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Department of Mathematics, Akdeniz University, Antalya 07058, Turkey

(Received: 27 March 2024. Received in revised form: 17 April 2024. Accepted: 23 April 2024. Published online: 27 April 2024.)

© 2024 the author. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

This paper introduces two new fibonomial difference sequence spaces that are inspired by the Fibonacci calculus (or Golden
calculus). It is shown that both of these spaces are complete linear metric spaces. Also, it is demonstrated that one of these
two spaces is linearly isomorphic to the set of all bounded sequences and the other one is linearly isomorphic to the set of
all sequences constituting p−absolutely convergent series. Furthermore, the Schauder basis and the α−, β−, γ−duals of
these spaces are determined.
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1. Introduction

The theory of matrix transformations deals with discovering necessary and sufficient conditions on the entries of a matrix
to map a sequence spaceX into a sequence space Y . Indeed, this is a natural generalization of the problem of characterizing
all summability methods given by infinite matrices that preserve convergence. Details about the matrix transformations
and summability theory, and the domain of triangular matrices in normed sequence spaces, can be found in [4].

A sequence space is a linear subspace of the set of all real-valued sequences ω. The set `∞ of all bounded sequences, the
set c of all convergent sequences, the set c0 of all convergent-to-zero sequences and the set `p of all sequences constituting
p−absolutely convergent series are well-known examples of sequence spaces. These are Banach spaces with the following
norms

‖x‖`∞ = ‖x‖c = ‖x‖c0 = sup
k∈N
|xk|

and

‖x‖`p =

( ∞∑
k=0

|xk|p
)1/p

.

For any sequence space X ∈ {`∞, c, c0}, the following difference space was introduced by Kizmaz [12]:

X (∆) = {xk ∈ ω : (∆xk) ∈ X} ,

where ∆xk = xk − xk+1 for each k in the set of positive integers N.
Let T = (tnk) be an infinite matrix with real entries tnk and Tn be the sequence in the nth row of the matrix T for each

n ∈ N. The T−transform of a sequence x = (xk) ∈ ω is the sequence Tx obtained by the usual matrix product and its
entries are stated as

(Tx)n =
∑
k

tnkxk

provided that the series is convergent for each n ∈ N. The matrix T is said to be a matrix mapping from a sequence spaceX
to a sequence space Y if the sequence Tx exists and Tx ∈ Y for all x ∈ X. The collection of all infinite matrices fromX to Y is
denoted by (X,Y ). The multiplier space of X and Y is the set S (X,Y ) defined by S (X,Y ) = {u ∈ ω : zu ∈ Y for all z ∈ X}.
Using this notation, the α−dual, β−dual and γ−dual of a sequence space X are defined by

Xα = S (X, `1) , Xβ = S (X, cs) and Xγ = S (X, bs) ,

where cs and bs correspond to the spaces of sequences with convergent and bounded series, respectively.
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Recall that the domain of the infinite matrix T in the space X is denoted by XT = {x ∈ ω : Tx ∈ X}. During the past
two decades, many researchers have been interested in the concept of domains of special triangular matrices. One of them
is due to Euler means of order r, denoted by Er = (ernk), where

ernk =


(
n

k

)
(1− r)n−k rk, if 0 ≤ k ≤ n;

0, if k > n;

for all k, n ∈ N. The Euler sequence spaces erp and er∞ were defined by Altay, Başar and Mursaleen [2]:

erp =

{
x = (xk) ∈ ω :

∑
n

∣∣∣∣ n∑
k=0

(
n

k

)
(1− r)n−krkxk

∣∣∣∣p <∞}
and

er∞ =

{
x = (xk) ∈ ω : sup

n

∣∣∣∣ n∑
k=0

(
n

k

)
(1− r)n−krkxk

∣∣∣∣ <∞} .
Altay and Polat [3] presented the following sequence spaces:

er0 (5) =
{
x = (xk) ∈ ω : 5 (xk) ∈ erp

}
,

erc (5) = {x = (xk) ∈ ω : 5 (xk) ∈ erc}

and
er∞ (5) = {x = (xk) ∈ ω : 5 (xk) ∈ er∞} ,

where 5 (xk) = xk − xk−1 for each k ∈ N and any term with a negative subscript equals naught.
The approach of constructing new sequence spaces by employing the Euler matrix via the matrix domain of a particular

limitation method has recently been considered in [1, 10, 11, 18, 21] and some topological and geometric properties have
been investigated. Bişgin [5,6] offered another type of generalization of the Euler sequence spaces. For instance, he gave
the binomial sequence spaces

br,sp =

{
x = (xk) ∈ ω :

∑
n

∣∣∣∣ 1

(s+ r)
n

(
n

k

)
rksn−kxk

∣∣∣∣p <∞}
and

br,s∞ =

{
x = (xk) ∈ ω : sup

n

∣∣∣∣ 1

(s+ r)
n

(
n

k

)
rksn−kxk

∣∣∣∣ <∞} ,
by means of the binomial matrix Br,s = (br,snk), with

br,snk =


1

(s+ r)
n

(
n

k

)
rksn−k, if 0 ≤ k ≤ n;

0, if k > n;

and computed some special duals and Schauder basis, and revealed their geometric features. Several types of binomial
sequence spaces and their generalizations can be found in the studies [7,15–17,22,24,25].

Now, recall the concept of a fibonomial coefficient, which is an analog of a binomial coefficient. Fibonomial coefficients
are defined by means of Fibonacci numbers as(

n

k

)
F

=
Fn!

Fk!Fn−k!
, for n ≥ k ≥ 0,

where
Fn! = FnFn−1 . . . F1

denotes the F−factorial with the Fibonacci sequence (Fn)n≥0 , given by Fn+2 = Fn+1 + Fn such that F0 = 0 and F1 = 1.

Note that (
n

0

)
F

= 1 and
(
n

k

)
F

= 0 for n < k.
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The followings are some properties (cf. [14]) for fibonomial coefficients:(
n

k

)
F

=

(
n

n− k

)
F

,

(
n

k

)
F

(
k

i

)
F

=

(
n

i

)
F

(
n− i
k − i

)
F

,

(x+ y)
n
F =

n∑
k=0

(
n

k

)
F

xkyn−k (Fibonomial Theorem).

For additional properties and applications of Fibonacci calculus (or Golden calculus), the interested readers are referred
to the studies [13,19,20].

Quite recently, Dağlı and Yaying [8,9] introduced the fibonomial matrix Br,s,F =
(
br,s,Fnk

)
, with

br,s,Fnk =


1

(s+ r)
n
F

(
n

k

)
F

rksn−k, if 0 ≤ k ≤ n;

0, if k > n;

where s and r are nonzero real numbers such that s + r 6= 0. It was shown that the matrix Br,s,F =
(
br,s,Fnk

)
satisfies the

following regularity conditions for rs > 0:

(i)
∥∥Br,s,F∥∥ <∞,

(ii) limn→∞ br,s,Fnk = 0 for each k,

(iii) limn→∞
∑
k

br,s,Fnk = 1.

Here and henceforth, we assume that rs > 0 unless otherwise stated.
By taking into consideration the fibonomial matrix, the following fibonomial sequence spaces were defined and it was

shown that these spaces are linearly isomorphic to `p and `∞:

br,s,Fp =

{
x = (xk) ∈ ω :

∑
n

∣∣∣∣ 1

(s+ r)
n
F

(
n

k

)
F

rksn−kxk

∣∣∣∣p <∞}
and

br,s,F∞ =

{
x = (xk) ∈ ω : sup

n

∣∣∣∣ 1

(s+ r)
n
F

(
n

k

)
F

rksn−kxk

∣∣∣∣ <∞} .
Besides, the Schauder basis and the α−, β−, γ−duals of these spaces were constructed and some matrix classes were
characterized. Finally, some geometric structures of the space br,s,Fp were investigated.

In the present paper, two new normed difference spaces br,s,Fp (5) and br,s,F∞ (5) of the fibonomial sequence are consid-
ered whose Br,s,F (5)−transforms (see (1), below) are in the spaces `p and `∞, respectively. Also, it is shown that these
new spaces are linearly isomorphic to the spaces `p and `∞, respectively. Moreover, the Schauder basis and the α−dual,
β−dual and γ−dual for these spaces are determined.

2. Fibonomial difference sequence spaces

In this section, two new normed difference spaces br,s,Fp (5) and br,s,F∞ (5) are introduced and it is demonstrated that these
spaces are linearly isomorphic to the spaces `p and `∞. The fibonomial difference sequence spaces br,s,Fp (5) and br,s,F∞ (5)

are defined as
br,s,Fp (5) =

{
x = (xk) ∈ ω : 5 (xk) ∈ br,s,Fp

}
and

br,s,F∞ (5) =
{
x = (xk) ∈ ω : 5 (xk) ∈ br,s,F∞

}
.

Consider the transformation

yn =
(
Br,s,F 5 (xk)

)
n

=
1

(s+ r)
n
F

n∑
k=0

(
n

k

)
F

rksn−k 5 (xk) , (1)

which we call the Br,s,F (5)−transform of the sequence x = (xk).
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Theorem 2.1. The fibonomial difference sequence spaces br,s,Fp (5) and br,s,F∞ (5) are complete linear metric spaces with the
norms

fbr,s,Fp (5) (x) = ‖y‖`p =

( ∞∑
n=1

|yn|p
)1/p

and
fbr,s,F∞ (5) (x) = ‖y‖`∞ = sup

n∈N
|yn| ,

where 1 ≤ p <∞ and yn is the Br,s,F (5)−transform of a sequence x.

Proof. Only the proof for the space br,s,Fp (5) is given because the proof for the other space is similar to this one. The
linearity of the space follows from the routine verification. For α ∈ R, it is clear that fbr,s,Fp (5) (αx) = |α| fbr,s,Fp (5) (x) and
fbr,s,Fp (5) (x) = 0 if and only if x = θ for all x ∈ br,s,Fp (5) with the zero element θ in br,s,Fp . If x, z ∈ br,s,Fp (5) then

fbr,s,Fp (5) (x+ z) =

(∑
n

∣∣(Br,s,F [5 (xk + zk)]
)
n

∣∣p)1/p

≤

(∑
n

∣∣(Br,s,F [5 (xk)]
)
n

∣∣p)1/p

+

(∑
n

∣∣(Br,s,F [5 (zk)]
)
n

∣∣p)1/p

= fbr,s,Fp (5) (x) + fbr,s,Fp (5) (z) ,

which concludes that fbr,s,Fp (5) is a norm on the space br,s,Fp (5) .Now, for xm = (xmk
)
∞
k=1 ∈ br,s,Fp (5) (eachm ∈ N), if we take

xm as a Cauchy sequence in br,s,Fp , then, for a given ε > 0, there exists an integerm0 (ε) ∈ N such that fbr,s,Fp (5) (xm − xl) < ε,

for all m, l ≥ m0 (ε). Hence, for m, l ≥ m0 (ε) and each k ∈ N, one has

∣∣(Br,s,F [5 (xmk
− xlk)]

)
n

∣∣ ≤ (∑
n

∣∣(Br,s,F [5 (xmk
− xlk)]

)
n

∣∣p)1/p

< ε,

which means that
(
Br,s,F [5 (xmk

)]
)∞
m=1

is a Cauchy sequence in R. From the completeness of the set of real numbers, it
follows that Br,s,F [5 (xmk

)]→ Br,s,F [5 (xk)] as m→∞ for each k ∈ N. Thus, observe that
j∑

n=0

∣∣(Br,s,F [5 (xmk
− xlk)]

)
n

∣∣ ≤ fbr,s,Fp (5) (xm − xl) < ε, (2)

for m > m0 (ε) . Letting i and l→∞ yields that fbr,s,Fp (5) (xm − x)→ 0 due to (2). So, it can be readily written that

fbr,s,Fp (5) (x) = fbr,s,Fp (5) (xm − x) + fbr,s,Fp (5) (xm) ,

i.e. x ∈ br,s,Fp (5) . Consequently, the space br,s,Fp (5) is complete.

Theorem 2.2. The fibonomial difference sequence spaces br,s,Fp (5) and br,s,F∞ (5) are linearly isomorphic to `p and `∞,

respectively.

Proof. We prove the theorem for the space br,s,Fp (5) since the proof of the other space follows analogously. We provide the
existence of a linear transformation between the spaces br,s,Fp (5) and `p that is injective, subjective, and norm-preserving.
For any x ∈ br,s,Fp (5), let L : br,s,Fp (5) → `p be a transformation such that L (x) = Br,s,F 5 (xk) . The linearity of L is
obvious due to the linearity of a matrix transformation. The transformation L is injective by the following fact: if L (x) = θ

then x = θ. For any sequence y = (yn) ∈ `p, denote the sequence x = (xk) for k ∈ N by

xk =
k∑
i=0

(s+ r)
i
F

k∑
j=i

(
j

i

)
F

r−j (−s)j−i yi, (3)

then, we have

fbr,s,Fp (5) (x) =
∥∥(Br,s,F 5 (xk)

)
n

∥∥
`p

=

( ∞∑
n=1

∣∣∣∣ 1

(s+ r)
n
F

n∑
k=0

(
n

k

)
F

rksn−k 5 (xk)

∣∣∣∣p)1/p

=

( ∞∑
n=1
|yn|p

)1/p

= ‖y‖`p = ‖L (x)‖`p <∞.

Thus, L is norm-preserving and x ∈ br,s,Fp . Consequently, L is surjective, which concludes the proof.
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3. The Schauder basis and the α−, β−, γ−duals

The aim of this section is to calculate the Schauder basis and the α−, β−, γ−duals of the fibonomial difference sequence
spaces br,s,Fp (5) and br,s,F∞ (5) .

First, we recall the definition of the Schauder basis. The sequence (δn) is said to be the Schauder basis for the space X
if for any x ∈ X, there exists a unique sequence of scalars τn such that∥∥∥∥x− n∑

k=0

τkδk

∥∥∥∥→ 0, as n→∞,

for a normed space (X, ‖.‖) and a sequence δn in X. Then, we write

x =
∞∑
k=0

τkδk.

Theorem 3.1. Let µk (r, s, F ) =
{
Br,s,F 5 (xj)

}
k

be given for all k ∈ N. Let the sequence s(k) (r, s, F ) =
{
s
(k)
j (r, s, F )

}
j∈N

be
denoted as the elements of the fibinomial difference sequence space br,s,Fp (5) by

s
(k)
j (r, s, F ) =


(s+ r)

k
F

j∑
v=k

(
v

k

)
F

r−v (−s)v−k , if 0 ≤ k ≤ j;

0, if k > j.

Then, the sequence
{
s(0) (r, s, F ) , s(1) (r, s, F ) , . . .

}
is a basis for the space br,s,Fp (5) and any x = (xj) in br,s,Fp (5) is uniquely

determined as
x =

∑
k

µk (r, s, F ) s(k) (r, s, F ) ,

where 1 ≤ p <∞.

Proof. Given any x = (xk) ∈ br,s,Fp (5) for 1 ≤ p <∞. For every non-negative integer m, consider

x[m] =
m∑
k=0

µk (r, s, F ) s(k) (r, s, F ) .

By virtue of the linearity of Br,s,F (5) , we have

Br,s,F
(
5x[m]

j

)
=

m∑
k=0

µk (r, s, F )Br,s,F
(
5s(k)j (r, s, F )

)
=

m∑
k=0

µk (r, s, F ) e(k)

and [
Br,s,F

(
5
(
xj − x[m]

j

))]
k

=


[
Br,s,F (5xj)

]
k
, if k > m;

0, if 0 ≤ k ≤ m;

for all k,m ∈ N. Now, for any given ε > 0, there exists a non-negative integer m0 such that
∞∑

k=m0+1

∣∣[Br,s,F (5xj)
]
k

∣∣p ≤ (ε
2

)p
for all k ≥ m0. So, we have

fbr,s,Fp (5)

(
x− x[m]

)
=

(
∞∑

k=m+1

∣∣[Br,s,F (5xj)
]
k

∣∣p)1/p

≤

(
∞∑

k=m0+1

∣∣[Br,s,F (5xj)
]
k

∣∣p)1/p

≤ ε

2
< ε, for all m ≥ m0,

which implies that
x =

∑
k

µk (r, s, F ) s(k) (r, s, F ) ,

as desired.

42
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For the uniqueness of the considered representation, suppose that

x =
∑
k

µ′k (r, s, F ) s(k) (r, s, F )

is another representation of x. Then, it is readily seen for every n ∈ N that[
Br,s,F (5xj)

]
k

=
∑
k

µ′k (r, s, F )
[
Br,s,F

(
5s(k) (r, s, F )

)]
k

=
∑
k

µ′k (r, s, F ) (ek)k

= µ′k (r, s, F ) ,

which contradicts the representation
[
Br,s,F (5xj)

]
k

= µk (r, s, F ) for every k ∈ N. So, the proof is completed.

Corollary 3.1. The fibonomial difference sequence space br,s,Fp (5) is separable for 1 ≤ p <∞.

Let us continue with the following lemma, which is useful for identifying the α−dual, β−dual and γ−dual of the fibono-
mial difference sequence spaces br,s,Fp (5) and br,s,F∞ (5) . Denote by z the family of all finite subsets of N, and 1

p + 1
q = 1 for

1 < p ≤ ∞.

Lemma 3.1 (see [23]). T = (tnk) ∈ (`1, `1) if and only if

sup
k∈N

∑
n

|tnk| <∞.

T = (tnk) ∈ (`1, `∞) if and only if
sup
n,k∈N

|tnk| <∞. (4)

T = (tnk) ∈ (`1, c) if and only if (4) holds and
lim
n→∞

tnk exists (5)

for each k ∈ N. T = (tnk) ∈ (`p, `∞) if and only if

sup
n

∑
k

|tnk|q <∞, (6)

where 1 < p <∞. T = (tnk) ∈ (`p, c) if and only if (5) and (6) hold for 1 < p <∞. T = (tnk) ∈ (`p, `1) if and only if

sup
K∈z

∑
k

∣∣∣∣∣
∞∑
n∈K

tnk

∣∣∣∣∣
q

<∞ for 1 < p <∞.

T = (tnk) ∈ (`∞, `∞) = (c, `∞) if and only if (6) holds for q = 1. T = (tnk) ∈ (`∞, c) if and only if (5) holds and

lim
n→∞

∞∑
k=0

|tnk| =
∞∑
k=0

∣∣∣ lim
n→∞

tnk

∣∣∣ . (7)

Theorem 3.2. Define the sets

ξr,s,F1 =

b = (bn) ∈ ω : sup
K∈z

∑
k

∣∣∣∣∣∣ ∑n∈K (s+ r)
k
F

n∑
j=k

(
j

k

)
F

(−s)j−k r−jbn

∣∣∣∣∣∣
q

<∞


and

ξr,s,F2 =

b = (bn) ∈ ω : sup
k∈N

∑
n

∣∣∣∣∣∣(s+ r)
k
F

n∑
j=k

(
j

k

)
F

(−s)j−k r−jbn

∣∣∣∣∣∣ <∞
 .

Then,
{
br,s,Fp (5)

}α
= ξr,s,F1 , where 1 < p ≤ ∞ and

{
br,s,F1 (5)

}α
= ξr,s,F2 .

Proof. For any b = (bn) ∈ ω, one can write from (3) that

bnxn =
n∑
k=0

(s+ r)
k
F

n∑
j=k

(
n

k

)
F

(−s)j−k r−jbnyk =
(
Gr,s,F y

)
n

for all n ∈ N.
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Here, Gr,s,F =
(
gr,s,Fnk

)
is defined by

gr,s,Fnk =


(s+ r)

k
F

n∑
j=k

(
n

k

)
F

(−s)j−k r−jbn, if 0 ≤ k ≤ n;

0, if k > n.

So, we have bx = (bnxn) ∈ `1 whenever x = (xk) ∈ br,s,Fp (5) or x = (xk) ∈ br,s,Fp if and only if Gr,s,F y ∈ `1 whenever
y = (yk) ∈ `1 or y = (yk) ∈ `p, respectively, for 1 < p ≤ ∞. Consequently, we deduce that b = (bn) ∈

{
br,s,F1 (5)

}α
or

b = (bn) ∈
{
br,s,Fp (5)

}α if and only if Gr,s,F ∈ (`1, `1) or Gr,s,F ∈ (`p, `1) , respectively, for 1 < p ≤ ∞. So, if we gather the
related parts of Lemma 3.1 and these facts, we arrive at the desired conclusion.

Theorem 3.3. Define the sets

ξr,s,F3 =

b = (bk) ∈ ω : lim
n→∞

(s+ r)
k
F

n∑
i=k

i∑
j=k

(
j

k

)
F

(−s)j−k r−jbi exists for each k ∈ N

 ,

ξr,s,F4 =

b = (bk) ∈ ω : sup
n,k

∣∣∣∣∣∣(s+ r)
k
F

n∑
i=k

i∑
j=k

(
j

k

)
F

(−s)j−k r−jbi

∣∣∣∣∣∣ <∞
 ,

ξr,s,F5 =

b = (bk) ∈ ω : lim
n→∞

∑
k

∣∣∣∣∣∣(s+ r)
k
F

n∑
i=k

i∑
j=k

(
j

k

)
F

(−s)j−k r−jbi

∣∣∣∣∣∣ =
∑
k

∣∣∣∣∣∣ lim
n→∞

(s+ r)
k
F

n∑
i=k

i∑
j=k

(
j

k

)
F

(−s)j−k r−jbi

∣∣∣∣∣∣
 ,

ξr,s,F6 =

b = (bk) ∈ ω : sup
n∈N

n∑
k=0

∣∣∣∣∣∣(s+ r)
k
F

n∑
i=k

i∑
j=k

(
j

k

)
F

(−s)j−k r−jbi

∣∣∣∣∣∣
q

<∞

 ,

for 1 < q <∞, and

ξr,s,F7 =

b = (bk) ∈ ω : sup
n∈N

n∑
k=0

∣∣∣∣∣∣(s+ r)
k
F

n∑
i=k

i∑
j=k

(
j

k

)
F

(−s)j−k r−jbi

∣∣∣∣∣∣ <∞
 .

Then,
{
br,s,F1 (5)

}β
= ξr,s,F3 ∩ ξr,s,F4 ,

{
br,s,Fp (5)

}β
= ξr,s,F3 ∩ ξr,s,F6 for 1 < p < ∞,

{
br,s,F∞ (5)

}β
= ξr,s,F3 ∩ ξr,s,F5 ,{

br,s,F1 (5)
}γ

= ξr,s,F4 ,
{
br,s,Fp (5)

}γ
= ξr,s,F6 for 1 < p <∞, and

{
br,s,F∞ (5)

}γ
= ξr,s,F7 .

Proof. In order to avoid unnecessary repetitions of similar expressions, only the proof of
{
br,s,Fp (5)

}β
= ξr,s,F3 ∩ ξr,s,F6 for

1 < p <∞ is given. For any b = (bn) ∈ ω, it follows from (3) that

n∑
k=0

bkxk =
n∑
k=0

(
k∑
i=0

(s+ r)
i
F

k∑
j=i

(
j

i

)
F

(−s)j−i r−jyi

)
bk

=
n∑
k=0

(
(s+ r)

k
F

n∑
i=k

i∑
j=k

(
j

k

)
F

(−s)j−k r−jbi

)
yk

=
(
Mr,s,F y

)
n
,

for all n ∈ N. Here, Mr,s,F =
(
mr,s,F
nk

)
denotes the matrix defined by

mr,s,F
nk =


(s+ r)

k
F

n∑
i=k

i∑
j=k

(
j

k

)
F

(−s)j−k r−jbi, if 0 ≤ k ≤ n;

0, if k > n;

for all n, k ∈ N. So, bx = (bnxn) ∈ cs whenever x = (xk) ∈ br,s,Fp (5) if and only if Mr,s,F y ∈ c whenever y = (yk) ∈ `p for
1 < p < ∞, which yields that b = (bk) ∈

{
br,s,Fp

}β if and only if Mr,s,F ∈ (`p, c) , where 1 < p < ∞. By combining these
observations and the related parts of Lemma 3.1, we have

{
br,s,Fp

}β
= ξr,s,F3 ∩ ξr,s,F6 for 1 < p <∞.
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[10] E. E. Kara, M. Başarır, On compact operators and some Euler B(m) difference sequence spaces, J. Math. Anal. Appl. 76 (2010) 87–100.
[11] V. Karakaya, H. Polat, Some new paranormed sequence spaces defined by Euler and difference operators, Acta Sci. Math. 61 (2012) 1–12.
[12] H. Kizmaz, On certain sequence spaces, Can. Math. Bull. 24 (1981) 169–176.
[13] E. Krot, An introduction to finite fibonomial calculus, Cent. Eur. J. Math. 2 (2004) 754–766.
[14] S. Kus, N. Tuglu, T. Kim, Bernouli F−polynomials and Fibo-Bernoulli matrices, Adv. Difference Equ. 2019 (2019) #145.
[15] J. Meng, M. Song, On some binomial difference sequence spaces, Kyungpook Math. J. 57 (2017) 631–640.
[16] J. Meng, M. Song, On some binomial B(m)-difference sequence spaces, J. Inequal. Appl. 2017 (2017) #194.
[17] J. Meng, M. Song, Binomial difference sequence space of order m, Adv. Difference Equ. 2017 (2017) #241.
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