Research Article

On chemical trees with minimum augmented Zagreb index

Wei Gao*
Department of Mathematics, Pennsylvania State University at Abington, Abington, Pennsylvania, USA

(Received: 4 September 2023. Received in revised form: 27 October 2023. Accepted: 14 November 2023. Published online: 1 December 2023.)
© 2023 the author. This is an open-access article under the CC BY (International 4.0) license (www. creativecommons.org/licenses/by/4.0/).

Abstract

Let G be a simple connected graph with order at least 3, vertex set $V(G)$, and edge set $E(G)$. For a vertex $v \in V(G)$, denote by $d_{G}(v)$ the degree of v. The augmented Zagreb index of the graph G is denoted by $\mathcal{A Z}(G)$ and is defined as $\mathcal{A Z}(G)=\sum_{u v \in E(G)}\left(d_{G}(u) d_{G}(v) /\left(d_{G}(u)+d_{G}(v)-2\right)\right)^{3}$. In this paper, the minimum augmented Zagreb index of chemical trees of order n is determined. The extremal chemical trees of order n with the minimum augmented Zagreb index are also characterized.

Keywords: chemical tree; augmented Zagreb index; extremal tree.
2020 Mathematics Subject Classification: 05C05, 05C09, 05 C 92.

1. Introduction

All graphs considered in this paper are simple connected of order at least 3 . Let G be a such graph with vertex set $V(G)$ and edge set $E(G)$. For $v \in V(G)$, let $d_{G}(v)$ denote the degree of v and let $N_{G}(v)$ denote the set of neighbours of v. A path $P=v_{1} v_{2} \ldots v_{t}$ satisfying $d_{G}\left(v_{1}\right) \geq 3, d_{G}\left(v_{i}\right)=2$ when $2 \leq i \leq t-1$, and $d_{G}\left(v_{t}\right) \geq 3$, is called an internal path of length $t-1$. A vertex of degree greater than 2 is called a branching vertex.

The augmented Zagreb (AZ) index of G, denoted by $\mathcal{A Z}(G)$, is defined [3] as

$$
\mathcal{A Z}(G)=\sum_{u v \in E(G)} f\left(d_{G}(u), d_{G}(v)\right)
$$

where $f(x, y)=\left(\frac{x y}{x+y-2}\right)^{3}$. This index was shown to have the best predicting ability for a variety of physicochemical properties among several tested vertex-degree-based topological indices (see [4,5]). Hence, this topological index has attracted more and more attention in recent years. Consequently, various significant mathematical properties of the $A Z$ index were obtained. Most of the known results on this index can be found in [1,2,6-8, 10].

In [3], Furtula et al. proved that the star is the unique tree having the minimum augmented Zagreb index among n-vertex trees. Lin et al. [8] and Xiao et al. [10] completely characterized the trees with the maximum augmented Zagreb index by proving that the n-vertex balanced double star uniquely maximizes AZ index for $n \geq 19$.

A tree T is a chemical tree if $d_{T}(v) \leq 4$ for every $v \in V(T)$. Let \widetilde{T}_{n} be the set of all chemical trees of order n. A chemical tree $T \in \widetilde{T}_{n}$ is said to be an AZ-maximal/AZ-minimal chemical tree if T has the maximum/minimum AZ index among all chemical trees of n. In [9], the authors determined the maximum AZ index for chemical trees of order n, and the extremal chemical trees with the maximum $A Z$ index were characterized. In the present paper, the minimum AZ index of chemical trees of order n is determined. The AZ-minimal chemical trees of order n are also characterized. Theorems 3.1 and 3.2 are the main results of this paper.

Note that S_{n} is a chemical tree for every $n \leq 5$. Thus, by a result reported in [3], the AZ-minimal chemical tree of order n is the star S_{n} for $n \leq 5$. Consequently, we assume $n \geq 6$ in the rest of this paper.

2. Lemmas

For a tree $T \in \widetilde{T}_{n}$, a vertex v with $d_{T}(v)=i$ is called an i-degree vertex, and an edge $e=u v$ with $d_{T}(u)=i$ and $d_{T}(v)=j$ is called an (i, j)-edge. The notations $n_{i}(T)$ and $m_{i j}(T)$ denote the number of i-degree vertices and the number of (i, j)-edges of T, respectively.

[^0]Lemma 2.1 (see [6]). Let $f(x, y)=\left(\frac{x y}{x+y-2}\right)^{3}$ with $1 \leq x \leq 4$ and $1 \leq y \leq 4$. Then
(1) $f(1, y)$ is strictly decreasing on $y \geq 2$;
(2) $f(2, y)=8$;
(3) $f(3, y)$ and $f(4, y)$ are strictly increasing on y.

Lemma 2.2 (see [7]). Let $g(x)=\left(\frac{3 x}{x+1}\right)^{3}-\left(\frac{4 x}{x+2}\right)^{3}$ with $1 \leq x \leq 4$. Then $g(x)$ is strictly decreasing on x.
Lemma 2.3. Let $T \in \widetilde{T}_{n}$ be an AZ-minimal chemical tree. Then $n_{3}(T)+n_{4}(T) \geq 1$.
Proof. Consider the tree $T_{1} \in \widetilde{T}_{n}$ depicted in Figure 2.1. Then

$$
\mathcal{A Z}\left(T_{1}\right)=2 f(1,3)+8(n-3)=\frac{27}{4}+8(n-3)<8(n-1)=\mathcal{A} \mathcal{Z}\left(P_{n}\right)
$$

which implies that the path P_{n} is not an AZ-minimal chemical tree. Thus, $n_{3}(T)+n_{4}(T) \geq 1$.

Figure 2.1: The chemical tree T_{1} of order n, considered in the proof of Lemma 2.3.
From the definition of the AZ index, the next lemma follows.
Lemma 2.4. Let $T \in \widetilde{T}_{n}$ be tree as depicted in Figure 2.2, where $d_{T}(u)=d_{T}(v) \geq 2$. Let $T^{\prime}=T-u u_{1}-v v_{1}+u v_{1}+v u_{1}$. Then $\mathcal{A Z}(T)=\mathcal{A Z}\left(T^{\prime}\right)$.

T

T^{\prime}

Figure 2.2: The chemical trees T and T^{\prime} considered in Lemma 2.4.
Lemma 2.5. If $T \in \widetilde{T}_{n}$ is an AZ-minimal chemical tree with $n \geq 7$, then $m_{12}(T)=0$.
Proof. Suppose to the contrary that $m_{12}(T) \neq 0$. By Lemma 2.3, $n_{3}(T)+n_{4}(T) \geq 1$. Then, T is of the form as depicted in Figure 2.3, where $t \geq 2$ and $d_{T}(v) \geq 3$.

T

T_{1}

T_{2}

Figure 2.3: The chemical trees T, T_{1}, and T_{2}, considered in the proof of Lemma 2.5.
If $t \geq 3$, then let $T^{\prime}=T_{1}=T-v_{t-1} v_{t}+v_{t-2} v_{t}$ (see Figure 2.3). So, $T^{\prime} \in \widetilde{T}_{n}$. By Lemma 2.1, $f\left(3, d_{T}(v)\right) \leq f(3,4)=\frac{1728}{125}$. Thus,

$$
\mathcal{A Z}\left(T^{\prime}\right)-\mathcal{A Z}(T)= \begin{cases}2 f(1,3)+f\left(3, f\left(3, d_{T}(v)\right)-24 \leq \frac{27}{4}+\frac{1728}{125}-24=-\frac{1713}{500}\right. & \text { if } t=3 \\ 2 f(1,3)-16=-\frac{37}{4} & \text { if } t \geq 4\end{cases}
$$

Hence, we have $\mathcal{A Z}\left(T^{\prime}\right)<\mathcal{A Z}(T)$, a contradiction. Therefore, $t=2$. Since $n \geq 7$, there is a vertex $x \in N_{T}(v)$ with $x \neq v_{1}$ such that $d_{T}(x) \geq 2$. Without loss of generality, we assume that $d_{T}(u) \geq 2$. Let $T^{\prime}=T_{2}=T-v u-v_{1} v_{2}+v v_{2}+v_{2} u$ (see Figure 2.3). Then, $T^{\prime} \in \widetilde{T}_{n}$ and by Lemma 2.1, $\mathcal{A Z}\left(T^{\prime}\right)-\mathcal{A Z}(T)=f\left(1, d_{T}(v)\right)-f\left(d_{T}(u), d_{T}(v)\right)<0$, which gives $\mathcal{A Z}\left(T^{\prime}\right)<\mathcal{A Z}(T)$, a contradiction.

Lemma 2.6. Let $T \in \widetilde{T}_{n}$ be an AZ-minimal chemical tree. Then $m_{22}(T) \leq 2$.
Proof. Suppose to the contrary that $m_{22}(T) \geq 3$. Then by Lemma 2.5, $m_{12}(T)=0$, which implies that every (2, 2)-edge is on an internal path of T. By Lemma 2.4, we may assume that there is at most one internal path of T of length greater than 2. So, there is an internal path of T of length $t \geq 5$; that is, T is of the form as depicted in Figure 2.4, where $t \geq 5$, $d_{T}(v) \geq 3$, and $d_{T}\left(v_{t}\right) \geq 3$. Let $T^{\prime}=T-v_{3} v_{4}+v_{2} v_{4}$ (see Figure 2.4). Then $T^{\prime} \in \widetilde{T}_{n}$ and

$$
\mathcal{A Z}\left(T^{\prime}\right)-\mathcal{A Z}(T)=f(1,3)-8=\frac{27}{8}-8=-\frac{37}{8}<0
$$

which yields $\mathcal{A Z}\left(T^{\prime}\right)<\mathcal{A Z}(T)$, a contradiction.

T

T^{\prime}

Figure 2.4: The chemical trees T and T^{\prime} considered in the proof of Lemma 2.6.

Lemma 2.7. Let $T \in \widetilde{T}_{n}$ be an AZ-minimal chemical tree. If $m_{22}(T) \neq 0$, then no two branching vertices are adjacent; that is, $m_{33}(T)=m_{34}(T)=m_{44}(T)=0$.

T^{\prime}

Figure 2.5: The chemical trees T and T^{\prime} considered in the proof of Lemma 2.7.
Proof. Suppose to the contrary that $m_{22}(T) \neq 0$, and $u_{1}, u_{2} \in V(T)$ are two adjacent branching vertices. Then T is of the form as depicted in Figure 2.5, where $d_{T}\left(u_{1}\right) \geq 3$, and $d_{T}\left(u_{2}\right) \geq 3$. Take $T^{\prime}=T-v_{1} v_{2}-v_{2} v_{3}-u_{1} u_{2}+v_{1} v_{3}+u_{1} v_{2}+v_{2} u_{2}$ as depicted in Figure 2.5. Then $T^{\prime} \in \widetilde{T}_{n}$. By Lemma 2.1, $f\left(d_{T}\left(u_{1}\right), d_{T}\left(u_{2}\right)\right) \geq f(3,3)=\frac{729}{64}$. Hence,

$$
\mathcal{A Z}\left(T^{\prime}\right)-\mathcal{A Z}(T)=8-f\left(d_{T}\left(u_{1}\right), d_{T}\left(u_{2}\right)\right) \leq 8-\frac{729}{64}=-\frac{217}{64}<0
$$

that is, $\mathcal{A Z}\left(T^{\prime}\right)<\mathcal{A Z}(T)$, a contradiction.
Lemma 2.8. Let $T \in \widetilde{T}_{n}$ be an AZ-minimal chemical tree. If $m_{22}(T) \neq 0$, then $n_{3}(T)=0$.
Proof. Suppose to the contrary that $m_{22}(T) \neq 0$ and $n_{3}(T) \neq 0$. Then T is of the form as depicted in Figure 2.6. By Lemma 2.7, no two branching vertices are adjacent. Then, $d_{T}\left(u_{1}\right)=2$ and $d_{T}\left(u_{i}\right) \leq 2$ for $i=2,3$.

T

T^{\prime}

Figure 2.6: The chemical trees T and T^{\prime} considered in the proof of Lemma 2.8.
Let $T^{\prime}=T-v_{1} v_{2}-v_{2} v_{3}+v_{1} v_{3}+u v_{2}$ (see Figure 2.6). By Lemma 2.2, $f\left(4, d_{T}\left(u_{i}\right)\right)-f\left(3, d_{T}\left(u_{i}\right)\right) \leq f(4,2)-f(3,2)=0$ for $i=2,3$. Thus,

$$
\mathcal{A Z}\left(T^{\prime}\right)-\mathcal{A Z}(T)=f(1,4)+\sum_{i=2}^{3}\left(f\left(4, d_{T}\left(u_{i}\right)\right)-f\left(3, d_{T}\left(u_{i}\right)\right)\right)-8 \leq \frac{64}{27}-8=-\frac{152}{27}<0
$$

that is, $\mathcal{A Z}\left(T^{\prime}\right)<\mathcal{A Z}(T)$, a contradiction.
Lemma 2.9. Let $T \in \widetilde{T}_{n}$ be an AZ-minimal chemical tree, where $n \geq 7$. Then $m_{14}(T) \neq 0$.
Proof. Suppose to the contrary that $m_{14}(T)=0$. Then by Lemma 2.5, $m_{12}(T)=0$, and so $m_{13}(T) \neq 0$ and $n_{3}(T) \neq 0$. By Lemma 2.8, $m_{22}(T)=0$. Noting that $n \geq 7$, we have $n_{3}(T) \geq 2$. Then T is of the form as depicted in Figure 2.7, where $d_{T}(u) \geq 2$ and $d_{T}(v) \geq 2$. Without loss of generality, assume that $d_{T}(u) \geq d_{T}(v)$.

T

Figure 2.7: The chemical trees T and T^{\prime} considered in the proof of Lemma 2.9.
If $d_{T}(u) \geq 3$, then let $T^{\prime}=T-u_{1} u_{2}-u_{1} u_{3}-v v_{1}+v u_{2}+u_{2} v_{1}+v_{1} u_{3}$, as depicted in Figure 2.7. So $T^{\prime} \in \widetilde{T}_{n}$. By Lemma 2.1, $f\left(1, d_{T}(u)\right) \leq f(1,2)=8, f\left(3, d_{T}(u)\right) \geq f(3,3)=\frac{729}{64}$, and $f\left(3, d_{T}(v)\right) \geq f(3,2)=8$. Therefore,
$\mathcal{A Z}\left(T^{\prime}\right)-\mathcal{A Z}(T)=16+3 f(1,4)+f\left(1, d_{T}(u)\right)-4 f(1,3)-f\left(3, d_{T}(u)\right)-f\left(3, d_{T}(v)\right) \leq 16+\frac{64}{9}+8-\frac{27}{2}-\frac{729}{64}-8=-\frac{1025}{576}<0$,

Consequently, we have $\mathcal{A Z}\left(T^{\prime}\right)<\mathcal{A Z}(T)$, a contradiction.
If $d_{T}(u)=d_{T}(v)=2$, then let $N_{T}(u)=\left\{u_{1}, u_{0}\right\}$ and take $T^{\prime \prime}=T-u u_{1}-u_{1} u_{3}-v v_{1}+v u_{1}+u_{2} v_{1}+v_{1} u_{3}$ (see Figure 2.8). So, $T^{\prime \prime} \in \widetilde{T}_{n}$. Note that $m_{22}(T)=0$. Then, $d_{T}\left(u_{0}\right) \geq 3$ and $f\left(1, d_{T}\left(u_{0}\right)\right) \leq f(1,3)=\frac{27}{8}$. Therefore,

$$
\mathcal{A Z}\left(T^{\prime \prime}\right)-\mathcal{A Z}(T)=3 f(1,4)+f\left(1, d_{T}\left(u_{0}\right)\right)-4 f(1,3) \leq \frac{64}{9}+\frac{27}{8}-\frac{27}{2}=-\frac{217}{72}<0
$$

which gives $\mathcal{A Z}\left(T^{\prime \prime}\right)<\mathcal{A Z}(T)$, a contradiction.

Figure 2.8: The chemical trees T and $T^{\prime \prime}$ considered in the proof of Lemma 2.9.

Lemma 2.10. Let $T \in \widetilde{T}_{n}$ be an AZ-minimal chemical tree, where $n \geq 8$. Then $m_{44}(T)=0$.
Proof. Suppose to the contrary that $m_{44}(T) \neq 0$. By Lemma 2.9, $m_{14}(T) \neq 0$. Then by Lemma 2.4, we may assume that T is of the form as depicted in Figure 2.9. Let $T^{\prime}=T-v u+v_{1} u$ (see Figure 2.9). Then $T^{\prime} \in \widetilde{T}_{n}$. By Lemma 2.2, $f\left(3, d_{T}\left(v_{i}\right)\right)-f\left(4, d_{T}\left(v_{i}\right)\right) \leq f(3,1)-f(4,1)=\frac{217}{216}$ for $i=2,3$. Thus,

$$
\mathcal{A Z}\left(T^{\prime}\right)-\mathcal{A Z}(T)=16+\sum_{i=2}^{3}\left(f\left(3, d_{T}\left(v_{i}\right)\right)-f\left(4, d_{T}\left(v_{i}\right)\right)\right)-f(4,4)-f(1,4) \leq 16+\frac{217}{108}-\frac{512}{27}-\frac{64}{27}=-\frac{359}{108}<0
$$

that is, $\mathcal{A Z}\left(T^{\prime}\right)<\mathcal{A Z}(T)$, a contradiction.

T

T^{\prime}

Figure 2.9: The chemical trees T and T^{\prime} considered in the proof of Lemma 2.10.

Lemma 2.11. Let $T \in \widetilde{T}_{n}$ be an AZ-minimal chemical tree with $n \geq 8$. Then $m_{34}(T)=0$.
Proof. Suppose to the contrary that $m_{34}(T) \neq 0$. By Lemma 2.9, $m_{14}(T) \neq 0$. Then by Lemma 2.4, we may assume that T is of the form as depicted in Figure 2.10. Without loss of generality, assume that $d_{T}\left(v_{2}\right) \geq d_{T}\left(v_{3}\right)$ and $d_{T}\left(v_{5}\right) \geq d_{T}\left(v_{6}\right)$.

T

T_{3}

Figure 2.10: The chemical trees T, T_{1}, T_{2}, and T_{3}, considered in the proof of Lemma 2.11.
Case 1. $d_{T}\left(v_{5}\right) \geq 2$ and $d_{T}\left(v_{6}\right) \geq 2$.
Take $T^{\prime}=T_{1}=T-v_{4} v_{5}+v_{1} v_{5}$ (see Figure 2.10). Then $T^{\prime} \in \widetilde{T}_{n}$. By Lemma 2.1, $f\left(3, d_{T}\left(v_{i}\right)\right) \geq f(3,2)=8$ for $i=5,6$. Thus,

$$
\mathcal{A Z}\left(T^{\prime}\right)-\mathcal{A Z}(T)=32-f\left(3, d_{T}\left(v_{5}\right)\right)-f\left(3, d_{T}\left(v_{6}\right)\right)-f(3,4)-f(1,4) \leq 32-16-\frac{1728}{125}-\frac{64}{27}=-\frac{656}{3375}<0
$$

that is, $\mathcal{A Z}\left(T^{\prime}\right)<\mathcal{A Z}(T)$, a contradiction.

Case 2. $d_{T}\left(v_{5}\right) \geq 2$ and $d_{T}\left(v_{6}\right)=1$.
Let $T^{\prime}=T_{2}=T-v_{4} v_{5}+v_{6} v_{5}$ (see Figure 2.10). Then $T^{\prime} \in \widetilde{T}_{n}$. By Lemma 2.1, $f\left(3, d_{T}\left(v_{5}\right)\right) \geq f(3,2)=8$. Hence,

$$
\mathcal{A Z}\left(T^{\prime}\right)-\mathcal{A Z}(T)=24-f(1,3)-f(3,4)-f\left(3, d_{T}\left(v_{5}\right)\right) \leq 24-\frac{27}{8}-\frac{1728}{125}-8=-\frac{1199}{1000}<0
$$

which yields $\mathcal{A Z}\left(T^{\prime}\right)<\mathcal{A Z}(T)$, a contradiction.
Case 3. $d_{T}\left(v_{5}\right)=d_{T}\left(v_{6}\right)=1$.
Since $n \geq 8$, we have $d_{T}\left(v_{2}\right) \geq 2$. Let $T^{\prime}=T_{3}=T-v_{2} v-v_{4} v_{5}-v_{4} v_{6}+v_{2} v_{5}+v_{5} v_{6}+v_{6} v$ (see Figure 2.10). Then $T^{\prime} \in \widetilde{T}_{n}$. By Lemma 2.1, $f\left(4, d_{T}\left(v_{2}\right)\right) \geq f(4,2)=8$. Therefore,

$$
\mathcal{A Z}\left(T^{\prime}\right)-\mathcal{A Z}(T)=24+f(1,4)-f(3,4)-2 f(1,3)-f\left(4, d_{T}\left(v_{2}\right)\right) \leq 24+\frac{64}{27}-\frac{1728}{125}-\frac{27}{4}-8=-\frac{29749}{13500}<0
$$

that is, $\mathcal{A Z}\left(T^{\prime}\right)<\mathcal{A Z}(T)$, a contradiction.
Lemma 2.12. Let $T \in \widetilde{T}_{n}$ be an AZ-minimal chemical tree with $n \geq 8$. Then $m_{33}(T)=0$.
Proof. Suppose to the contrary that $m_{33}(T) \neq 0$. By Lemma 2.11, $m_{34}(T)=0$. Then by Lemma 2.4, we may assume that T is of the form as depicted in Figure 2.11, where $d_{T}\left(u_{i}\right) \leq 2$ and $d_{T}\left(v_{i}\right) \leq 3$ for $i=1,2$. Without loss of generality, assume that $d_{T}\left(u_{2}\right) \geq d_{T}\left(u_{1}\right), d_{T}\left(v_{2}\right) \geq d_{T}\left(v_{1}\right)$, and $d_{T}\left(v_{2}\right) \geq d_{T}\left(u_{2}\right)$. Let $T^{\prime}=T-v v_{1}+u v_{1}$ as (see Figure 2.11). Then $T^{\prime} \in \widetilde{T}_{n}$ and

$$
\mathcal{A Z}\left(T^{\prime}\right)-\mathcal{A Z}(T)=16+\sum_{i=1}^{2}\left(f\left(4, d_{T}\left(u_{i}\right)\right)-f\left(3, d_{T}\left(u_{i}\right)\right)\right)+f\left(4, d_{T}\left(v_{1}\right)\right)-f(3,3)-f\left(3, d_{T}\left(v_{1}\right)\right)-f\left(3, d_{T}\left(v_{2}\right)\right)
$$

If $d_{T}\left(u_{2}\right)=1$, then $d_{T}\left(u_{1}\right)=1$. Since $n \geq 8$, we have $d_{T}\left(v_{2}\right) \geq 2$. By Lemmas 2.1 and $2.2, f\left(3, d_{T}\left(v_{2}\right)\right) \geq f(3,2)=8$ and $f\left(4, d_{T}\left(v_{1}\right)\right)-f\left(3, d_{T}\left(v_{1}\right)\right) \leq f(4,3)-f(3,3)=\frac{19467}{8000}$. Thus,

$$
\mathcal{A Z}\left(T^{\prime}\right)-\mathcal{A Z}(T) \leq 16+2\left(\frac{64}{27}-\frac{27}{8}\right)+\frac{19467}{8000}-\frac{729}{64}-8=-\frac{320383}{108000}<0
$$

that is, $\mathcal{A Z}\left(T^{\prime}\right)<\mathcal{A Z}(T)$, a contradiction. Hence, $d_{T}\left(u_{2}\right)=2$, $d_{T}\left(u_{1}\right) \leq 2$, and $d_{T}\left(v_{2}\right) \geq 2$. By Lemmas 2.1 and 2.2, $f\left(3, d_{T}\left(v_{2}\right)\right) \geq f(3,2)=8, f\left(4, d_{T}\left(v_{1}\right)\right)-f\left(3, d_{T}\left(v_{1}\right)\right) \leq f(4,3)-f(3,3)=\frac{19467}{8000}$, and $f\left(4, d_{T}\left(u_{i}\right)\right)-f\left(3, d_{T}\left(u_{i}\right)\right) \leq f(4,2)-f(3,2)=0$ for $i=1,2$. Consequently, we have

$$
\mathcal{A Z}\left(T^{\prime}\right)-\mathcal{A Z}(T) \leq 16+\frac{19467}{8000}-\frac{729}{64}-8=-\frac{3829}{4000}<0
$$

a contradiction.

T

Figure 2.11: The chemical trees T and T^{\prime} considered in the proof of Lemma 2.12.

Lemma 2.13. Let $T \in \widetilde{T}_{n}$ be an AZ-minimal chemical tree with $n \geq 13$. Then $m_{13}(T)=0$.
Proof. Suppose to the contrary that $m_{13}(T) \neq 0$. From Lemmas 2.8, 2.9, 2.10, 2.11, and 2.12, it follows that $m_{14}(T) \neq 0$ and $m_{22}(T)=m_{44}(T)=m_{34}(T)=m_{33}(T)=0$. Then, for every 3-degree or 4-degree vertex $v \in V(T), d_{T}(x) \leq 2$ for $x \in N_{T}(v)$, and there is at least one 2-degree vertex in $N_{T}(v)$.

Case 1. $n_{3}(T) \geq 2$ and there is a 3-degree vertex $u \in V(T)$ such that $N_{T}(u)$ contains at last two 2-degree vertices.
In this case, T is of the form as depicted in Figure 2.12, where $d_{T}\left(v_{0}\right)=d_{T}\left(u_{0}\right)=3, d_{T}\left(v_{2}\right) \leq 2$, and $d_{T}\left(u_{2}\right) \leq 2$. Take $T^{\prime}=$ $T_{1}=T-u u_{2}+v u_{2}$, as depicted in Figure 2.12. So, $T^{\prime} \in \widetilde{T}_{n}$. By Lemma 2.2, $f\left(4, d_{T}\left(v_{2}\right)\right)-f\left(3, d_{T}\left(v_{2}\right)\right) \leq f(4,2)-f(3,2)=0$ and $f\left(4, d_{T}\left(u_{2}\right)\right)-f\left(3, d_{T}\left(u_{2}\right)\right) \leq f(4,2)-f(3,2)=0$. Thus,

$$
\mathcal{A Z}\left(T^{\prime}\right)-\mathcal{A Z}(T)=f(1,4)+f\left(4, d_{T}\left(v_{2}\right)\right)+f\left(4, d_{T}\left(u_{2}\right)\right)-f(1,3)-f\left(3, d_{T}\left(v_{2}\right)\right)-f\left(3, d_{T}\left(u_{2}\right)\right) \leq \frac{64}{27}-\frac{27}{8}=-\frac{217}{216}<0
$$

that is, $\mathcal{A Z}\left(T^{\prime}\right)<\mathcal{A Z}(T)$, a contradiction.

T

Figure 2.12: The chemical trees T and T_{1} considered in the proof of Lemma 2.13.

Case 2. $n_{3}(T) \geq 2$ and for every 3-degree vertex $v \in V(T), N_{T}(v)$ contains a unique 2-degree vertex.
In this case, T is of the form as depicted in Figure 2.13, where $d_{T}\left(u_{0}\right) \geq 3, d_{T}\left(v_{0}\right) \geq 3, d_{T}\left(u_{2}\right) \leq 2$, and $d_{T}\left(v_{2}\right) \leq 2$. Note that $n \geq 13$. So, $u_{0} \neq v$. Take $T^{\prime}=T_{2}=T-u u_{1}-u u_{2}-v_{1} v+v_{1} u_{3}+u v+v u_{2}$, as depicted in Figure 2.13. Then $T^{\prime} \in \widetilde{T}_{n}$. By Lemma 2.1, $f\left(1, d_{T}\left(u_{0}\right)\right) \leq f(1,3)=\frac{27}{8}$. Thus,

$$
\mathcal{A Z}\left(T^{\prime}\right)-\mathcal{A Z}(T)=3 f(1,4)+f\left(1, d_{T}\left(u_{0}\right)\right)-4 f(1,3) \leq \frac{64}{9}+\frac{27}{8}-\frac{27}{2}=-\frac{217}{72}<0
$$

that is, $\mathcal{A Z}\left(T^{\prime}\right)<\mathcal{A Z}(T)$, a contradiction.

Figure 2.13: The chemical trees T and T_{2} considered in the proof of Lemma 2.13.
Case 3. $n_{3}(T)=1$.
Note that $n \geq 13$. Then $n_{4}(T) \neq 0$. If for every 4-degree vertex $w \in V(T), N_{T}(w)$ contains three 1-degree vertices, then we have $n_{4}(T) \leq 2$ and $n=4 n_{4}(T)+4 \leq 12$ (since $n_{3}(T)=1$ and $m_{13}(T) \neq 0$), which is a contradiction. Thus, there is a 4-degree vertex $u \in V(T)$ such that $N_{T}(u)$ contains at lest two 2-degree vertices. That is, T is of the form as depicted in Figure 2.14. Let $T^{\prime}=T_{3}=T-u_{3} u_{4}+v_{3} u_{4}$ (see Figure 2.14). Then, $T^{\prime} \in \widetilde{T}_{n}$ and

$$
\mathcal{A Z}\left(T^{\prime}\right)-\mathcal{A Z}(T)=f(1,4)-f(1,3)=\frac{64}{27}-\frac{27}{8}=-\frac{217}{216}<0
$$

that is, $\mathcal{A Z}\left(T^{\prime}\right)<\mathcal{A Z}(T)$, a contradiction.

Figure 2.14: The chemical trees T and T_{3} considered in the proof of Lemma 2.13.

Lemma 2.14. Let $T \in \widetilde{T}_{n}$ be an AZ-minimal chemical tree with $n \geq 13$. Then $n_{3}(T) \leq 2$.
Proof. Suppose to the contrary that $n_{3}(T) \geq 3$. Let $u, v \in V(T)$ be two 3 -degree vertices. By Lemmas 2.11, 2.12, and 2.13, all vertices in $N_{T}(u)$ and $N_{T}(v)$ are 2-degree vertices. Then, T is of the form as depicted in Figure 2.15, where $d_{T}\left(u_{i}\right)=2$ and $d_{T}\left(v_{i}\right)=2$ for $i=1,2,3$. Take $T^{\prime}=T-v v_{3}+u v_{3}$ (see Figure 2.15). Then, $T^{\prime} \in \widetilde{T}_{n}$ and $\mathcal{A} \mathcal{Z}\left(T^{\prime}\right)=\mathcal{A Z}(T)$. Note that $n_{3}\left(T^{\prime}\right)=n_{3}(T)-2 \geq 1$, and both $v v_{1}, v v_{2}$, are (2,2)-edges of T^{\prime}. By Lemma 2.8, it is a contradiction.

T

Figure 2.15: The chemical trees T and T^{\prime} considered in the proof of Lemma 2.14.

3. AZ-minimal chemical trees of order $n \geq 6$

For any chemical tree $T \in \widetilde{T}_{n}$, the following equations hold:

$$
\begin{align*}
& n_{1}(T)+n_{2}(T)+n_{3}(T)+n_{4}(T)=n, \tag{1}\\
& n_{1}(T)+2 n_{2}(T)+3 n_{3}(T)+4 n_{4}(T)=2(n-1), \tag{2}\\
& m_{12}(T)+m_{13}(T)+m_{14}(T)=n_{1}(T), \tag{3}\\
& m_{12}(T)+2 m_{22}(T)+m_{23}(T)+m_{24}(T)=2 n_{2}(T), \tag{4}\\
& m_{13}(T)+m_{23}(T)+2 m_{33}(T)+m_{34}(T)=3 n_{3}(T), \tag{5}\\
& m_{14}(T)+m_{24}(T)+m_{34}(T)+2 m_{44}(T)=4 n_{4}(T) . \tag{6}
\end{align*}
$$

Note that

$$
n-1=|E(T)|=m_{12}(T)+m_{13}(T)+m_{14}(T)+m_{22}(T)+m_{23}(T)+m_{24}(T)+m_{33}(T)+m_{34}(T)+m_{44}(T)
$$

and for $y=1,2,3,4$,

$$
f(2, y)=8, f(1,3)=\frac{27}{8}, f(1,4)=\frac{64}{27}, f(3,3)=\frac{729}{64}, f(3,4)=\frac{1728}{125}, f(4,4)=\frac{512}{27}
$$

Thus,

$$
\begin{align*}
& \mathcal{A Z}(T)=\sum_{1 \leq i \leq j \leq 4} f(i, j) m_{i j}(T) \\
= & 8\left(m_{12}(T)+m_{22}(T)+m_{23}(T)+m_{24}(T)\right)+\frac{27}{8} m_{13}(T)+\frac{64}{27} m_{14}(T)+\frac{729}{64} m_{33}(T)+\frac{1728}{125} m_{34}(T)+\frac{512}{27} m_{44}(T) \\
= & 8(n-1)+\left(\frac{27}{8}-8\right) m_{13}(T)+\left(\frac{64}{27}-8\right) m_{14}(T)+\left(\frac{729}{64}-8\right) m_{33}(T)+\left(\frac{1728}{125}-8\right) m_{34}(T)+\left(\frac{512}{27}-8\right) m_{44}(T) \\
= & 8(n-1)-\frac{37}{8} m_{13}(T)-\frac{152}{27} m_{14}(T)+\frac{217}{64} m_{33}(T)+\frac{728}{125} m_{34}(T)+\frac{296}{27} m_{44}(T) . \tag{7}
\end{align*}
$$

Theorem 3.1. Let $6 \leq n \leq 12$. Then $T \in \widetilde{T}_{n}$ is an AZ-minimal chemical tree if and only if T is of the form as depicted in Figure 3.1 in terms of n.

$n=7$

$n=8$

$$
n=9
$$

$n=10$

$n=11$

$n=12$

Figure 3.1: The AZ-minimal chemical trees of order $6 \leq n \leq 12$.

Figure 3.2: The chemical trees $T_{6,1}, T_{6,2}$ and $T_{6,3}$ of order 6 .

Proof. Let $T \in \widetilde{T}_{n}$ be an AZ-minimal chemical tree, where $6 \leq n \leq 12$. By Lemma 2.3, $n_{3}(T)+n_{4}(T) \geq 1$.
If $n=6$, then T is one of the three trees $T_{6,1}, T_{6,2}, T_{6,3}$, depicted in Figure 3.2. By elementary calculations, one has $\mathcal{A Z}\left(T_{6,1}\right)>\mathcal{A Z}\left(T_{6,2}\right)>\mathcal{A Z}\left(T_{6,3}\right)$. Thus, $T=T_{6,3}$.

Figure 3.3: The chemical tree $T_{7,1}$ of order 7 .

If $n=7$, then by Lemmas 2.5 and 2.9, $m_{12}(T)=0$ and $m_{14}(T) \neq 0$. Hence, $T=T_{7,1}$ (see Figure 3.3).
Finally, assume that $8 \leq n \leq 12$. By Lemmas 2.5, 2.6, 2.8, 2.9, 2.10, 2.11 and 2.12, $m_{12}(T)=m_{33}(T)=m_{34}(T)=$ $m_{44}(T)=0, m_{14}(T) \neq 0, m_{22}(T) \leq 2$, and if $n_{3}(T) \neq 0$ then $m_{22}(T)=0$. Thus, $T=T_{8,1}$ if $n=8, T=T_{9,1}$ if $n=9, T=T_{10,1}$ if $n=10, T \in\left\{T_{11,1}, T_{11,2}, T_{11,3}\right\}$ if $n=11$, and $T \in\left\{T_{12,1}, T_{12,2}\right\}$ if $n=12$, (see Figure 3.4). By simple calculations, one has $\mathcal{A Z}\left(T_{11,1}\right)<\mathcal{A Z}\left(T_{11,2}\right)<\mathcal{A Z}\left(T_{11,3}\right)$ and $\mathcal{A Z}\left(T_{12,1}\right)<\mathcal{A Z}\left(T_{12,2}\right)$. Therefore, $T=T_{11,1}$ if $n=11$, and $T=T_{12,1}$ if $n=12$.

Figure 3.4: The chemical trees of orders $8-12$ used in the proof of Theorem 3.1.

Theorem 3.2. Let $n \geq 13$ and $T \in \widetilde{T}_{n}$.
(1). If $n \equiv 0(\bmod 4)$, then

$$
\mathcal{A Z}(T) \geq \frac{4(35 n-92)}{27}
$$

The equation holds if and only if $n_{3}(T)=1, n_{4}(T)=\frac{n-4}{4}, m_{12}(T)=m_{13}(T)=m_{22}(T)=m_{33}(T)=m_{34}(T)=m_{44}(T)=0$, and $m_{14}(T)=\frac{n+2}{2}$.
(2). If $n \equiv 1(\bmod 4)$, then

$$
\mathcal{A Z}(T) \geq \frac{4(35 n-111)}{27}
$$

The equation holds if and only if $n_{3}(T)=0, n_{4}(T)=\frac{n-1}{4}, m_{12}(T)=m_{13}(T)=m_{22}(T)=m_{33}(T)=m_{34}(T)=m_{44}(T)=0$, and $m_{14}(T)=\frac{n+3}{2}$.
(3). If $n \equiv 2(\bmod 4)$, then

$$
\mathcal{A Z}(T) \geq \frac{4(35 n-92)}{27} .
$$

The equation holds if and only if $n_{3}(T)=0, n_{4}(T)=\frac{n-2}{4}, m_{12}(T)=m_{13}(T)=m_{33}(T)=m_{34}(T)=m_{44}(T)=0$, $m_{22}(T)=1$, and $m_{14}(T)=\frac{n+2}{2}$.
(4). If $n \equiv 3(\bmod 4)$, then

$$
\mathcal{A Z}(T) \geq \frac{4(35 n-73)}{27} .
$$

The equation holds if and only if $T=T_{1}$ when $n \in\{15,19\}$, while $T \in\left\{T_{1}, T_{2}\right\}$ when $n \geq 23$, where $n_{3}\left(T_{1}\right)=0$, $n_{4}\left(T_{1}\right)=\frac{n-3}{4}, m_{12}\left(T_{1}\right)=m_{13}\left(T_{1}\right)=m_{33}\left(T_{1}\right)=m_{34}\left(T_{1}\right)=m_{44}\left(T_{1}\right)=0, m_{22}\left(T_{1}\right)=2, m_{14}\left(T_{1}\right)=\frac{n+1}{2}, n_{3}\left(T_{2}\right)=2$, $n_{4}\left(T_{2}\right)=\frac{n-7}{4}, m_{12}\left(T_{2}\right)=m_{13}\left(T_{2}\right)=m_{22}\left(T_{2}\right)=m_{33}\left(T_{2}\right)=m_{34}\left(T_{2}\right)=m_{44}\left(T_{2}\right)=0$, and $m_{14}\left(T_{2}\right)=\frac{n+1}{2}$.

For every considered case, an AZ-minimal chemical tree $T \in \widetilde{T}_{n}$ is shown in Figure 3.5.

$T \in \widetilde{T}_{n}($ where $n \geq 13$ and $n \equiv 2(\bmod 4))$

$$
T_{1} \in \widetilde{T}_{n}(\text { where } n \geq 13 \text { and } n \equiv 3(\bmod 4))
$$

$T_{2} \in \widetilde{T}_{n}($ where $n \geq 23$ and $n \equiv 3(\bmod 4))$

Figure 3.5: The AZ-minimal chemical trees of orders $n \geq 13$.
Proof. Let $T \in \widetilde{T}_{n}$ be an AZ-minimal chemical tree, where $n \geq 13$. By Lemmas 2.5, 2.6, and 2.8-2.14, we have that $m_{12}(T)=m_{13}(T)=m_{33}(T)=m_{34}(T)=m_{44}(T)=0, m_{14}(T) \neq 0, m_{22}(T) \leq 2, n_{3}(T) \leq 2$, and if $n_{3}(T) \neq 0$ then $m_{22}(T)=0$.

Case 1. $n_{3}(T)=0$.
By (1), (2) and (3), one has $n_{1}(T)=2 n_{4}(T)+2=m_{14}(T)$ and $n_{2}(T)=n-2-3 n_{4}(T)$. Then, from (4) and (5) it follows that

$$
4 n_{4}(T)=m_{14}(T)-2 m_{22}(T)+2 n_{2}(T)=2 n_{4}(T)+2-2 m_{22}(T)+2 n-4-6 n_{4}(T)
$$

that is, $4 n_{4}(T)=n-1-m_{22}(T)$.
If $m_{22}(T)=0$, then $n_{4}(T)=\frac{n-1}{4}$. Thus, $n \equiv 1(\bmod 4)$ and $m_{14}(T)=2 n_{4}(T)+2=\frac{n+3}{2}$. Now, by using (7), one has

$$
\begin{equation*}
\mathcal{A Z}(T)=8(n-1)-\frac{152}{27} \cdot \frac{n+3}{2}=\frac{4(35 n-111)}{27} \tag{8}
\end{equation*}
$$

If $m_{22}(T)=1$, then $n_{4}(T)=\frac{n-2}{4}$. So, $n \equiv 2(\bmod 4)$ and $m_{14}(T)=\frac{n+2}{2}$. From (7), it follows that

$$
\begin{equation*}
\mathcal{A Z}(T)=8(n-1)-\frac{152}{27} \cdot \frac{n+2}{2}=\frac{4(35 n-92)}{27} \tag{9}
\end{equation*}
$$

If $m_{22}(T)=2$, then $n_{4}(T)=\frac{n-3}{4}$. Hence, $n \equiv 3(\bmod 4)$ and $m_{14}(T)=\frac{n+1}{2}$. By utilizing (7), one has

$$
\begin{equation*}
\mathcal{A Z}(T)=8(n-1)-\frac{152}{27} \cdot \frac{n+1}{2}=\frac{4(35 n-73)}{27} \tag{10}
\end{equation*}
$$

Case 2. $n_{3}(T) \neq 0$.
In this case, $m_{22}(T)=0$ and $n_{3}(T) \leq 2$. By using (1), (2), and (3), one has $n_{1}(T)=m_{14}(T)=n_{3}(T)+2 n_{4}(T)+2$ and $n_{2}(T)=n-2-2 n_{3}(T)-3 n_{4}(T)$. From (4), (5), and (6), it follows that $3 n_{3}(T)+4 n_{4}(T)-2 n_{2}(T)=m_{14}(T)=n_{3}(T)+2 n_{4}(T)+2$. Then $3 n_{3}(T)+4 n_{4}(T)-2\left(n-2-2 n_{3}(T)-3 n_{4}(T)\right)=m_{14}(T)=n_{3}(T)+2 n_{4}(T)+2$; that is, $4 n_{4}(T)=n-1-3 n_{3}(T)$.

If $n_{3}(T)=1$, then $n_{4}(T)=\frac{n-4}{4}$. Thus, $n \equiv 0(\bmod 4)$ and $m_{14}(T)=n_{3}(T)+2 n_{4}(T)+2=\frac{n+2}{2}$. By using (7), one has

$$
\mathcal{A Z}(T)=8(n-1)-\frac{152}{27} \cdot \frac{n+2}{2}=\frac{4(35 n-92)}{27}
$$

If $n_{3}(T)=2$, then $n_{4}(T)=\frac{n-7}{4}$. Hence, $n \equiv 3(\bmod 4)$ and $m_{14}(T)=n_{3}(T)+2 n_{4}(T)+2=\frac{n+1}{2}$. From (7), it follows that

$$
\mathcal{A Z}(T)=8(n-1)-\frac{152}{27} \cdot \frac{n+1}{2}=\frac{4(35 n-73)}{27}
$$

In this case, note that $m_{13}(T)=m_{33}(T)=m_{34}(T)=0$. Thus, by using (5), one has $m_{23}(T)=3 n_{3}(T)=6$. Hence, $n_{2}(T) \geq m_{23}(T)-1=5$. Also, observe that

$$
n_{2}(T)=n-2-2 n_{3}(T)-3 n_{4}(T)=n-6-\frac{3 n-21}{4}=\frac{n-3}{4}
$$

which implies that $n \geq 23$.

Acknowledgement

The author would like to thank the anonymous reviewers for their valuable suggestions, which greatly improved the exposition of the paper.

References

[1] A. Ali, B. Furtula, I. Gutman, D. Vukičević, Augmented Zagreb index: extremal results and bounds, MATCH Commun. Math. Comput. Chem. 85 (2021) $211-244$.
[2] R. Cruz, J. Monsalve, J. Rada, Extremal values of vertex-degree-based topological indices of chemical trees, Appl. Math. Comput. 380 (2020) \#125281.
[3] B. Furtula, A. Graovac, D. Vukičević, Augmented Zagreb index, J. Math. Chem. 48 (2010) 370-380.
[4] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013) 351-361.
[5] I. Gutman, J. Tošović, Testing the quality of molecular structure descriptors. Vertex-degree-based topological indices, J. Serb. Chem. Soc. 78 (2013) $805-810$.
[6] Y. Huang, B. Liu, L. Gan, Augmented Zagreb index of connected graphs, MATCH Commun. Math. Comput. Chem. 67 (2012) 483-494.
[7] W. Lin, A. Ali, H. Huang, Z. Wu, J. Chen, On the trees with maximal augmented Zagreb index, IEEE Access 6 (2018) 69335-69341.
[8] W. Lin, D. Dimitrov, R. Škrekovski, Complete characterization of trees with maximal augmented Zagreb index, MATCH Commun. Math. Comput. Chem. 83 (2020) 167-178.
[9] Y. Shao, W. Gao, Complete characterization of chemical trees with maximal augmented Zagreb index, J. Appl. Math. Comput. 69 (2023) $3851-3870$.
[10] X. Xiao, X. Qiu, W. Lin, Erratum to "Complete characterization of trees with maximal augmented Zagreb index", MATCH Commun. Math. Comput. Chem. 87 (2022) 171-176.

[^0]: *E-mail address: wvg5121@psu.edu

