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Abstract
In this paper, the concept of the eccentrical graph of a graph is introduced. Let G be a connected graph with the vertex set
V (G). The eccentrical graph ofG is the graph ε(G) with the vertex set V (ε(G)) = V (G) and two vertices vi, vj ∈ V (ε(G)) are
adjacent in ε(G) if and only if the distance between them is min{e(vi), e(vj)}, where e(vi) is the eccentricity of vi. A sufficient
condition for the eccentrical graph of a connected graph to be connected is given. It is proved that the eccentrical graph of
every tree is connected and its diameter does not exceed 3. The extremum values of the greatest eigenvalue of eccentrical
graphs of trees and connected graphs of fixed order are also studied. Furthermore, spectra of eccentrical graphs of various
classes of graphs are computed.
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1. Introduction

Let G = (V (G), E(G)) be a finite simple graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G) = {e1, . . . , em}.
The notion vi ∼ vj is used to indicate that vertices vi and vj are adjacent, and the edge between them is denoted by vivj
or eij . The degree of the vertex vi of G is denoted by deg(vi|G). The adjacency matrix of G is an n × n matrix, denoted by
A(G), whose rows and columns are indexed by the vertex set of G and its entries are defined by

A(G)ij =

1 if vi ∼ vj ,

0 otherwise.

The distance between the vertices vi, vj ∈ V (G), denoted by d(vi, vj), is defined as the smallest value among the lengths
(i.e., the number of edges) of the paths between the vertices vi and vj . The distance matrix of a connected graph G, denoted
byD(G), or simply byD, is the n×nmatrix whose (i, j)th-entry is equal to d(vi, vj), where i = 1, 2, . . . , n, and j = 1, 2, . . . , n.
For other terminologies and notations not defined here, the readers are referred to [2]. The adjacency matrix and the
distance matrix of a graph are well-studied matrices in the field of spectral graph theory. Details about the study of these
matrices and other matrices associated with graphs can be found in [1,3,4].

The eccentricity e(vi) of the vertex vi is defined as e(vi) = max{d(vi, vj) : vj ∈ V (G)}. The eccentrical graph ε(G)

of a connected graph G is the graph with the vertex set V (ε(G)) = V (G) and vi ∼ vj in ε(G) if and only if d(vi, vj) =

min{e(vi), e(vj)} (see Figure 1.1 for two examples). Thus, the (i, j)th-entry of the adjacency matrix of the eccentrical graph
ε(G), denoted by Aε(G), is given as follows:

Aε(G)ij =

1 if d(vi, vj) = min{e(vi), e(vj)},

0 otherwise.

Let ε1, ε2, . . . εn denote the eigenvalues of the matrix Aε(G). Since, the matrixAε(G) is symmetric, all the ε-eigenvalues
of G are real. If ε1, ε2, . . . , εk are the all distinct ε-eigenvalues of G satisfying ε1 > ε2 > . . . > εk, then the ε-spectrum of G is
denoted by

Specε(G) =

{
ε1 ε2 . . . εk
m1 m2 . . . mk

}
,

where mi is the algebraic multiplicity of the eigenvalue εi for 1 ≤ i ≤ k. The eigenvalue ε1 is known as the spectral radius
of the eccentrical graph ε(G).
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Figure 1.1: Two graphs and their eccentrical graphs.

The complement G of a graph G is the graph whose vertex set is the same as that of G and two vertices are adjacent
in G if and only if they are not adjacent in G. Let G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2)) such that ni = |V (Gi)|
for i = 1, 2. The union of G1 and G2, denoted by G1 ∪G2, is the graph whose vertex set is V (G1) ∪ V (G2) and the edge set
is E(G1) ∪ E(G2). The join of G1 and G2, denoted by G1 ∨G2, is the graph obtained from G1 ∪G2 by making every vertex
of G1 adjacent to all vertices of G2. The join operation of two graphs is also known as the complete product of two graphs.
The corona of G1 and G2, denoted by G1 ◦ G2, is defined as the graph obtained by taking one copy of G1 and n1 copies of
G2, and then making the i-th vertex of G1 adjacent to every vertex in the i-th copy of G2.

This article is organized as follows. In Section 2, a sufficient condition for the eccentrical graph of a connected graph to
be connected is given. It is also proved in Section 2 that the eccentrical graph of every tree is connected and its diameter
does not exceed 3. In Section 3, the extremum values of the spectral radius of eccentrical graphs of trees and connected
graphs of fixed order are investigated. Spectra of eccentrical graphs of various classes of graphs are also computed in
Section 3.

2. The eccentrical graph of a tree

For a symmetric matrix M of order n, its matrix graph GM is the graph whose vertices are 1, 2, . . . , n, and two distinct
vertices i, j are adjacent if and only if Mij 6= 0, where Mij is the (i, j)th-entry of M . It is well-known that GM is connected
if and only if M is irreducible [7]. By Figure 1.1, the eccentrical graph of a connected graph may be disconnected.

Theorem 2.1. Let G be a connected graph of order n. Let Puv be a path of longest length in G with end vertices u and v. If
for every vertex w ∈ V (G), it holds that e(w) = max{d(w, u), d(w, v)}, then the eccentrical graph of G is connected.

Proof. For any s, t ∈ V (G), we have e(s) = max{d(s, u), d(s, v)} and e(t) = max{d(t, u), d(t, v)}. By the definition of the
eccentrical graph, at least one of the two edges su(tu) and sv(tv) belongs to E(ε(G)), and also uv ∈ E(ε(G)). Therefore, the
eccentrical graph of G is connected.

Theorem 2.2. If T is a tree of order n, then the eccentrical graph ε(T ) of T is connected and the diameter of ε(T ) does not
exceed 3.

Proof. Let Puv be a path of the longest length in T with end vertices u and v. Consider a vertex w ∈ V (T ) such that
e(w) 6= d(w, u) and e(w) 6= d(w, v). Then there is a vertex s ∈ V (T ) such that d(w, s) > d(w, u) and d(w, s) > d(w, v).

Case 1: w ∈ Puv.
In this case, either the path Pvs or the path Pus has length larger than the length of the path Puv in T , which is not possible.

Case 2: w /∈ Puv.

Subcase 2.1: Puv ∩ Pws 6= Φ.
Let V (Puv) ∩ V (Pws) = {vi, . . . , vj} and d(vi, vj) = d, then d(w, s) = d(w, vi) + d(vi, vj) + d(vj , s), d(w, u) = d(w, vi) + d(vi, w)

and d(w, v) = d(w, vi) + d(vi, vj) + d(vj , v). Since d(w, s) > d(w, u) and d(w, s) > d(w, v), we have that d(vj , s) > d(vj , v) and
d(u, s) > d(u, v), which is a contradiction.

Subcase 2.2: Puv ∩ Pws = Φ.
In this case, let

d = min
vi∈V (Puv),ui∈V (Pws)

{d(vi, ui)} = d(v′, u′) (where v′ ∈ V (Puv) and u′ ∈ V (Pws))

such that d(v′, u′) = d > 0, then d(w, s) = d(w, u′) + d(u′, s), d(w, u) = d(w, u′) + d(u′, v′) + d(v′, u) and

d(w, v) = d(w, u′) + d(u′, v′) + d(v′, v).
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Since d(w, s) > d(w, u) and d(w, s) > d(w, v), we have that d(u′, s) > d(u′, v′) + d(v′, v) and

d(u, s) = d(u, v′) + d(v′, u′) + d(u′, s) > d(u, v′) + 2d(v′, u′) + d(v′, v) > d(u, v),

which is again a contradiction.
Therefore, by the above discussion and Theorem 2.1, the eccentrical graph ε(T ) is connected. Also, by the definition of

the eccentrical graph, the diameter of ε(T ) does not exceed 3.

3. The ε-spectrum of graphs

3.1. The spectral radius of the ε-spectrum of graphs
The following theorem is known as the interlacing theorem.

Lemma 3.1 (see [7]). Suppose that A ∈ Rn×n is symmetric. Let B ∈ Rm×m, with m < n, be a principal submatrix of A
(submatrix whose rows and columns are indexed by the same index set {i1, . . . , im}, for some m). Suppose that λ1, . . . , λn
are the eigenvalues of A such that λ1 ≤ . . . ≤ λn and β1, . . . , βm are the eigenvalues of B satisfying β1 ≤ . . . ≤ βm. Then,
λk ≤ βk ≤ λk+n−m for k = 1, . . . ,m, and if m = n− 1, then λ1 ≤ β1 ≤ λ2 ≤ β2 ≤ . . . ≤ βn−1 ≤ λn.

By Lemma 3.1, we have the next result.

Lemma 3.2 (see [4]). Let G be a graph with n vertices and m edges, where m > 1. Let λ1, λ2, . . . , λn denote the eigenvalues
of the adjacency matrix A(G) such that λ1 ≥ λ2 ≥ . . . ≥ λn. Then 1 ≤ λ1 ≤ n− 1.

Let λ(G) be the radius adjacency spectrum of a graph G.

Theorem 3.1. The following statements hold.

(a). Let Cn be the cycle of order n.

(i). If n = 2k, then Specε(C2k) =

{
1 −1
k k

}
;

(ii). If n = 2k + 1, then the eigenvalues of the matrix Aε(C2k+1) are εi = 2 cos 2πi
2k+1 where i = 1, 2, . . . , 2k + 1.

(b). Let Kn−k ∨ kK1 be the complete product of Kn−k with kK1(0 ≤ k ≤ n− 1), then

Specε(Kn−k ∨ kK1) =

{
n− 1 −1

1 n− 1

}
.

Proof. (a). By the definition of the eccentrical graph, we have that ε(C2k) ∼= kK2 and ε(C2k+1) ∼= C2k+1. Hence

Specε(C2k) =

{
1 −1
k k

}
and the eigenvalues of the matrix Aε(C2k+1) are εi = 2 cos 2πi

2k+1 where i = 1, 2, . . . , 2k + 1.

(b). By the definition of the eccentrical graph, we have that ε(Kn−k ∨ kK1) ∼= Kn and hence

Specε(Kn−k ∨ kK1) =

{
n− 1 −1

1 n− 1

}
.

Let BS(n1, n2) be the double star with n = n1 + n2 + 2 vertices. Denote by BBS(n) the balance double star with n

vertices.

Theorem 3.2. Let T be a tree with n vertices, where n ≥ 7. Let ε1(T ), ε2(T ), . . . , εn(T ) denote the eigenvalues of the matrix
Aε(T ) such that ε1(T ) ≥ ε2(T ) ≥ . . . ≥ εn(T ). Then λ(BBS(n)) ≤ ε1(T ) ≤ n − 1, with the left equality if T ∼= T ∗ (see Figure
3.1) and with the right equality if T ∼= K1,n−1 .

Proof. By Lemma 3.1 and Lemma 3.2, we have ε1(T ) ≤ n− 1 and if T ∼= K1,n−1 then ε1(T ) = n− 1.
By Theorem 2.2, the diameter of ε(T ) is at most 3. If the diameter of ε(T ) is at most 2, we have ε1(T ) ≥

√
n− 1. If the

diameter of ε(T ) is 3, then by the definition of the eccentrical graph and Theorem 2.2, there is a double star BS(n1, n2)

with n = n1 + n2 + 2 such that BS(n1, n2) is a subgraph of ε(T ). Hence, ε1(T ) ≥ λ(BS(n1, n2)) ≥ λ(BBS(n)). If T ∼= T ∗ (see
Figure 3.1), by the definition of the eccentrical graph we have ε(T ∗) ∼= BBS(n).
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ak−2︷ ︸︸ ︷ a1︷ ︸︸ ︷ b1︷ ︸︸ ︷ bk−2︷ ︸︸ ︷
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Figure 3.1: The tree T ∗. Here |
∑i=k−2
i=1 ai −

∑i=k−2
i=1 bi| ≤ 1 and k ≥ 3.

Theorem 3.3. Let G be a connected graph with n vertices. Let ε1(G), ε2(G), . . . , εn(G) denote the eigenvalues of the matrix
Aε(G) such that ε1(G) ≥ ε2(G) ≥ . . . ≥ εn(G). Then the following statements hold:

(a). The inequality ε1(G) ≤ n− 1 holds, where the equality holds if G ∼= Kn−k ∨ kK1(0 ≤ k ≤ n− 1).

(b). When n is even, then ε1(G) ≥ 1 with equality if G ∼= Cn.

Proof. Let d be the diameter of the graph G. Let P (v1, vd) be a path of the longest length in G.
By Theorem 3.1 and Lemma 3.2, we have ε1(G) ≤ n− 1 with equality if G ∼= Kn−k ∨ kK1(0 ≤ k ≤ n− 1).
By the definition of the eccentrical graph, The vertices v1 and vd are adjacent in ε(G). By Lemma 3.1, we have that

ε1(G) ≥ 1.

Conjecture 3.1. Let G be a connected graph with n vertices. Let ε1(G), ε2(G), . . . , εn(G) denote the eigenvalues of the matrix
Aε(G) such that ε1(G) ≥ ε2(G) ≥ . . . ≥ εn(G). When n is odd, then ε1(G) ≥ 2 with equality if G ∼= Cn.

3.2. The ε-spectrum of some classes of graphs
Let A be an n× n matrix partitioned as

A =

[
A11 A12

A21 A22

]
,

where A11 and A22 are square matrices. If A11 is nonsingular, then the Schur complement of A11 in A is defined as
A22−A21A

−1
11 A12. For Schur complements, we have detA = (detA11) det(A22−A21A

−1
11 A12). Similarly, if A22 is nonsingular,

then the Schur complement of A22 in A is A11 −A12A
−1
22 A21, and we have detA = (detA22) det(A11 −A12A

−1
22 A21).

Lemma 3.3 (see [5,9]). Let B =

[
B0 B1

B1 B0

]
be a symmetric 2× 2 block matrix such that B0 and B1 are square matrices of

the same order. Then, the spectrum of B is the union of the spectra of B0 +B1 and B0 −B1.

Lemma 3.4 (see [9]). Let B be a square matrix of order n. If each column sum of B is equal to some eigenvalue (say α) of
B, then

J1×n(λI −B)
−1
Jn×1 =

n

λ− α
.

The following result is about the spectrum of a special kind of block matrices.

Lemma 3.5. Let A be an (n+ 1)× (n+ 1) matrix of the form

A =

[
0 J1×n

Jn×1 Jn

]
.

Then

σ(A) =

 0
n±
√
n2 + 4n

2

(n− 1) 1

 .

Proof. The characteristic polynomial of A is given by

det(λIn+1 −A) = det

[
λ −J1×n

−Jn×1 λIn − Jn

]
.
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By Schur complement formula and Lemma 3.4, we have

det(λIn+1 −A) = det(λIn − Jn) det
[
λ− J1×n(λIn − Jn)−1J1×n

]
= λn−1

(
λ− n

)
det
[
λ− n

λ− n

]
= λn−1(λ2 − nλ− n),

which gives the required result.
If A and B are matrices of order m × n and p × q, respectively, then the Kronecker product of the matrices A and B,

denoted by A⊗B, is the mp× nq block matrix [aijB].

Lemma 3.6 (see [6]). Let A ∈ Rn×n and B ∈ Rm×m. If σ(A) = {λ1, . . . , λn} and σ(B) = {µ1, . . . , µm} are the spectra of A
and B, respectively, then σ(A⊗B) = {λiµj : i = 1, . . . , n; j = 1, . . . ,m}.

Next, we compute ε-eigenvalues of some classes of graphs. First, we compute the ε-spectrum of the corona of any
connected graph G with the complete graph on n vertices.

Theorem 3.4. If Kn is the complete graph on n vertices and G is any connected graph on m vertices, then

Specε(Kn ◦G) =

{
0 −λ1 −λ2 λ1(n− 1) λ2(n− 1)

n(m− 1) n− 1 n− 1 1 1

}
,

where λ1 and λ2 are the roots of x2 −mx−m = 0.

Proof. Let Kn be the complete graph on n vertices and let G be any connected graph on m vertices. Then, the graph
Kn ◦ G consists of n vertices of the complete graph Kn which are labeled using the index set {1, 2, . . . , n}, and n disjoint
copies G1, G2, . . . , Gn of G. Choose an arbitrary ordering g1, g2, . . . , gm of the vertices of G, and label the vertices of Gi
corresponding to gk by the indices i + nk (see [8]). Under this labeling, the adjacency matrix of the eccentrical graph of
Kn ◦G is given by Aε(Kn ◦G) = A⊗B, where

A =

[
0 J1×m

Jm×1 Jm

]
and B = Jn − In.

By Lemma 3.5, we have

σ(A) =

 0
3m±

√
m2 + 4m

2

(m− 1) 1


and

σ(B) =

{
−1 (n− 1)

(n− 1) 1

}
.

Now, by Lemma 3.6, the spectrum of A⊗B is

σ(A⊗B) =

{
0 −λ1 −λ2 λ1(n− 1) λ2(n− 1)

n(m− 1) n− 1 n− 1 1 1

}
,

and hence
Specε(Kn ◦G) =

{
0 −λ1 −λ2 λ1(n− 1) λ2(n− 1)

n(m− 1) n− 1 n− 1 1 1

}
.

Next, we consider the ε-spectrum of the complete product of two graphs.

Theorem 3.5. Let G1 and G2 be any two non-complete connected graphs. If the eigenvalues of the adjacency matrices of G1

and G2 are known, then the ε-spectrum of G1 ∨G2 is the union of the spectra of A(G1) and A(G2).

Proof. By the definition of the eccentrical graph, we have that

Aε(G1 ∨G2) =

[
A(G1) 0

0 A(G2)

]
.

Therefore, the ε-spectrum of G1 ∨G2 is the union of the spectra of A(G1) and A(G2)..

Lemma 3.7 (see [4]). Let Gi be a connected ri-regular graph with ni vertices, where i = 1, 2. The characteristic polynomial
of the complete product of G1 and G2 is

PG1∨G2
(λ) =

PG1(λ)PG2(λ)

(λ− r1)(λ− r2)

[
(λ− r1)(λ− r2)− n1n2

]
.
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The following result gives the ε-spectrum of the complete product of a connected regular graph G with the complete
graph Km.

Theorem 3.6. Let G be a connected r-regular graph with n vertices. Let r, λ2, . . . , λn be the eigenvalues of the adjacency
matrix of G.

(a). If r < n− 1, then
Specε(G ∨Km) =

{
µ1 µ2 −(λ2 + 1) . . . −(λn + 1) −1
1 1 1 . . . 1 m− 1

}
,

where µ1 and µ2 are the roots of x2 − (n+m− r − 2)x+ (n− r − 1)(m− 1)− nm = 0.

(b). If r = n− 1, then
Specε(G ∨Km) =

{
n+m− 1 −1

1 n+m− 1

}
.

Proof. (a). If r < n− 1, then by the definition of the eccentrical graph, we have that ε(G ∨Km) ∼= G ∨Km and hence

Aε(G ∨Km) =

[
A(G) Jn×m
Jm×n Jm×m − Im

]
,

By Lemma 3.7, we have

Specε(G ∨Km) =

{
µ1 µ2 −(λ2 + 1) . . . −(λn + 1) −1
1 1 1 . . . 1 m− 1

}
.

where µ1 and µ2 are the roots of x2 − (n+m− r − 2)x+ (n− r − 1)(m− 1)− nm = 0.

(b). If r = n− 1, then by the definition of the eccentrical graph, we have ε(G ∨Km) ∼= Kn+m and hence

Specε(G ∨Km) =

{
n+m− 1 −1

1 n+m− 1

}
.

Theorem 3.7. Let G be a connected r-regular graph with n vertices. Let r, λ2, . . . , λn be the eigenvalues of the adjacency
matrix of G.

(a). If r < n− 1, then

Specε(G ∨ 2Km) =

{
n− r − 1 m 0 −(λ2 + 1) . . . −(λn + 1) −m

1 1 2m− 2 1 . . . 1 1

}
;

(b). If r = n− 1, then
Specε(G ∨ 2Km) =

{
µ1 µ2 0 −1 −m
1 1 2m− 2 n− 1 1

}
.

where µ1 and µ2 are the roots of x2 − (n+m− 1)x−m(n+ 1) = 0.

Proof. (a). If r < n− 1, by the definition of the eccentrical graph, we have

Aε(G ∨ 2Km) =

[
A(G) 0

0 B

]
,

where
B =

[
0 Jm×m

Jm×m 0

]
.

Also, we have
Spec(G) =

{
n− r − 1 −(λ2 + 1) . . . −(λn + 1)

1 1 . . . 1

}
and

Spec(B) =

{
m 0 −m
1 2m− 2 1

}
.

Therefore,
Specε(G ∨ 2Km) =

{
n− r − 1 m 0 −(λ2 + 1) . . . −(λn + 1) −m

1 1 2m− 2 1 . . . 1 1

}
.
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(b). If r = n− 1, then by the definition of the eccentrical graph, we have

Aε(G ∨ 2Km) =

[
Jn×n − In Jn×2m
J2m×n B

]
,

where
B =

[
0 Jm×m

Jm×m 0

]
.

By Lemma 3.4, we have
Jn×2m(λIn −B)−1J2m×n =

2m

λ−m
Jn×n.

By Schur complement formula, we have

det(λIn+2m −Aε(G ∨ 2Km)) = det(λI2m −B) det(λIn + In − Jn − Jn×2m(λIn −B)−1J2m×n)

= det(λI2m −B) det

(
λIn + In −

(
1 +

2m

λ−m

)
Jn

)

= (λ−m)(λ+m)

(
λ− n+ 1− 2mn

λ−m

)
λ2m−1(λ+ 1)n−1

= (λ+m)[λ2 − (m+ n− 1)λ−m(n+ 1)]λ2m−1(λ+ 1)n−1,

which yields the required result.
In the next theorem, we compute the ε-spectrum of the cocktail-party graph.

Theorem 3.8. If CP (n) is the cocktail-party graph on 2n vertices, then

Specε(CP (n)) =

{
1 −1
n n

}
.

Proof. Let K2n be the complete graph on 2n vertices. We delete n disjoint edges from the K2n to obtain CP (n) as follows:
First label K2n using the indices 1, 2, . . . , 2n in clockwise direction, and then delete the edges eij for i = 1, . . . , n and
j = n+ 1, n+ 2, . . . , 2n, only when i ≡ j ( mod n). The adjacency matrix of eccentrical graph ε(CP (n)) is given by

Aε
(
CP (n)

)
=

[
0n×n In×n
In×n 0n×n

]
.

Therefore, by Lemma 3.3, we have
Specε(CP (n)) =

{
1 −1
n n

}
.

Theorem 3.9. Let Kn1,...,nk
be the complete k-partite graph such that

∑k
i=1 ni = n where ni ≥ 1 and k ≤ n− 1. Then

Specε(Kn1,...,nk
) =

{
(−1)n n1 − 1 n2 − 1 . . . nk − 1
n− k 1 1 . . . 1

}
.

Proof. The adjacency matrix of the eccentrical graph ε(Kn1,...,nk
) is given by

Aε(Kn1,...,nk
) =


Jn1
− In1

0 . . . 0
0 Jn2

− In2
. . . 0

...
... . . . ...

0 0 . . . Jnk
− Ink

 .
Hence, the spectrum of ε(Kn1,...,nk

) is the union of eigenvalues of Jn1
− In1

, Jn2
− In2

,· · · , Jnk
− Ink

.
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