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Abstract

Let G be a simple connected graph with order at least 3, vertex set V (G), and edge set E(G). For a vertex v ∈ V (G),
denote by dG(v) the degree of v. The augmented Zagreb index of the graph G is denoted by AZ(G) and is defined as
AZ(G) =

∑
uv∈E(G)

(
dG(u)dG(v)/

(
dG(u) + dG(v)− 2

))3. In this paper, the minimum augmented Zagreb index of chemical
trees of order n is determined. The extremal chemical trees of order n with the minimum augmented Zagreb index are also
characterized.

Keywords: chemical tree; augmented Zagreb index; extremal tree.

2020 Mathematics Subject Classification: 05C05, 05C09, 05C92.

1. Introduction

All graphs considered in this paper are simple connected of order at least 3. Let G be a such graph with vertex set V (G)

and edge set E(G). For v ∈ V (G), let dG(v) denote the degree of v and let NG(v) denote the set of neighbours of v. A path
P = v1v2 . . . vt satisfying dG(v1) ≥ 3, dG(vi) = 2 when 2 ≤ i ≤ t− 1, and dG(vt) ≥ 3, is called an internal path of length t− 1.
A vertex of degree greater than 2 is called a branching vertex.

The augmented Zagreb (AZ) index of G, denoted by AZ(G), is defined [3] as

AZ(G) =
∑

uv∈E(G)

f(dG(u), dG(v)),

where f(x, y) =
(

xy
x+y−2

)3
. This index was shown to have the best predicting ability for a variety of physicochemical

properties among several tested vertex-degree-based topological indices (see [4, 5]). Hence, this topological index has
attracted more and more attention in recent years. Consequently, various significant mathematical properties of the AZ
index were obtained. Most of the known results on this index can be found in [1,2,6–8,10].

In [3], Furtula et al. proved that the star is the unique tree having the minimum augmented Zagreb index among
n-vertex trees. Lin et al. [8] and Xiao et al. [10] completely characterized the trees with the maximum augmented Zagreb
index by proving that the n-vertex balanced double star uniquely maximizes AZ index for n ≥ 19.

A tree T is a chemical tree if dT (v) ≤ 4 for every v ∈ V (T ). Let T̃n be the set of all chemical trees of order n. A chemical
tree T ∈ T̃n is said to be an AZ-maximal/AZ-minimal chemical tree if T has the maximum/minimum AZ index among all
chemical trees of n. In [9], the authors determined the maximum AZ index for chemical trees of order n, and the extremal
chemical trees with the maximum AZ index were characterized. In the present paper, the minimum AZ index of chemical
trees of order n is determined. The AZ-minimal chemical trees of order n are also characterized. Theorems 3.1 and 3.2 are
the main results of this paper.

Note that Sn is a chemical tree for every n ≤ 5. Thus, by a result reported in [3], the AZ-minimal chemical tree of order
n is the star Sn for n ≤ 5. Consequently, we assume n ≥ 6 in the rest of this paper.

2. Lemmas

For a tree T ∈ T̃n, a vertex v with dT (v) = i is called an i-degree vertex, and an edge e = uv with dT (u) = i and dT (v) = j is
called an (i, j)-edge. The notations ni(T ) and mij(T ) denote the number of i-degree vertices and the number of (i, j)-edges
of T , respectively.
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Lemma 2.1 (see [6]). Let f(x, y) =
(

xy
x+y−2

)3
with 1 ≤ x ≤ 4 and 1 ≤ y ≤ 4. Then

(1) f(1, y) is strictly decreasing on y ≥ 2;

(2) f(2, y) = 8;

(3) f(3, y) and f(4, y) are strictly increasing on y.

Lemma 2.2 (see [7]). Let g(x) =
(

3x
x+1

)3
−
(

4x
x+2

)3
with 1 ≤ x ≤ 4. Then g(x) is strictly decreasing on x.

Lemma 2.3. Let T ∈ T̃n be an AZ-minimal chemical tree. Then n3(T ) + n4(T ) ≥ 1.

Proof. Consider the tree T1 ∈ T̃n depicted in Figure 2.1. Then

AZ(T1) = 2f(1, 3) + 8(n− 3) =
27

4
+ 8(n− 3) < 8(n− 1) = AZ(Pn),

which implies that the path Pn is not an AZ-minimal chemical tree. Thus, n3(T ) + n4(T ) ≥ 1.

• • • · · · •v2 v3 v4 vn

• v1

Figure 2.1: The chemical tree T1 of order n, considered in the proof of Lemma 2.3.

From the definition of the AZ index, the next lemma follows.

Lemma 2.4. Let T ∈ T̃n be tree as depicted in Figure 2.2, where dT (u) = dT (v) ≥ 2. Let T ′ = T − uu1 − vv1 + uv1 + vu1.
Then AZ(T ) = AZ(T ′).

����
• •����
v1 v

• •����
u u1

T

����
• •����
u1 v

• •����
u v1

T ′

Figure 2.2: The chemical trees T and T ′ considered in Lemma 2.4.

Lemma 2.5. If T ∈ T̃n is an AZ-minimal chemical tree with n ≥ 7, then m12(T ) = 0.

Proof. Suppose to the contrary that m12(T ) 6= 0. By Lemma 2.3, n3(T ) + n4(T ) ≥ 1. Then, T is of the form as depicted in
Figure 2.3, where t ≥ 2 and dT (v) ≥ 3.

����
• • · · · •v v1 vt

•����
u

T

����
• • · · · • •
v v1 vt−2 vt−1

•����
u

• vt

T1

����
• •
v v1

•

•����
v2

u

T2

Figure 2.3: The chemical trees T , T1, and T2, considered in the proof of Lemma 2.5.

If t ≥ 3, then let T ′ = T1 = T − vt−1vt + vt−2vt (see Figure 2.3). So, T ′ ∈ T̃n. By Lemma 2.1, f(3, dT (v)) ≤ f(3, 4) = 1728
125 .

Thus,

AZ(T ′)−AZ(T ) =

{
2f(1, 3) + f(3, f(3, dT (v))− 24 ≤ 27

4 + 1728
125 − 24 = − 1713

500 if t = 3,

2f(1, 3)− 16 = − 37
4 if t ≥ 4.

Hence, we have AZ(T ′) < AZ(T ), a contradiction. Therefore, t = 2. Since n ≥ 7, there is a vertex x ∈ NT (v) with x 6= v1

such that dT (x) ≥ 2. Without loss of generality, we assume that dT (u) ≥ 2. Let T ′ = T2 = T − vu − v1v2 + vv2 + v2u

(see Figure 2.3). Then, T ′ ∈ T̃n and by Lemma 2.1, AZ(T ′) − AZ(T ) = f(1, dT (v)) − f(dT (u), dT (v)) < 0, which gives
AZ(T ′) < AZ(T ), a contradiction.

Lemma 2.6. Let T ∈ T̃n be an AZ-minimal chemical tree. Then m22(T ) ≤ 2.

Proof. Suppose to the contrary that m22(T ) ≥ 3. Then by Lemma 2.5, m12(T ) = 0, which implies that every (2, 2)-edge
is on an internal path of T . By Lemma 2.4, we may assume that there is at most one internal path of T of length greater
than 2. So, there is an internal path of T of length t ≥ 5; that is, T is of the form as depicted in Figure 2.4, where t ≥ 5,
dT (v) ≥ 3, and dT (vt) ≥ 3. Let T ′ = T − v3v4 + v2v4 (see Figure 2.4). Then T ′ ∈ T̃n and

AZ(T ′)−AZ(T ) =f(1, 3)− 8 =
27

8
− 8 = −37

8
< 0,

which yields AZ(T ′) < AZ(T ), a contradiction.
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����
• • · · · • •����
v v1 vt−1 vt

T

����
• • • • · · · •����• v3

v v1 v2 v4 vt

T ′

Figure 2.4: The chemical trees T and T ′ considered in the proof of Lemma 2.6.

Lemma 2.7. Let T ∈ T̃n be an AZ-minimal chemical tree. If m22(T ) 6= 0, then no two branching vertices are adjacent; that
is, m33(T ) = m34(T ) = m44(T ) = 0.

����
• • • •����
v v1 v2 v3

• •����
u1 u2

T

����
• • •����
v v1 v3

• • •����
u1 v2 u2

T ′

Figure 2.5: The chemical trees T and T ′ considered in the proof of Lemma 2.7.

Proof. Suppose to the contrary that m22(T ) 6= 0, and u1, u2 ∈ V (T ) are two adjacent branching vertices. Then T is of the
form as depicted in Figure 2.5, where dT (u1) ≥ 3, and dT (u2) ≥ 3. Take T ′ = T − v1v2 − v2v3 − u1u2 + v1v3 + u1v2 + v2u2 as
depicted in Figure 2.5. Then T ′ ∈ T̃n. By Lemma 2.1, f(dT (u1), dT (u2)) ≥ f(3, 3) = 729

64 . Hence,

AZ(T ′)−AZ(T ) =8− f(dT (u1), dT (u2)) ≤ 8− 729

64
= −217

64
< 0,

that is, AZ(T ′) < AZ(T ), a contradiction.

Lemma 2.8. Let T ∈ T̃n be an AZ-minimal chemical tree. If m22(T ) 6= 0, then n3(T ) = 0.

Proof. Suppose to the contrary that m22(T ) 6= 0 and n3(T ) 6= 0. Then T is of the form as depicted in Figure 2.6. By Lemma
2.7, no two branching vertices are adjacent. Then, dT (u1) = 2 and dT (ui) ≤ 2 for i = 2, 3.

����
• • • •����
v v1 v2 v3

• • •����
u1 u u2

•����
u3

T

����
• • •����
v v1 v3

• • •����
u1 u u2

•����
u3

•v2
T ′

Figure 2.6: The chemical trees T and T ′ considered in the proof of Lemma 2.8.

Let T ′ = T − v1v2 − v2v3 + v1v3 + uv2 (see Figure 2.6). By Lemma 2.2, f(4, dT (ui)) − f(3, dT (ui)) ≤ f(4, 2) − f(3, 2) = 0 for
i = 2, 3. Thus,

AZ(T ′)−AZ(T ) =f(1, 4) +

3∑
i=2

(f(4, dT (ui))− f(3, dT (ui)))− 8 ≤ 64

27
− 8 = −152

27
< 0,

that is, AZ(T ′) < AZ(T ), a contradiction.

Lemma 2.9. Let T ∈ T̃n be an AZ-minimal chemical tree, where n ≥ 7. Then m14(T ) 6= 0.

Proof. Suppose to the contrary that m14(T ) = 0. Then by Lemma 2.5, m12(T ) = 0, and so m13(T ) 6= 0 and n3(T ) 6= 0. By
Lemma 2.8, m22(T ) = 0. Noting that n ≥ 7, we have n3(T ) ≥ 2. Then T is of the form as depicted in Figure 2.7, where
dT (u) ≥ 2 and dT (v) ≥ 2. Without loss of generality, assume that dT (u) ≥ dT (v).

• • •
u2 u1 u ����

• • •
v v1 v2

•u3 • v3

T

• •
u1 u ����

• • • •
v u2 v1 v2

• v3

•u3T ′

Figure 2.7: The chemical trees T and T ′ considered in the proof of Lemma 2.9.

If dT (u) ≥ 3, then let T ′ = T − u1u2 − u1u3 − vv1 + vu2 + u2v1 + v1u3, as depicted in Figure 2.7. So T ′ ∈ T̃n. By Lemma
2.1, f(1, dT (u)) ≤ f(1, 2) = 8, f(3, dT (u)) ≥ f(3, 3) = 729

64 , and f(3, dT (v)) ≥ f(3, 2) = 8. Therefore,

AZ(T ′)−AZ(T )=16 + 3f(1, 4) + f(1, dT (u))− 4f(1, 3)− f(3, dT (u))− f(3, dT (v)) ≤ 16 +
64

9
+ 8− 27

2
− 729

64
− 8=−1025

576
<0,
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Consequently, we have AZ(T ′) < AZ(T ), a contradiction.
If dT (u) = dT (v) = 2, then let NT (u) = {u1, u0} and take T ′′ = T − uu1 − u1u3 − vv1 + vu1 + u2v1 + v1u3 (see Figure 2.8).

So, T ′′ ∈ T̃n. Note that m22(T ) = 0. Then, dT (u0) ≥ 3 and f(1, dT (u0)) ≤ f(1, 3) = 27
8 . Therefore,

AZ(T ′′)−AZ(T ) =3f(1, 4) + f(1, dT (u0))− 4f(1, 3) ≤ 64

9
+

27

8
− 27

2
= −217

72
< 0,

which gives AZ(T ′′) < AZ(T ), a contradiction.

• • • •
u2 u1 u u0����

• • •
v v1 v2

•u3 • v3

T

• •����
u u0

• • • • •
v u1 u2 v1 v2

• v3

•u3T ′′

Figure 2.8: The chemical trees T and T ′′ considered in the proof of Lemma 2.9.

Lemma 2.10. Let T ∈ T̃n be an AZ-minimal chemical tree, where n ≥ 8. Then m44(T ) = 0.

Proof. Suppose to the contrary that m44(T ) 6= 0. By Lemma 2.9, m14(T ) 6= 0. Then by Lemma 2.4, we may assume
that T is of the form as depicted in Figure 2.9. Let T ′ = T − vu + v1u (see Figure 2.9). Then T ′ ∈ T̃n. By Lemma 2.2,
f(3, dT (vi))− f(4, dT (vi)) ≤ f(3, 1)− f(4, 1) = 217

216 for i = 2, 3. Thus,

AZ(T ′)−AZ(T ) =16 +

3∑
i=2

(f(3, dT (vi))− f(4, dT (vi)))− f(4, 4)− f(1, 4) ≤ 16 +
217

108
− 512

27
− 64

27
= −359

108
< 0,

that is, AZ(T ′) < AZ(T ), a contradiction.

����
• • • •����
v2 v u u2

•����
v3

• v1

•����
u3

•����u1

T

����
• • • • •����
v2 v u u2v1

•����
v3

•����
u3

•����u1

T ′

Figure 2.9: The chemical trees T and T ′ considered in the proof of Lemma 2.10.

Lemma 2.11. Let T ∈ T̃n be an AZ-minimal chemical tree with n ≥ 8. Then m34(T ) = 0.

Proof. Suppose to the contrary that m34(T ) 6= 0. By Lemma 2.9, m14(T ) 6= 0. Then by Lemma 2.4, we may assume that T
is of the form as depicted in Figure 2.10. Without loss of generality, assume that dT (v2) ≥ dT (v3) and dT (v5) ≥ dT (v6).

����
• • • •����
v2 v v4 v5

•v1

•����v3
•����
v6

T

����
• • •
v2 v v4

•����v3
•

•����
v1

v5

•����
v6

T1

����
• • •
v2 v v4

•v1

•����v3
•

•����
v6

v5

T2

����
• • • • •
v2 v5 v6 v v4

•v1

•����v3
T3

Figure 2.10: The chemical trees T , T1, T2, and T3, considered in the proof of Lemma 2.11.

Case 1. dT (v5) ≥ 2 and dT (v6) ≥ 2.
Take T ′ = T1 = T − v4v5 + v1v5 (see Figure 2.10). Then T ′ ∈ T̃n. By Lemma 2.1, f(3, dT (vi)) ≥ f(3, 2) = 8 for i = 5, 6. Thus,

AZ(T ′)−AZ(T ) =32− f(3, dT (v5))− f(3, dT (v6))− f(3, 4)− f(1, 4) ≤ 32− 16− 1728

125
− 64

27
= − 656

3375
< 0,

that is, AZ(T ′) < AZ(T ), a contradiction.
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Case 2. dT (v5) ≥ 2 and dT (v6) = 1.
Let T ′ = T2 = T − v4v5 + v6v5 (see Figure 2.10). Then T ′ ∈ T̃n. By Lemma 2.1, f(3, dT (v5)) ≥ f(3, 2) = 8. Hence,

AZ(T ′)−AZ(T ) = 24− f(1, 3)− f(3, 4)− f(3, dT (v5)) ≤ 24− 27

8
− 1728

125
− 8 = −1199

1000
< 0,

which yields AZ(T ′) < AZ(T ), a contradiction.

Case 3. dT (v5) = dT (v6) = 1.
Since n ≥ 8, we have dT (v2) ≥ 2. Let T ′ = T3 = T − v2v − v4v5 − v4v6 + v2v5 + v5v6 + v6v (see Figure 2.10). Then T ′ ∈ T̃n.
By Lemma 2.1, f(4, dT (v2)) ≥ f(4, 2) = 8. Therefore,

AZ(T ′)−AZ(T ) =24 + f(1, 4)− f(3, 4)− 2f(1, 3)− f(4, dT (v2)) ≤ 24 +
64

27
− 1728

125
− 27

4
− 8 = −29749

13500
< 0,

that is, AZ(T ′) < AZ(T ), a contradiction.

Lemma 2.12. Let T ∈ T̃n be an AZ-minimal chemical tree with n ≥ 8. Then m33(T ) = 0.

Proof. Suppose to the contrary that m33(T ) 6= 0. By Lemma 2.11, m34(T ) = 0. Then by Lemma 2.4, we may assume that
T is of the form as depicted in Figure 2.11, where dT (ui) ≤ 2 and dT (vi) ≤ 3 for i = 1, 2. Without loss of generality, assume
that dT (u2) ≥ dT (u1), dT (v2) ≥ dT (v1), and dT (v2) ≥ dT (u2). Let T ′ = T − vv1 + uv1 as (see Figure 2.11). Then T ′ ∈ T̃n and

AZ(T ′)−AZ(T ) =16 +

2∑
i=1

(f(4, dT (ui))− f(3, dT (ui))) + f(4, dT (v1))− f(3, 3)− f(3, dT (v1))− f(3, dT (v2)).

If dT (u2) = 1, then dT (u1) = 1. Since n ≥ 8, we have dT (v2) ≥ 2. By Lemmas 2.1 and 2.2, f(3, dT (v2)) ≥ f(3, 2) = 8 and
f(4, dT (v1))− f(3, dT (v1)) ≤ f(4, 3)− f(3, 3) = 19467

8000 . Thus,

AZ(T ′)−AZ(T ) ≤16 + 2

(
64

27
− 27

8

)
+

19467

8000
− 729

64
− 8 = −320383

108000
< 0,

that is, AZ(T ′) < AZ(T ), a contradiction. Hence, dT (u2) = 2, dT (u1) ≤ 2, and dT (v2) ≥ 2. By Lemmas 2.1 and 2.2,
f(3, dT (v2))≥f(3, 2)=8, f(4, dT (v1))−f(3, dT (v1)) ≤ f(4, 3)−f(3, 3)= 19467

8000 , and f(4, dT (ui))−f(3, dT (ui))≤f(4, 2)−f(3, 2)=0

for i = 1, 2. Consequently, we have

AZ(T ′)−AZ(T ) ≤16 + 19467

8000
− 729

64
− 8 = −3829

4000
< 0,

a contradiction.

����
• • • •����
v2 v u u2

•����
v1
•����
u1

T

����
• • • •����
v2 v u u2

•����v1

•����
u1

T ′

Figure 2.11: The chemical trees T and T ′ considered in the proof of Lemma 2.12.

Lemma 2.13. Let T ∈ T̃n be an AZ-minimal chemical tree with n ≥ 13. Then m13(T ) = 0.

Proof. Suppose to the contrary that m13(T ) 6= 0. From Lemmas 2.8, 2.9, 2.10, 2.11, and 2.12, it follows that m14(T ) 6= 0 and
m22(T ) = m44(T ) = m34(T ) = m33(T ) = 0. Then, for every 3-degree or 4-degree vertex v ∈ V (T ), dT (x) ≤ 2 for x ∈ NT (v),
and there is at least one 2-degree vertex in NT (v).

Case 1. n3(T ) ≥ 2 and there is a 3-degree vertex u ∈ V (T ) such that NT (u) contains at last two 2-degree vertices.
In this case, T is of the form as depicted in Figure 2.12, where dT (v0) = dT (u0) = 3, dT (v2) ≤ 2, and dT (u2) ≤ 2. Take T ′ =

T1 = T − uu2 + vu2, as depicted in Figure 2.12. So, T ′ ∈ T̃n. By Lemma 2.2, f(4, dT (v2))− f(3, dT (v2)) ≤ f(4, 2)− f(3, 2) = 0

and f(4, dT (u2))− f(3, dT (u2)) ≤ f(4, 2)− f(3, 2) = 0. Thus,

AZ(T ′)−AZ(T ) =f(1, 4) + f(4, dT (v2)) + f(4, dT (u2))− f(1, 3)− f(3, dT (v2))− f(3, dT (u2)) ≤
64

27
− 27

8
= −217

216
< 0,

that is, AZ(T ′) < AZ(T ), a contradiction.
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����
• • • • •
u4 u3 u u1 u0����

• • • •
v0 v1 v v3

•����
u2

•����
v2

T

����
• • • • •
u4 u3 u u1 u0����

• • • •
v0 v1 v v3

•����u2

•����
v2

T1

Figure 2.12: The chemical trees T and T1 considered in the proof of Lemma 2.13.

Case 2. n3(T ) ≥ 2 and for every 3-degree vertex v ∈ V (T ), NT (v) contains a unique 2-degree vertex.
In this case, T is of the form as depicted in Figure 2.13, where dT (u0) ≥ 3, dT (v0) ≥ 3, dT (u2) ≤ 2, and dT (v2) ≤ 2. Note
that n ≥ 13. So, u0 6= v. Take T ′ = T2 = T − uu1 − uu2 − v1v + v1u3 + uv + vu2, as depicted in Figure 2.13. Then T ′ ∈ T̃n.
By Lemma 2.1, f(1, dT (u0)) ≤ f(1, 3) = 27

8 . Thus,

AZ(T ′)−AZ(T ) =3f(1, 4) + f(1, dT (u0))− 4f(1, 3) ≤ 64

9
+

27

8
− 27

2
= −217

72
< 0,

that is, AZ(T ′) < AZ(T ), a contradiction.

• • • •
u3 u u1 u0����

• • • •
v0 v1 v v3

•u2 • v2

T

• •����
u1 u0

• • • • • •
v0 v1 u3 u v v3

• v2

• u2T2

Figure 2.13: The chemical trees T and T2 considered in the proof of Lemma 2.13.

Case 3. n3(T ) = 1.
Note that n ≥ 13. Then n4(T ) 6= 0. If for every 4-degree vertex w ∈ V (T ), NT (w) contains three 1-degree vertices, then
we have n4(T ) ≤ 2 and n = 4n4(T ) + 4 ≤ 12 (since n3(T ) = 1 and m13(T ) 6= 0), which is a contradiction. Thus, there is a
4-degree vertex u ∈ V (T ) such that NT (u) contains at lest two 2-degree vertices. That is, T is of the form as depicted in
Figure 2.14. Let T ′ = T3 = T − u3u4 + v3u4 (see Figure 2.14). Then, T ′ ∈ T̃n and

AZ(T ′)−AZ(T ) =f(1, 4)− f(1, 3) =
64

27
− 27

8
= −217

216
< 0,

that is, AZ(T ′) < AZ(T ), a contradiction.

����
• • • • • •
u4 u3 u v1 v v3

•����
u2

•u1����
•����
v2

T

• • • • • •����
u3 u v1 v v3 u4

•����
u2

•u1����
•����
v2

T3

Figure 2.14: The chemical trees T and T3 considered in the proof of Lemma 2.13.

Lemma 2.14. Let T ∈ T̃n be an AZ-minimal chemical tree with n ≥ 13. Then n3(T ) ≤ 2.

Proof. Suppose to the contrary that n3(T ) ≥ 3. Let u, v ∈ V (T ) be two 3-degree vertices. By Lemmas 2.11, 2.12, and 2.13,
all vertices in NT (u) and NT (v) are 2-degree vertices. Then, T is of the form as depicted in Figure 2.15, where dT (ui) = 2

and dT (vi) = 2 for i = 1, 2, 3. Take T ′ = T − vv3 + uv3 (see Figure 2.15). Then, T ′ ∈ T̃n and AZ(T ′) = AZ(T ). Note that
n3(T

′) = n3(T )− 2 ≥ 1, and both vv1, vv2, are (2, 2)-edges of T ′. By Lemma 2.8, it is a contradiction.

����
• • •
u2 u u1����

• • •����
v1 v v2

•u3
����

• v3����

T

����
• • •
u2 u u1����

• • •����
v1 v v2

•u3
����

• v3����
T ′

Figure 2.15: The chemical trees T and T ′ considered in the proof of Lemma 2.14.
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3. AZ-minimal chemical trees of order n ≥ 6

For any chemical tree T ∈ T̃n, the following equations hold:

n1(T ) + n2(T ) + n3(T ) + n4(T ) = n, (1)
n1(T ) + 2n2(T ) + 3n3(T ) + 4n4(T ) = 2(n− 1), (2)
m12(T ) +m13(T ) +m14(T ) = n1(T ), (3)
m12(T ) + 2m22(T ) +m23(T ) +m24(T ) = 2n2(T ), (4)
m13(T ) +m23(T ) + 2m33(T ) +m34(T ) = 3n3(T ), (5)
m14(T ) +m24(T ) +m34(T ) + 2m44(T ) = 4n4(T ). (6)

Note that

n− 1 = |E(T )| =m12(T ) +m13(T ) +m14(T ) +m22(T ) +m23(T ) +m24(T ) +m33(T ) +m34(T ) +m44(T ),

and for y = 1, 2, 3, 4,

f(2, y) = 8, f(1, 3) =
27

8
, f(1, 4) =

64

27
, f(3, 3) =

729

64
, f(3, 4) =

1728

125
, f(4, 4) =

512

27
.

Thus,

AZ(T ) =
∑

1≤i≤j≤4

f(i, j)mij(T )

=8 (m12(T ) +m22(T ) +m23(T ) +m24(T )) +
27

8
m13(T ) +

64

27
m14(T ) +

729

64
m33(T ) +

1728

125
m34(T ) +

512

27
m44(T )

=8(n− 1) +

(
27

8
− 8

)
m13(T ) +

(
64

27
− 8

)
m14(T ) +

(
729

64
− 8

)
m33(T ) +

(
1728

125
− 8

)
m34(T ) +

(
512

27
− 8

)
m44(T )

=8(n− 1)− 37

8
m13(T )−

152

27
m14(T ) +

217

64
m33(T ) +

728

125
m34(T ) +

296

27
m44(T ). (7)

Theorem 3.1. Let 6 ≤ n ≤ 12. Then T ∈ T̃n is an AZ-minimal chemical tree if and only if T is of the form as depicted in
Figure 3.1 in terms of n.

• • • •

•

•
n = 6

• • • •

•

•

•

n = 7

• • • • •

•

•

•

n = 8

• • • • •

•

•

•

•
n = 9

• • • • • •

•

•

•

•
n = 10

• • • • •• • •

•

•

•

•
n = 11

• • • • • • •

•

•

• •

•
n = 12

Figure 3.1: The AZ-minimal chemical trees of order 6 ≤ n ≤ 12.

• • • • •

•

T6,1

• • • •

• •

T6,2

• • • •

•

• T6,3

Figure 3.2: The chemical trees T6,1, T6,2 and T6,3 of order 6.

Proof. Let T ∈ T̃n be an AZ-minimal chemical tree, where 6 ≤ n ≤ 12. By Lemma 2.3, n3(T ) + n4(T ) ≥ 1.
If n = 6, then T is one of the three trees T6,1, T6,2, T6,3, depicted in Figure 3.2. By elementary calculations, one has

AZ(T6,1) > AZ(T6,2) > AZ(T6,3). Thus, T = T6,3.

7
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• • • •

•

•

•

T7,1

Figure 3.3: The chemical tree T7,1 of order 7.

If n = 7, then by Lemmas 2.5 and 2.9, m12(T ) = 0 and m14(T ) 6= 0. Hence, T = T7,1 (see Figure 3.3).
Finally, assume that 8 ≤ n ≤ 12. By Lemmas 2.5, 2.6, 2.8, 2.9, 2.10, 2.11 and 2.12, m12(T ) = m33(T ) = m34(T ) =

m44(T ) = 0, m14(T ) 6= 0, m22(T ) ≤ 2, and if n3(T ) 6= 0 then m22(T ) = 0. Thus, T = T8,1 if n = 8, T = T9,1 if n = 9, T = T10,1

if n = 10, T ∈ {T11,1, T11,2, T11,3} if n = 11, and T ∈ {T12,1, T12,2} if n = 12, (see Figure 3.4). By simple calculations, one has
AZ(T11,1) < AZ(T11,2) < AZ(T11,3) and AZ(T12,1) < AZ(T12,2). Therefore, T = T11,1 if n = 11, and T = T12,1 if n = 12.

• • • • •

•

•

•

T8,1

• • • • •

•

•

•

•
T9,1

• • • • • •

•

•

•

•
T10,1

• • • • • • •

•

•

•

•
T11,1

• • • • • • •

•

•

• •

T11,2

• • • • • • •

• •

•

•

T11,3

• • • • • • •

•

•

• •

•
T12,1

• • • • • • •

•

•

•

•

•

T12,2

Figure 3.4: The chemical trees of orders 8–12 used in the proof of Theorem 3.1.

Theorem 3.2. Let n ≥ 13 and T ∈ T̃n .

(1). If n ≡ 0 (mod 4), then
AZ(T ) ≥ 4(35n− 92)

27
.

The equation holds if and only if n3(T )=1, n4(T )=
n−4
4 , m12(T ) = m13(T ) = m22(T ) = m33(T ) = m34(T ) = m44(T ) = 0,

and m14(T ) =
n+2
2 .

(2). If n ≡ 1 (mod 4), then
AZ(T ) ≥ 4(35n− 111)

27
.

The equation holds if and only if n3(T )=0, n4(T )=
n−1
4 , m12(T ) = m13(T ) = m22(T ) = m33(T ) = m34(T ) = m44(T ) = 0,

and m14(T ) =
n+3
2 .

(3). If n ≡ 2 (mod 4), then
AZ(T ) ≥ 4(35n− 92)

27
.

The equation holds if and only if n3(T ) = 0, n4(T ) = n−2
4 , m12(T ) = m13(T ) = m33(T ) = m34(T ) = m44(T ) = 0,

m22(T ) = 1, and m14(T ) =
n+2
2 .

(4). If n ≡ 3 (mod 4), then
AZ(T ) ≥ 4(35n− 73)

27
.

The equation holds if and only if T = T1 when n ∈ {15, 19}, while T ∈ {T1, T2} when n ≥ 23, where n3(T1) = 0,
n4(T1) = n−3

4 , m12(T1) = m13(T1) = m33(T1) = m34(T1) = m44(T1) = 0, m22(T1) = 2, m14(T1) = n+1
2 , n3(T2) = 2,

n4(T2) =
n−7
4 , m12(T2) = m13(T2) = m22(T2) = m33(T2) = m34(T2) = m44(T2) = 0, and m14(T2) =

n+1
2 .

8
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For every considered case, an AZ-minimal chemical tree T ∈ T̃n is shown in Figure 3.5.

• • • • • • • • • • • •· · ·

•

•

•

•

•

• •

•

•

•

•

•

•
T ∈ T̃n (where n ≥ 13 and n ≡ 0 (mod 4))

• • • • • • • •· · ·

•

•

•

•

•

•
T ∈ T̃n (where n ≥ 13 and n ≡ 1 (mod 4))

• • • • • • • • • • •· · ·

•

•

•

•

•

•

•

•
T ∈ T̃n (where n ≥ 13 and n ≡ 2 (mod 4))

• • • • • • • • • · · · • • •

•

•

•

•

•

•

•

•
T1 ∈ T̃n (where n ≥ 13 and n ≡ 3 (mod 4))

• • • • • • • • • • • · · · • • •

•

•

•

•

•

• •

•

••

•

•

• •

•

•

•

•

T2 ∈ T̃n (where n ≥ 23 and n ≡ 3 (mod 4))

Figure 3.5: The AZ-minimal chemical trees of orders n ≥ 13.

Proof. Let T ∈ T̃n be an AZ-minimal chemical tree, where n ≥ 13. By Lemmas 2.5, 2.6, and 2.8–2.14, we have that
m12(T ) = m13(T ) = m33(T ) = m34(T ) = m44(T ) = 0, m14(T ) 6= 0, m22(T ) ≤ 2, n3(T ) ≤ 2, and if n3(T ) 6= 0 then m22(T ) = 0.

Case 1. n3(T ) = 0.
By (1), (2) and (3), one has n1(T ) = 2n4(T ) + 2 = m14(T ) and n2(T ) = n− 2− 3n4(T ). Then, from (4) and (5) it follows that

4n4(T ) = m14(T )− 2m22(T ) + 2n2(T ) = 2n4(T ) + 2− 2m22(T ) + 2n− 4− 6n4(T ),

that is, 4n4(T ) = n− 1−m22(T ).
If m22(T ) = 0, then n4(T ) =

n−1
4 . Thus, n ≡ 1 (mod 4) and m14(T ) = 2n4(T ) + 2 = n+3

2 . Now, by using (7), one has

AZ(T ) = 8(n− 1)− 152

27
· n+ 3

2
=

4(35n− 111)

27
. (8)

If m22(T ) = 1, then n4(T ) =
n−2
4 . So, n ≡ 2 (mod 4) and m14(T ) =

n+2
2 . From (7), it follows that

AZ(T ) = 8(n− 1)− 152

27
· n+ 2

2
=

4(35n− 92)

27
. (9)

If m22(T ) = 2, then n4(T ) =
n−3
4 . Hence, n ≡ 3 (mod 4) and m14(T ) =

n+1
2 . By utilizing (7), one has

AZ(T ) = 8(n− 1)− 152

27
· n+ 1

2
=

4(35n− 73)

27
. (10)

9
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Case 2. n3(T ) 6= 0.
In this case, m22(T ) = 0 and n3(T ) ≤ 2. By using (1), (2), and (3), one has n1(T ) = m14(T ) = n3(T ) + 2n4(T ) + 2 and
n2(T ) = n−2−2n3(T )−3n4(T ). From (4), (5), and (6), it follows that 3n3(T )+4n4(T )−2n2(T ) = m14(T ) = n3(T )+2n4(T )+2.
Then 3n3(T ) + 4n4(T )− 2(n− 2− 2n3(T )− 3n4(T )) = m14(T ) = n3(T ) + 2n4(T ) + 2; that is, 4n4(T ) = n− 1− 3n3(T ).

If n3(T ) = 1, then n4(T ) =
n−4
4 . Thus, n ≡ 0 (mod 4) and m14(T ) = n3(T ) + 2n4(T ) + 2 = n+2

2 . By using (7), one has

AZ(T ) = 8(n− 1)− 152

27
· n+ 2

2
=

4(35n− 92)

27
.

If n3(T ) = 2, then n4(T ) =
n−7
4 . Hence, n ≡ 3 (mod 4) and m14(T ) = n3(T ) + 2n4(T ) + 2 = n+1

2 . From (7), it follows that

AZ(T ) = 8(n− 1)− 152

27
· n+ 1

2
=

4(35n− 73)

27
.

In this case, note that m13(T ) = m33(T ) = m34(T ) = 0. Thus, by using (5), one has m23(T ) = 3n3(T ) = 6. Hence,
n2(T ) ≥ m23(T )− 1 = 5. Also, observe that

n2(T ) = n− 2− 2n3(T )− 3n4(T ) = n− 6− 3n− 21

4
=

n− 3

4
,

which implies that n ≥ 23.
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