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Abstract
Dispersed Dyck paths are Dyck paths with possible flat steps on level 0. Questions about dispersed Dyck paths, from the
Encyclopedia of Integer Sequences, are revisited and augmented in a systematic way that uses generating functions and
the kernel method.
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1. Introduction

Dispersed Dyck paths consist of up-steps U = (1, 1) and down-steps D = (1,−1), never go below the x-axis, and can have
horizontal steps on the x-axis, (n, 0)→ (n+ 1, 0). According to [7], it seems that such Dyck paths were invented/suggested
by Emeric Deutsch. All sequences that are explicitly cited are from [7], using the local identifiers A######.

As in various examples discussed in the past [3, 5, 6], the kernel method will be used to set up appropriate generating
functions. There are three (or four) bivariate (or trivariate) generating functions F (u), G(u), H(u) (also depending on z)
related to the nature of the last step of the prefix of a dispersed Dyck path. To solve the system, a ‘bad’ factor u− r2 must
be divided out from numerator and denominator, after which one can plug in u = 0 and identify the unknown quantities
f1 = F (0), etc. Various questions (from the encyclopedia of integer sequences [7]) about such paths will be revisited;
our method is fairly automatic and purely refers to generating functions. To be more specific, these include 1-ascents,
1-descents, valleys on level 0, and occurrences of UUDD. Also, we obtain expression for paths that do not have to go back
to the x-axis, rather finish at a level j, or, more generally, on any level. This is either achieved by looking at the coefficient
of uj , say, or, setting u = 1. The generating functions of interest usually have 3 variables: z for the length (number of
steps), u for the final height, and t for an additional parameter of interest.

2. Counting 1-ascents

A 1-ascent is an ascent consisting of exactly 1 up step. The paper [2] contains some analysis, but without generating
functions. The paper [1] discusses d-ascents for d ≥ 2 as well, but the quadratic equations that are so common in the
context of Dyck paths, are then of higher order, and the results are consequently of an asymptotic nature.

We distinguish 3 states, together with the current level. Down-steps are unproblematic, but when after them an up-
step arrives, it might be the only one or further up-steps follow. A graph describes all the possible scenarios, as in [5]. It
has 3 layers of states, and sequences fi, i ≥ 1, gi, hi, i ≥ 0, in that order. These quantities all depend on the variable z and
describe generating functions of paths leading to a particular state. Since on level 0, flat (horizontal) steps are also allowed,
the quantities f0, g0, and h0 are somewhat special and will be treated as parameters. Compare [4] for this technique. We
will deal with trivariate generating functions

F (u) =
∑
i≥1

fiu
i−1, G(u) =

∑
i≥1

giu
i−1, H(u) =

∑
i≥1

hiu
i−1,

the other variables z (counting the length) and t (counting the 1-ascents) are not explicitly mentioned. The recursions can
be read off, by considering the last step made,

fi = zfi+1 + ztgi+1 + zhi+1, i ≥ 1, f0 = 1 + zf0 + zf1 + ztg1,
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gi+1 = zfi, i ≥ 1, g1 = zf0,

hi+1 = zgi + zhi, i ≥ 0.

Translating these into the trivariate generating functions, we get∑
i≥1

uifi =
∑
i≥1

uizfi+1 +
∑
i≥1

uiztgi+1 +
∑
i≥1

uizhi+1,

uF (u) = zF (u)− zf1 + ztG(u)− ztg1 + zH(u),

G(u)− g1 = zuF (u), H(u) = zuG(u) + zuH(u).

The system can be solved, but still depends on the initial values f1, g1, h1:

F (u) =
z(−f1 + zuf1 + zug1)

−z3u2 + u− zu2 − z + z2u− z2tu+ z3tu2
,

G(u) =
−z2uf1 − z2tug1 − zg1 + ug1 + z3u2f1 + z3tu2g1 + z2ug1 − zu2g1

−z3u2 + u− zu2 − z + z2u− z2tu+ z3tu2
,

H(u) = − zu(z2uf1 + z2tug1 + zg1 − ug1)

−z3u2 + u− zu2 − z + z2u− z2tu+ z3tu2
.

Figure 2.1: Three layers of states, labelled f, g, h, in that order. The state f0 is responsible for dispersed Dyck paths, and
all others to prefixes of them.

The naive approach would be to plug in u = 0 and identity the initial values, but this doesn’t work, and requires some
preparations. The denominator will be factored,

−z3u2 + u− zu2 − z + z2u− z2tu+ z3tu2 = z(−z2 − 1 + z2t)(u− r1)(u− r2)

with
r1 =

1 + z2(1− t) +W

2z(1 + z2(1− t))
, r2 =

1 + z2(1− t)−W

2z(1 + z2(1− t))

and
W :=

√
1− 2(t+ 1)z2 − (t+ 3)(1− t)z4 .

Dividing out the factor u− r2 from numerator and denominator (‘kernel method’), we find

F (u) =
z2(f1 + g1)

(−z2 − 1 + z2t)(r2z + zu− 1)
,

G(u) =
r2z

3f1 + r2z
3tg1 − r2zg1 − z2f1 − z2tg1 + g1 + z2g1 + uz3f1 + uz3tg1 − zug1

(−z2 − 1 + z2t)(r2z + zu− 1)
,

H(u) = −z(r2z
2f1 + r2z

2tg1 − r2g1 + z2uf1 + z2tug1 + zg1 − ug1)

(−z2 − 1 + z2t)(r2z + zu− 1)
,

and now u = 0 is possible, with

f1 =
z2(f1 + g1)

(−z2 − 1 + z2t)(r2z − 1)
, g1 = zf0, h1 = 0.
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But, we have
f0 = 1 + zf0 + zf1 + ztg1,

and both, f1 and g1 can be expressed in terms of f0:

f1 =
z2g1

1− z2t− r2z − r2z3 + r2z3t
.

The ultimate solution is now
f0 =

−1 + 2z − z2 + z2t+W

2z(z2 + 1− 2z − z3 + z3t− z2t)
,

with the series expansion

f0 = 1 + z + (t+ 1)z2 + (2t+ 1)z3 + (t2 + 3t+ 2)z4 + (3t2 + 4t+ 3)z5 + (t3 + 6t2 + 8t+ 5)z6 + · · · .

For t = 0, we find the enumeration of dispersed Dyck paths without 1-ascents (A191385)

f0
∣∣
t=0

=
−1 + 2z − z2 +

√
1− 2z2 − 3z4

2z(1− 2z + z2 − z3)

= 1 + z + z2 + z3 + 2z4 + 3z5 + 5z6 + 7z7 + 12z8 + 18z9 + 31z10 + 47z11 + 81z12 + · · · .

For t = 1, we find

f0
∣∣
t=1

= − 1

2z
+

√
1− 4z2

2z(1− 2z)
=
∑
n≥0

(
2n

n

)
z2n +

∑
n≥0

(
2n+ 1

n

)
z2n+1,

which is the enumeration of dispersed Dyck paths of length n:
(

n
bn/2c

)
. The number of 1-ascents in paths of length 5 can

be deduced from (3t2 + 4t+ 3): it is 3 · 2 + 4, and in general, we must differentate f0 w.r.t. t, followed by t = 1.

∂f0
∂z

∣∣∣∣
t=1

=
z2(1− 4z2 +

√
1− 4z2)

2(1− 2z)(1− 4z2)

=
z2

2(1− 2z)
+

z2

2(1− 4z2)3/2
+

z3

(1− 4z2)3/2

=
∑
n≥2

2n−3zn +
∑
n≥1

(2n− 1)!

2(n− 1)!(n− 1)!
z2n +

∑
n≥1

(2n− 1)!

(n− 1)!(n− 1)!
z2n+1.

The coefficients of zn form the sequence A045621. Furthermore, we get

F (u) =
z2r2

1− zr2 − zu
f0,

G(u) =
z(1− zu)(1− zr2)

1− zr2 − zu
f0,

H(u) =
uz2(1− zr2)

1− zr2 − zu
f0.

From this, it is easy to find fj , gj , hj since we only have to expand 1/(1 − zr2 − zu) in powers of u, which is basically a
geometric series. We will not write this out. However, we will sum all these quantities, as it describes all dispersed Dyck
paths with open end (partial paths, sometimes called meander). We have to be careful and, when a path ends in a state
from the second layer (‘g’), the last up step is a 1-ascent, and we need to attach an extra factor t. The resulting formula is
surprisingly simple:

∂

∂t

(
f0 + F (1) + tG(1) +H(1)

)∣∣∣∣
t=1

=
z(1− z)2

(1− 2z)2
= z +

∑
n≥2

(n+ 2)2n−3zn.

3. Counting 1-descents

In this section, the number of 1-descents will be counted. The definition is similar; a down-step rendered by up-steps or
standing at the end of the dispersed Dyck path. The same letters as in the previous section will be used, but now with a
different meaning. The figure is again self-explanatory: Here are the relevant recursions:

fi+1 = zfi + ztgi + zhi, i ≥ 1, f0 =
1

1− z
,
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Figure 3.1: Three layers of states, labelled f, g, h, in that order.

gi = zfi+1, i ≥ 1, g0 = zg0 + zf1, g0 =
z

1− z
f1

hi = zgi+1 + zhi+1, i ≥ 1, h0 = zh0 + zg1 + zh1, h0 =
z

1− z
(g1 + h1),

and

f1 = zf0 + ztg0 + zh0 =
z

1− z
+

z2t

1− z
f1 +

z2

1− z
(g1 + h1)

=
z(1 + zg1 + zh1)

1− z − z2t
.

So, the kernel method will give us g1 and h1, and f1 follows. The recursions will be translated into trivariate generating
functions, as before: ∑

i≥1

uifi+1 =
∑
i≥1

uizfi +
∑
i≥1

uiztgi +
∑
i≥1

uizhi,

F (u)− f1 = uzF (u) + uztG(u) + uzH(u);

∑
i≥1

uigi =
∑
i≥1

uizfi+1,

uG(u) = zF (u)− zf1;

∑
i≥1

uihi =
∑
i≥1

uizgi+1 +
∑
i≥1

uizhi+1,

uH(u) = zG(u)− zg1 + zH(u)− zh1.

We do not write the solutions for F (u), G(u), H(u), only the relevant denominator

z3 − u+ u2z + uz2t+ z − uz2 − z3t = z(u− r1)(u− r2)

with
r1 =

1 + z2 − z2t+W

2z
, r2 =

1 + z2 − z2t−W

2z
,

and
W =

√
1− 2z2t− 2z2 + z4t2 + 2z4t− 3z4.

Then, we divide out the factor u− r2 in the usual way, and get, after setting u = 0,

g1 =
zr2

1 + z2 − z2t
f1, g1 + h1 =

r2 − z

z
f1,

f1 =
z

1− z + z2 − z2t− zr2
.
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This provides also the values f0, g0, h0, and

f0 + tg0 + h0 =
1− r2

1− 2z + z2 − z3 − z2t+ z3t
,

which is the generating function of dispersed Dyck paths returning to the 0-level. Again, to count the contributions of the
1-descents, we compute

∂

∂z
(f0 + tg0 + h0)

∣∣∣
t=1

=
z2(1− 4z2 +

√
1− 4z2)

2(1− 2z)(1− 4z2)

=
z2

2(1− 2z)
+

z2

2(1− 4z2)3/2
+

z3

(1− 4z2)3/2

as before. This is natural, as reading from right to left turns 1-upsteps to 1-downsteps, and vice versa. Considering all
paths, regardless where they end,

∂

∂z
(f0 + F (1) + tg0 + tG(1) + h0 +H(1))

∣∣∣
t=1

=
z2

2(1− 2z)2
+

z2
√
1− 4z2

2(1− 2z)2
,

which is surprisingly simple, with a simple series expansion,∑
n≥2

(n− 1)2n−3zn +
∑
n≥1

2(2n− 2)!

(n− 1)!(n− 1)!
z2n +

∑
n≥1

(2n− 2)!(4n− 3)

2(n− 1)!(n− 1)!
z2n+1.

4. Counting valleys on level 0

We do now exactly what the title of the section says.

Figure 4.1: Two layers of states, labelled f, g, in that order.

Here are the usual recursions,

f0 = 1 + zf0 + zg0, g0 = zf1, f1 = ztg0 + zf0 + zf2, fi = zfi−1 + zfi+1, i ≥ 2.

f0 =
1

1− z
+

z

1− z
g0 =

1

1− z
+

z2

1− z
f1, tf0 − t− ztf0 = ztg0

∑
i≥2

ui−1fi =
∑
i≥2

ui−1zfi−1 +
∑
i≥2

ui−1zfi+1

F (u)− f1 = uzF (u) +
z

u
(F (u)− f1)− zf2,

F (u) = uzF (u) +
z

u
(F (u)− f1) + ztg0 + zf0,

F (u) = uzF (u) +
z

u
(F (u)− f1) + z2tf1 + zf0.

We have f0 = 1+z2f1
1−z , and from the kernel method, after dividing out

u− r2, with r2 :=
1−
√
1− 4z2

2z
,

f1 =
z

1− z − z2t+ z3(t− 1) + z(z − 1)r2
.
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Then,

f1
∣∣
t=0

=
2

2− 3z + z
√
1− z2

= 1 + z + z2 + 2z3 + 3z4 + 5z5 + 8z6 + 14z7 + 23z8 + 41z9 + 69z10 + 125z11 + · · · ,

which is the sequence A191388 (no valleys on level 0). Furthermore,

F (u) =
f1

1− ur2
=⇒ [uj−1]F (u) = fj = f1r

j−1
2 .

Finally,

∂f0
∂t

∣∣∣∣
t=1

=
1− 3z2 + (z2 − 1)

√
1− 4z2

2z(1− 2z)

= z5 + 2z6 + 7z7 + 14z8 + 37z9 + 74z10 + 176z11 + 352z12 + · · · ,

which is the sequence A191389 (number of valleys on level 0). By setting u = 1 in g0 + F (u), we can address the number
of such partial dispersed Dyck paths according to no valleys or number of valleys, respectively. Since these formulæ are
easy to obtain and not too attractive, we do not display them here.

5. Counting occurrences of UUDD

Figure 5.1: Four layers of states, labelled f, g, h, k, in that order.

The recursions are

fi = zfi+1 + zgi+1 + ztki+1, i ≥ 1, f0 = 1 + zf0 + zf1 + zg1 + ztk1,

gi+1 = zfi + zki, i ≥ 1, g1 = zf0,

hi+1 = zgi + zhi, i ≥ 2, h2 = zg1,

ki = zhi+1, i ≥ 1, k1 = zh2 = z2g1.

The following generating functions will be used:

F (u) =
∑
i≥1

fiu
i−1,

G(u) =
∑
i≥1

giu
i−1,

H(u) =
∑
i≥2

hiu
i−2,

K(u) =
∑
i≥1

kiu
i−1.
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Summing and simplifying, ∑
i≥1

uifi =
∑
i≥1

uizfi+1 +
∑
i≥1

uizgi+1 +
∑
i≥1

uiztki+1,

uF (u) = zF (u)− zf1 + zG(u)− zg1 + ztK(u)− ztk1,∑
i≥1

uigi+1 =
∑
i≥1

uizfi +
∑
i≥1

uizki,

G(u)− g1 = zuF (u) + zuK(u),∑
i≥2

ui−1hi+1 =
∑
i≥2

ui−1zgi +
∑
i≥2

ui−1zhi,

H(u)− h2 = zG(u)− zg1 + zuH(u), H(u) =
z

1− zu
G(u),∑

i≥1

ui−1ki =
∑
i≥1

ui−1zhi+1,

K(u) = zH(u).

It is beneficial to reduce the system to just one equation, for F (u), say. Note also that

f1 = −1 + zf0 + z2f0 + z4tf0 − f0
z

, g1 = zf0, h2 = z2f0, k1 = z3f0.

Then
F (u) = −−z

3u− z4f0u− zu− z2f0u+ zuf0 + 1 + zf0 + z2f0 + z4tf0 − f0
−z4u+ z + z4tu+ zu2 − u

.

Dividing out, as part of the kernel method,

u− r2, with r2 =
1 + z4 − z4t−

√
z8 − 2z8t+ 2z4 + z8t2 − 2z4t+ 1− 4z2

2z

and setting u = 0 leads to

−1 + zf0 + z2f0 + z4tf0 − f0
z

= f1 =
z
(
z2 + z3f0 + 1 + zf0 − f0

)
−z4 + z4t− 1 + r2z

from which f0 can be computed:

f0 =
−z4 − 1 + z4t+ 2z +

√
z8 − 2z8t+ 2z4 + z8t2 − 2z4t+ 1− 4z2

2z (−z4t+ 1− 2z + z4)

= 1 + z + 2z2 + 3z3 + (t+ 5)z4 + (8 + 2t)z5 + (14 + 6t)z6 + (23 + 12t)z7 + · · · .

The special cases are as follows:

f0
∣∣
t=0

=
2z +

√
z8 + 2z4 + 1− 4z2 − z4 − 1

2z (+1− 2z + z4)

= 1 + z + 2z2 + 3z3 + 5z4 + 8z5 + 14z6 + 23z7 + 41z8 + 69z9 + 124z10 + · · · ,

which enumerates dispersed Dyck paths without UUDD (sequence A191794) and
∂f0
∂t

∣∣∣∣
t=1

=
z4

(1− 2z)
√
1− 4z2

= z4 + 2z5 + 6z6 + 12z7 + 30z8 + 60z9 + 140z10 + 280z11 + 630z12 + · · · ,

which enumerates the number of occurrences of UUDD in dispersed Dyck paths (sequence A100071).
Of course, dispersed Dyck paths with arbitrary endpoints can also be discussed using f0 + F (1) +G(1) +H(1) +K(1),

but we are not going to display any formula; they are easy to obtain.
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