1$ and $ER_{k^2}(P_3) \leq 2k + 1$.

First, we show that $ER_{k^2-k+1+1}(P_3) \geq 2k + 1$. Let c be the red-blue coloring of K_{2k} with red subgraph kK_2 and blue subgraph $K_{2k} - kK_2$. The red subgraph contains no P_3. Since the size of $K_{2k} - kK_2$ is $(\binom{k}{2} - k) = 2(k^2 - k)$, the blue subgraph contains at most $k^2 - k$ pairwise edge-disjoint copies of P_3. Since the coloring of K_{2k} does not produce $k^2 - k + 1$ pairwise edge-disjoint monochromatic copies of P_3, it follows that $ER_{k^2-k+1+1}(P_3) \geq 2k + 1$.

To show that $ER_{k^2}(P_3) \leq 2k + 1$, we proceed by induction on $k \geq 1$. The statement is true for $k = 1, 2, 3$. Assume that $ER_{k^2}(P_3) \leq 2k + 1$ where $k \geq 3$. We show that $ER_{(k+1)^2}(P_3) \leq 2k + 3$. Let there be given a red-blue coloring of $G = K_{2k+3}$, where G_r and G_b are the red and blue subgraphs of G, respectively. Since G_r has odd order, G_r contains a vertex v of even degree, say $\deg_{G_r} v = 2a + 2$ for a nonnegative integer a. Let uv be a red edge of G and let $H = G - \{u, v\} = K_{2k+1}$. By the induction hypothesis, H contains k^2 pairwise edge-disjoint monochromatic copies of P_3 and so $ER_{(k+1)^2}(P_3) \leq 2k + 3$. Therefore, $ER_t(P_3) = 2k + 1$ for $k^2 - k < t \leq k^2$.

Next, we verify (2). Let $t \geq 2$ be an integer and let k be the unique integer such that $k^2 + 1 \leq t \leq k^2 + k$. We show that $ER_{k^2+1}(P_3) \geq 2k + 2$ and $ER_{k^2+k}(P_3) \leq 2k + 2$.

First, we show that $ER_{k^2+1}(P_3) \geq 2k + 2$. Let c be the red-blue coloring of K_{2k+1} with red subgraph kK_2 and blue subgraph $K_{2k+1} - kK_2$. The red subgraph contains no P_3. Since the size of $K_{2k+1} - kK_2$ is $(\binom{k+1}{2} - k) = 2k^2$, the blue subgraph contains at most k^2 pairwise edge-disjoint copies of P_3. Since the coloring of K_{2k+1} does not produce $k^2 + 1$ pairwise edge-disjoint monochromatic copies of P_3, it follows that $ER_{k^2+1}(P_3) \geq 2k + 2$.

To show that $ER_{k^2+k}(P_3) \leq 2k + 2$, we proceed by induction on $k \geq 1$. The statement is true for $k = 1, 2, 3$. Assume that $ER_{k^2+k}(P_3) \leq 2k + 2$ where $k \geq 3$. We show that $ER_{(k+1)^2+k}(P_3) \leq 2k + 4$. Let there be given a red-blue coloring of $G = K_{2k+4}$, where G_r and G_b are the red and blue subgraphs of G, respectively. Let x be a vertex of G. Regardless of the colors of these $2k + 3$ edges incident with x, there are k pairwise edge-disjoint monochromatic copies of P_3 centered at x. Hence, G contains $2k + 1$ pairwise edge-disjoint monochromatic copies of P_3 centered at either u or v that are edge-disjoint from F_1, F_2, ..., F_{k^2}. Thus, G contains $k^2 + 2k + 1 = (k + 1)^2$ pairwise edge-disjoint monochromatic copies of P_3 and so $ER_{(k+1)^2+k}(P_3) \leq 2k + 4$. Therefore, $ER_t(P_3) = 2k + 2$ for $k^2 - k < t \leq k^2 + k$.

□
Corollary 3.1. For a positive integer \(t \), \(ER_t(P_3) = \left\lceil 2\sqrt{t} + 1 \right\rceil \).

Proof. Let \(t \) be a positive integer. Then there is a unique integer \(k \) such that \(k^2 - k + 1 \leq t \leq k^2 + k \). We consider two cases, according to whether \(k^2 - k + 1 \leq t \leq k^2 \) or \(k^2 + 1 \leq t \leq k^2 + k \).

Case 1. \(k^2 - k + 1 \leq t \leq k^2 \). By Theorem 3.2, \(ER_t(P_3) = 2k + 1 \). Since \(k^2 - k + 1 > \left(k - \frac{1}{2} \right)^2 \), it follows that

\[
\sqrt{k^2 - k + 1} > k - \frac{1}{2}.
\]

Thus, \(2\sqrt{k^2 - k + 1} + 1 > 2 \left(k - \frac{1}{2} \right) + 1 = 2k \) and so \(\left\lceil 2\sqrt{k^2 - k + 1} + 1 \right\rceil \geq 2k + 1 \). Since \(2\sqrt{k^2 + 1} = 2k + 1 \), it follows that

\[
2k + 1 \leq \left\lceil 2\sqrt{k^2 - k + 1} + 1 \right\rceil \leq \left\lceil 2\sqrt{t} + 1 \right\rceil \leq \left\lceil 2\sqrt{k^2 + 1} \right\rceil = 2k + 1.
\]

Therefore, \(\left\lceil 2\sqrt{t} + 1 \right\rceil = 2k + 1 = R_t(P_3) \).

Case 2. \(k^2 + 1 \leq t \leq k^2 + k \). By Theorem 3.2, \(ER_t(P_3) = 2k + 2 \). Since \(k^2 + k < \left(k + \frac{1}{2} \right)^2 \), it follows that \(\sqrt{k^2 + k} < k + \frac{1}{2} \).

Thus, \(2\sqrt{k^2 + k} + 1 < 2 \left(k + \frac{1}{2} \right) + 1 = 2k + 2 \) and so \(\left\lceil 2\sqrt{k^2 + k} + 1 \right\rceil \leq 2k + 2 \). Since \(\sqrt{k^2 + 1} > k \), it follows that

\[
2\sqrt{k^2 + 1} + 1 > 2k + 1
\]

and so \(\left\lceil 2\sqrt{k^2 + 1} + 1 \right\rceil \geq 2k + 2 \). For each integer \(t \) with \(k^2 + 1 \leq t \leq k^2 + k \),

\[
2k + 2 \leq \left\lceil 2\sqrt{k^2 + 1} + 1 \right\rceil \leq \left\lceil 2\sqrt{t} + 1 \right\rceil \leq \left\lceil 2\sqrt{k^2 + k} + 1 \right\rceil \leq 2k + 2.
\]

Therefore, \(\left\lceil 2\sqrt{t} + 1 \right\rceil = 2k + 2 = ER_t(P_3) \). \qed

References