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Abstract

In this paper, the widely used ordering and maximality principles of Haim Brézis and Felix Browder, together with their
proofs, are slightly generalized in content and greatly improved in format. For this, the concept of preorders is used instead
of the concept of partial orders. Also, the more convenient notation S is used instead of “≤ ”. Moreover, the importance of
the supremal composition and a theorem on the existence of a particular increasing sequence is highlighted. Furthermore,
instead of an ordering principle, a maximality principle is proved first and it is shown that the arguments applied by Brézis
and Browder allow some more general results, even in much more attractive formulations.
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1. Introduction

In [11, Section 1], by considering an ordered set X and using the notation S (x) =
{
y ∈ X; y ≥ x

}
for all x ∈ X, Brézis

and Browder proved the following theorem and its corollaries.

Theorem 1.1. Let φ : X → R be a function satisfying

(1) x ≤ y implies φ (x) ≤ φ (y) ;

(2) for any increasing sequence {xn} in X such that φ (xn) ≤ C <∞ for all n , there exists some y ∈ X such that xn ≤ y

for all n ;

(3) for every x ∈ X there exists u ∈ X such that x ≤ u and φ (x) < φ (u) .

Then for each x ∈ X, φ
(
S (x)

)
is unbounded.

Corollary 1.1. Let φ : X → R be a function, bounded above, and satisfying (1). Assume

(4) for any increasing sequence {xn} in X, there exists some y ∈ X such that xn ≤ y for all n .

Then, for each a ∈ X, there exists some ā ∈ X such that a ≤ ā and φ
(
S (ā)

)
= φ (ā) .

In particular, if we strengthen assumption (1) to

(1’) x ≤ y and x 6= y imply φ (x) < φ (y) ,

then for each a ∈ X there exists ā ∈ X such that a ≤ ā and ā is maximal (i. e., S (ā) = {ā}).

Corollary 1.2. Let φ : X → R be a function satisfying (1) and

(2’) for any increasing sequence {xn} in X such that φ (xn) ≤ C <∞ for all n , there exists some y ∈ X such that xn ≤ y

for all n and φ (xn) → φ (y) as n→∞ ;

(3’) for every x ∈ X and for every ε > 0 , there exists x′ ∈ X such that x ≤ x′ and φ (x) < φ (x′) < φ (x) + ε .

Then for each x ∈ X, φ
(
S (x)

)
= [φ (x) , +∞ ) .

∗Theorem 5.1 of this paper, together with a theorem on the existence of monotone subsequences [36], was presented by the first author at The Twenty-
First Katowice–Debrecen Winter Seminar on Functional Equations and Inequalities, Brenna, Poland, 2022 (see [35]).
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Theorem 1.1 is usually called the Brézis–Browder ordering principle. Corollary 1.1 is usually called the Brézis–Browder
maximal or maximality principle. However, Corollary 1.2 seems not to have a special name. The formulations of Theorem
1.1, Corollary 1.1, and Corollary 1.2 together with their proofs are not completely satisfactory for us in several respects.
Concerning them, we make the following remarks.

(a) The authors seem to have used the term “ordered set” for a “partially ordered set”. Such a terminological inconve-
nience frequently occurs in recent works too.

(b) They used the notations “≤ ” and “S ” for the same partial order relation on X. Therefore, their formulations are, in
a certain sense, mixed-type, not consequent.

(c) Instead of a partial order relation, one may more naturally consider a preorder (reflexive and transitive) relation on
X. Namely, these relations allow almost the same statements.

(d) In contrast to Birkhoff [5, p. 20], preorders are frequently called quasi-orders [53]; the term “pseudo-orders” is also
used [47]. Kuttler [43, p. 529] even used the term “partial order” for “preorder”. Moreover, Qiu [53] used the term
“pre-order” for a transitive relation.

(e) Having in mind relators (families of relations) [63], instead of the notation “≤ ”, it is much better to use the notation
“S ” for a preorder relation on X.

(f) The importance of preorders lies mainly in the fact that, all minimal structures, generalized topologies and stacks
on X can be derived from preorder relators [2,51,67]. Therefore, they should not be studied separately.

(g) The arguments applied in their proofs allow greater generality in the formulation of their results; even in much more
elegant forms than those in Theorem 1.1 and its corollaries.

(h) It seems more convenient to prove initially the first statement of Corollary 1.1, as a theorem, and then Theorem 1.1
as a consequence of this theorem. In Corollary 1.1, it is better to write φ [S (ā) ] = {φ (ā)} .

(i) Instead of a metric, it is more convenient to consider a quasi-pseudo-metric on X [28, p. 3]; such metrics allow almost
the same results.

(j) If S is a preorder relation on X, then the function d , defined by d (x, y) = 0 if (x, y) ∈ S and d (x, y) = 1

if (x, y) /∈ S , is a quasi-pseudo-metric on X. Preorders and quasi-pseudo-metrics can also be well motivated in
physics; for example, see [42].

(k) Each topology on X can be derived from a family of quasi-pseudo-metrics [52, Section 11.2], and also from a single,
semigroup-valued quasi-pseudo-metric [41].

(l) The function ρ and the sequence (xn)∞n=1 , defined in the proof of [11, Theorem 1], and the relation “≤ ”, defined in
the proof of [11, Corollary 4], deserve some more detailed and separate considerations.

(m) For instance, instead of the corresponding definitions of [11], for any x ∈ X, we define

ρ (x) = sup
(
(φ ◦ S)(x)

)
= sup

(
φ [S (x) ]

)
and S (x) =

{
y ∈ X : d (x, y) ≤ φ (y)− φ (x)

}
.

(n) Note that ρ is just the supremal composition of the function φ and the relation S . Its dual, the infimal composition,
plays an important role in linear analysis [56, Theorem 2.1].

(o) If a ∈ X such that ρ (a) < +∞ , then we shall show that there exists an increasing sequence (xn)
∞
n=1 in the

preordered set X (S) , with x1 = a , such that φ (xn+k ) ≤ ρ (xn+1) ≤ ρ (xn) for all n, k ∈ N and

lim
n→∞

φ (xn) = lim
n→∞

ρ (xn) = inf
n∈N

ρ (xn) .

According to Altman [1], Turinici [85], Park [47] and the second author [69], it would also be much better to consider the
more natural expression Φ (x, y) instead of φ (y)− φ (x) . That is, to consider a function Φ of X 2 to R or R instead of a
function φ of X to R or R .

In the present paper, we are interested in some improved reformulations and straightforward generalizations of The-
orem 1.1, Corollary 1.1, and Corollary 1.2. For most of the applications, it is enough to use only some particular cases
of the second statement of Corollary 1.1. This is, in contrast to Zorn’s lemma (see [4, p. 43] and [43, p. 532]) , a quite
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elementary maximality principle which can still be used to prove several famous theorems of nonlinear analysis, such as
Ekeland’s variational principle [25, 26], Caristi’s fixed point theorem [16] and Daneš’ drop theorem [20] for instance; see
also [11,45,66].

The second author’s interest in the Brézis–Browder principles was raised by Corneliu Ursescu, who proved [93] ad-
vanced versions of the Lagrange-type increment inequality [58] with such a principle. The present paper is a continuation
of several former similar instructive papers of the second author and his collaborators [10, 33, 65, 68, 71, 73]. The main
purpose of all these papers was to transform the results of analysis into some more easily readable relational forms. In
this respect, both S and d are to be replaced by suitable relators.

2. Relations and functions

A subset R of a product set X×Y is called a relation on X to Y . In particular, a relation R on X to itself is called a
relation on X. The relation ∆X = {(x, x) : x ∈ X} is called the identity relation of X. If R is a relation on X to Y ,
then for any x ∈ X and A ⊆ X the sets R (x) = {y ∈ Y : (x, y) ∈ R} and R [A ] =

⋃
a∈A R (a) are called the images

or neighbourhoods of x and A under R , respectively. If (x, y) ∈ R , then instead of y ∈ R (x) , we may also write x R y .
However, instead of R [A ] , we cannot write R (A) . Namely, it may occur that, in addition to A ⊆ X, we also have A ∈ X.
Now, the sets DR = {x ∈ X : R (x) 6= ∅ } and R [X ] may be called the domain and range of R , respectively. If DR = X,
then we say that R is a relation of X to Y , or that R is a non-partial relation on X to Y .

In particular, a relation f on X to Y is called a function if for every x ∈ Df there exists y ∈ Y such that f (x) = {y} .
In this case, by identifying singletons with their elements, we may simply write f (x) = y instead of f (x) = {y}. Moreover,
a function ? of X to itself is called a unary operation on X. While, a function ∗ of X 2 to X is called a binary operation
on X. For any x, y ∈ X, we usually write x? and x ∗ y instead of ?(x) and ∗(x, y). If R is a relation on X to Y , then a
function f of DR to Y is called a selection function of R if f (x) ∈ R(x) for all x ∈ DR. Thus, by the Axiom of Choice [38],
we can see that every relation is the union of its selection functions.

For a relation R on X to Y , we may naturally define two set-valued functions ϕR of X to P (Y ) and ΦR of P (X ) to
P (Y ) such that ϕR(x) = R(x) for all x ∈ X and ΦR(A) = R [A ] for all A ⊆ X. Functions of X to P (Y ) can be naturally
identified with relations on X to Y . While, functions of P (X ) to P (Y ) are more powerful objects than relations on X to
Y . In [77], they were briefly called corelations on X to Y . However, if U is a relation on P (X) to Y and V is a relation
on P (X) to P (Y ) , then it is better to say that U is a super relation and V is a hyper relation on X to Y [54,80]. Thus,
closures (proximities) [83] are super (hyper) relations.

If R is a relation on X to Y , then we have R =
⋃

x∈X
(
{x}×R (x)

)
. Therefore, the values R (x), where x ∈ X,

uniquely determine R . Thus, a relation R on X to Y can also be naturally defined by specifying R (x) for all x ∈ X.
For instance, the complement R c and the inverse R−1 of R can be defined such that R c(x) = R (x)c for all x ∈ X and
R−1(y) = {x ∈ X : y ∈ R (x)} for all y ∈ Y . We also have R c =

(
X×Y ) \ R and R−1 = {(y, x) : (x, y) ∈ R }. Moreover,

if S is a relation on Y to Z, then the composition relation S ◦R can be defined such that (S ◦R )(x) = S [R (x) ] for all
x ∈ X. Thus, it can be easily seen that (S ◦ R ) [A ] = S

[
R [A ]

]
also holds for all A ⊆ X. While, if S is a relation on

Z to W , then the box product R � S can be defined such that (R � S)(x, z) = R (x) × S (z) for all x ∈ X and z ∈ Z .
Thus, it can be shown that (R� S)[A ] = S ◦A ◦R−1 for all A ⊆ X×Z (see [70,78]). Hence, by taking A = {(x, z)} , and
A = ∆Y if Y = Z , one can at once see that the box and composition products are actually equivalent tools. However, the
box product can be immediately defined for any family of relations.

Now, a relation R on X, i. e. , a subset R of X 2 , may be briefly defined to be reflexive and transitive if under the
plausible notations R 0 = ∆X and R 2 = R ◦ R , we have R 0 ⊆ R and R 2 ⊆ R , respectively. Moreover, R may be
briefly defined to be symmetric and antisymmetric if R−1 ⊆ R and R ∩ R−1 ⊆ R 0 , respectively. Also, R may be briefly
defined to be total and directive if X 2 ⊆ R∪R−1 and X 2 ⊆ R−1◦R , respectively. Furthermore, a reflexive and transitive
(symmetric) relation is called a preorder (tolerance) relation. A symmetric (antisymmetric) preorder relation is called an
equivalence (partial order) relation. In addition to the above well-known basic properties, several further remarkable
relational properties were also studied in [59] with the help of the self closure and interior relations R− = R−1 ◦ R and
R ◦ = R c− c =

(
R−1◦ R c

)c .
For a relation R on X, by using R 0 = ∆X , we define Rn = R ◦ R n−1 for n ∈ N . We also define R∞ =

⋃∞
n=0 R

n .
Thus, R∞ is the smallest preorder relation on X containing R (see [30]). For A ⊆ X, the Pervin relation defined as
RA = A2 ∪ (Ac×X ) is an important preorder on X [51]. Also, for a pseudo-metric d on X, the Weil surrounding
Br = {(x, y) ∈ X 2 : d (x, y) < r } , with r > 0 , is an important tolerance on X [96]. Note that SA = RA ∩ R−1A =

RA ∩ RAc = A2 ∪
(
Ac)2 is already an equivalence relation on X. More generally, if A is a cover (partition) of X, then
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SA =
⋃

A∈A A2 is a tolerance (equivalence) relation on X. Now, as an important generalization of the Pervin relation
RA , for any A ⊆ X and B ⊆ Y , we may also naturally consider the Hunsaker-Lindgren relation R(A,B) = (A×B)∪(Ac×Y )

(see [34]). However, in general, this is not a preorder relation.

3. Ordered sets and increasing functions

If R is a relation on X to Y , then the ordered pair (X, Y )(R) =
(
(X, Y ), R

)
is called a context space [29], a relational

space, or a simple relator space [48]; for some generalizations, see [54,63,81]. In such a space (X, Y )(R) , for any B ⊆ Y ,
we define IntR(B) = {A ⊆ X : R [A ] ⊆ B} , and in particular intR(B) = {x ∈ X : {x} ∈ IntR(B)} . We also
define ER = {B ⊆ Y : intR(B) 6= ∅ } . Moreover, we define LbR(B) = {A ⊆ X : A×B ⊆ R } , and in particular
lbR(B) = {x ∈ X : {x} ∈ LbR(B)} . However, these tools are not independent of the former ones. Namely, by [63], we
have LbR = IntRc ◦ CY .

If in particular R is a relation on X, then having in mind a widely used terminology of Birkhoff [5] the ordered pair
X (R) = (X, R) may be naturally called a goset (generalized ordered set) [74]. The goset X (R) is, for instance, called
reflexive if R is a reflexive relation on X. Moreover, the goset X (R) is, for instance, called total if R is a total relation on
X. Furthermore, the goset X (R) is called a proset (preordered set) if R is a preorder on X. Moreover, X (R) is called a
poset (partially ordered set) if R is a partial order on X. Quite similarly, the abbreviations toset (totally ordered set) and
woset (well-ordered set) of Rudeanu [55] can also be well used.

Every set X is a poset with the identity relation ∆X . Moreover, X is a proset with the universal relation X 2. The
power set P (X ) = {A : A ⊆ X} of X is a poset with the ordinary set inclusion “⊆ ”. Several definitions on posets can be
applied to gosets as well. For instance, if X (R) is a goset, then for any Y ⊆ X the goset Y (R ∩ Y 2) is called a subgoset
of X (R) . While, the goset X (R−1) is called the dual of X (R) .

For any A ⊆ X (R), we may naturally define minR(A) = A∩ lbR(A) and supR(A) = minR

(
ubR(A)

)
. However, if R is

antisymmetric, then each of these sets, and their duals, is either empty or a singleton. In particular, the goset X (R) may,
for instance, be naturally called sup-complete if supR(A) 6= ∅ for all A ⊆ X. Thus, by using that infR(A) = supR

(
lbR(A)

)
,

we can see that if X (R) is sup-complete, then it is also inf-complete [7,8].
Now, a function f of one goset X (R) to another Y (S) may be naturally called increasing if uR v implies f (u)S f (v)

for all u, v ∈ X. Also, f is defined to be decreasing if it is increasing as a function of X (R) to the dual of Y (S) . Moreover,
the function f may be called strictly increasing if uR v and u 6= v imply f (u)S f (v) and f (u) 6= f (v) . Furthermore, f
is defined to be strictly decreasing if it is strictly increasing as a function of X (R) to the dual of Y (S) . The relationships
between increasing and strictly increasing functions were established in [74].

Now, instead of “increasing” we may also naturally say “continuous”. Namely, f is increasing if and only if v ∈ R (u)

implies f (v) ∈ S
(
f (u)

)
. That is, if v is in the R–neighbourhood of u , then f (v) is in the S–neighbourhood of f (u) .

This property can be reformulated in several equivalent forms. For instance, it can be shown that f is increasing if and
only if f ◦R ⊆ S ◦ f , R ⊆ f−1◦ S ◦ f , (f � f ) [R ] ⊆ S , or R ⊆ (f � f )−1[S ] (see [76]).

In [74], several additional properties of increasing functions were also proved. For instance, it was proved that if f is
an increasing function of one complete poset X (R) to another Y (S), then supS

(
f [A ]

)
≤ f

(
supR(A)

)
for all A ⊆ X.

More importantly, it was also proved that if f is a function of one goset X (R) to another Y (S) such that f [ supR(A) ] ⊆
lbS

(
ubS

(
f [A ]

))
for all A ⊆ X, then maxR

(
Intf (y)

)
= supR

(
Intf (y)

)
for all y ∈ Y (see [64,79]).

Finally, we note that if f is a function of a set X to a goset Y (S), then according to [79], for any x ∈ X and y ∈ Y ,
we may also naturally define Ordf (x) =

{
v ∈ X : f(x)S f(v)

}
and Intf (y) =

{
u ∈ X : f(u)S y

}
. Thus, it can be

easily seen that Ordf is the largest relation on X making f to be increasing. Moreover, we have Ordf =
(

Intf ◦f
)−1

and Intf (y) = f−1
[

lbS

(
{y}

) ]
for all y ∈ Y .

4. A supremal composition

In the sequel, by following Brézis and Browder [11] as closely as possible, we shall use the following notation.

Notation 4.1. We assume that :

(1) X is a nonvoid set ; (2) ϕ is a function of X to R ;

(3) S is a preorder relation on X; (4) ρ (x) = sup
(
(ϕ ◦ S)(x)

)
for all x ∈ X.

Here, the supremum is to be taken in the complete ordered set R = R ∪ {−∞ , +∞} instead of R. ( Precise instructive
treatments of these sets can found in [6,27].)
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Remark 4.1. For any x ∈ X, we have

(1) x ∈ S (x) ; (2) S (x) = S [S (x) ] ; (3) ρ (x) = sup
y∈S (x)

ϕ (y) .

To prove assertion (2) of Remark 4.1, note that ∆X ⊆ S and S ◦ S ⊆ S , and thus

S (x) = ∆X [S (x) ] ⊆ S [S (x) ] = (S ◦ S) (x) ⊆ S (x) .

Now, by using the properties of the supremum, we prove the next result.

Theorem 4.1. ρ is a decreasing function of the proset X (S) to ] −∞ , +∞ ] such that ϕ ≤ ρ .

Proof. For any x ∈ X, it is sufficient to prove that the following assertions hold:

(1) −∞ < ϕ (x) ≤ ρ (x) ≤ +∞ ; (2) xS y =⇒ ρ (y) ≤ ρ (x) .

From Remark 4.1, it follows that ϕ (x) ∈ ϕ [S (x) ]. Therefore, ϕ [S (x) ] is a nonvoid subset of R , and thus also of R. Hence,
by the corresponding properties of the supremum in R , we infer that −∞ < ρ (x) ≤ +∞ . Since ρ (x) ∈ ub (ϕ [S (x) ] ) ,
we also note that ϕ (x) ≤ ρ (x) . Therefore, assertion (1) is true. On the other hand, if xS y , then y ∈ S (x) . Hence, by
using Remark 4.1, we infer that

S (y) ⊆ S [S (x) ] ⊆ S (x) , and thus ϕ [S (y) ] ⊆ ϕ [S (x) ] .

Now, by using the fact that ρ (x) ∈ ub (ϕ [S (x) ] ) , we have ρ (x) ∈ ub (ϕ [S (y) ] ) . Moreover, by using the fact that
ρ (y) ∈ lb ( ub (ϕ [S (y) ] )) , we also have ρ (y) ≤ ρ (x) . Therefore, assertion (2) is also true.

The following result is an immediate consequence of Theorem 4.1.

Corollary 4.1. If ϕ is an increasing function of the proset X (S) to R , then ρ − ϕ is a decreasing function of the proset
X (S) to ] −∞ , +∞ ] .

Proof. If x, y ∈ X such that xS y, then by Theorem 4.1, we have ρ (y) ≤ ρ (x) . Also, by the assumption, we have
ϕ (x) ≤ ϕ (y) . Hence, we infer that −ϕ (y) ≤ −ϕ (x) . Therefore, by the additivity property of the inequality in ]−∞ , +∞ ] ,
we also have ρ (y)− ϕ (y) ≤ ρ (x)− ϕ (x) .

Remark 4.2. Having in mind the usual definition that res (A) = cl (A)\A , the nonnegative function ρ−ϕ may be naturally
referred to as the residue of ϕ . It is important to note that, analogously to the infimal composition considered in [56], the
supremal composition ρ may also have some further useful properties depending upon some additional properties of X, ϕ
and S . Actually, to prove duals of the forthcoming theorems, an infimal composition has to be used instead of the present
supremal one [18]. Infimal compositions are very similar tools to the infimal convolutions considered in [31], for instance.

5. An increasing sequence in X (S)

By improving the inductive proof of [11, Theorem 1] due to Brézis and Browder, we establish the following fundamental
existence theorem.

Theorem 5.1. If a ∈ X such that ρ (a) < +∞ , then there exists an increasing sequence (xn)
∞
n=1 in the proset X (S) , with

x1 = a , such that

(1) ( ρ (xn))
∞
n=1 is decreasing ;

(2) lim
n→∞

ϕ (xn) = lim
n→∞

ρ (xn) = inf
n∈N

ρ (xn) ; (3) ϕ (xk ) ≤ ρ (xn) ≤ ρ (a) for all n ∈ N and n ≤ k ∈ N .

Proof. Define x1 = a . Then, because of the finiteness and the definition of ρ (x1) , we have

ρ (x1)− 1 < ρ (x1) = sup
(
ϕ [S (x1) ]

)
= min

(
ub
(
ϕ [S (x1) ]

))
∈ lb

(
ub
(
ϕ [S (x1) ]

))
Therefore, ρ (x1)− 1 /∈ ub

(
ϕ [S (x1) ]

)
. Thus, there exists x2 ∈ S (x1) such that

ρ (x1)− 1 < ϕ (x2) .

Also, by Theorem 4.1, we state that ρ (x2) ≤ ρ (x1) < +∞ .
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M. Iqbal and Á. Száz / Contrib. Math. 8 (2023) 61–74 66

Now, because of the finiteness and the definition of ρ (x2) , we quite similarly infer that there exists x3 ∈ S (x2) such that

ρ (x2)− 2−1 < ϕ (x3) .

Moreover, by Theorem 4.1, we state that ρ (x3) ≤ ρ (x2) < +∞ .
Hence, by induction, it is clear that there exists an increasing sequence (xn)∞n=1 in the proset X (S) such that ρ (xn)

is finite,
ρ (xn)− n−1 < ϕ (xn+1)

and ρ (xn+1) ≤ ρ (xn) for all n ∈ N . Thus, assertion (1) is true.

If n ∈ N , then by the definition of ρ (xn) we have

ρ (xn) = sup
(
ϕ [S (xn) ]

)
= min

(
ub
(
ϕ [S (xn) ]

) )
∈ ub (ϕ [S (xn) ] ) .

Since xn+1 ∈ S (xn) , thus ϕ (xn+1) ∈ ϕ [S (xn) ] , and we infer that

ϕ (xn+1) ≤ ρ (xn) .

Therefore, we also state that
0 ≤ ρ (xn)− ϕ (xn+1) < n−1

for all n ∈ N , and thus
lim

n→∞

(
ρ (xn)− ϕ (xn+1)

)
= 0 .

Moreover, by assertion (1) and a basic theorem on decreasing sequences, we state that

lim
n→∞

ρ (xn) = inf
n∈N

ρ (xn) ,

which can however be −∞ . Hence, since

ϕ(xn+1) = ρ (xn)−
(
ρ (xn)− ϕ (xn+1)

)
for all n ∈ N , we infer that

lim
n→∞

ϕ (xn+1) = lim
n→∞

ρ (xn) .

Thus, since lim
n→∞

ϕ (xn) = lim
n→∞

ϕ (xn+1) , assertion (2) is also true.
Now, to complete the proof, we need only note that, analogously to the inequality ϕ (xn+1) ≤ ρ (xn) , assertion (3) can

also be easily derived from the definition of ρ (xn) and assertion (1). Note that, analogously to assertion (1), assertion (3)
also needs the transitivity of S .

Remark 5.1. If a ∈ X such that ρ (a) < +∞ and ϕ is increasing on S (a) , then in addition to the assertions of Theorem
5.1, we also state that

(4) (ϕ (xn))
∞
n=1 is increasing ; (5) lim

n→∞
ϕ (xn) = sup

n∈N
ϕ (xn) .

Therefore, in this case, the limits considered in assertion (2) of Theorem 5.1 are actually finite.

6. ϕ –Maximal elements

Motivated by Turinici [87,88], we introduce the following:

Definition 6.1. An element x of the proset X (S) is called

(1) ϕ–maximal if xS y =⇒ ϕ (y) ≤ ϕ (x) for all y ∈ X;

(2) strongly ϕ–maximal if xS y =⇒ ϕ (y) = ϕ (x) for all y ∈ X.

Remark 6.1. Following [53,61], the element x is called

(1) maximal if xS y =⇒ y S x for all y ∈ X;

(2) strongly maximal if xS y =⇒ y = x for all y ∈ X.

Thus, x is maximal if and only if S is symmetric at x , i. e., S (x) ⊆ S−1(x) . Also, x is strongly maximal if and only
if S (x) ⊆ {x} . Note that, by the reflexivity of S at x , we have x ∈ S (x) , and thus {x} ⊆ S (x) . Moreover, by the
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reflexivity of S on X, we state that “strongly maximal” implies “maximal”. While, if S is antisymmetric, then we state
that “maximal” implies “strongly maximal”. Therefore, in a poset, the two notions coincide. In this respect, it is also worth
noticing that S is symmetric if and only if every element of X (S) is maximal. Moreover, x is a strongly maximal element
of X (S) if and only if xS y does not hold for all y ∈ X with y 6= x .

Now, we are prepared to prove the next result.

Theorem 6.1. The following assertions hold :

(1) if x is a strongly maximal element of X (S) , then x is a strongly ϕ–maximal element of X (S) ;

(2) if x is a maximal element of X (S) and ϕ is increasing on S (x) , then x is a strongly ϕ–maximal element of X (S) .

Proof. Because of the reflexivity of S, for any x ∈ X we have x ∈ S (x) . Moreover, for any y ∈ X, with xS y , we have
y ∈ S(x) . Therefore, if the conditions of assertion (2) hold, then for any y ∈ X we have(

xS y =⇒ ϕ (x) ≤ ϕ (y)
)

and
(
xS y =⇒ y S x =⇒ ϕ (y) ≤ ϕ (x)

)
.

Hence, we see that xS y implies ϕ (y) = ϕ (x) , and thus the conclusion of assertion (2) also holds.

Remark 6.2. From the above proof, we also observe that if x is a ϕ–maximal element of X (S) and ϕ is increasing
on S (x) , then x is a strongly ϕ–maximal element of X (S) . Therefore, if ϕ is increasing on X, then the two notions
introduced in Definition 6.1 coincide.

The next result gives a partial converse to Theorem 6.1.

Theorem 6.2. The following assertions hold :

(1) if x is a strongly ϕ–maximal element of X (S) and ϕ is either injective or strictly increasing on S (x) , then x is a
strongly maximal element of X (S) ;

(2) if x is a ϕ–maximal element of X (S) , S is total on S (x) and ϕ is either strictly increasing or injective and increasing
on S (x) , then x is a maximal element of X (S) .

Proof. If x, y ∈ X such that xS y , then we have x, y ∈ S (x) (as in the proof of Theorem 6.1). Moreover, if x is a
ϕ–maximal element of X (S), then ϕ (y) ≤ ϕ (x) .

Now, if y S x does not hold, then by the reflexivity and the totality of S on S (x) , we note that x 6= y and xS y . Hence,
if ϕ is strictly increasing on S (x) , we infer that ϕ (x) < ϕ (y) . Therefore, ϕ (y) < ϕ (y) , and thus ϕ (y) 6= ϕ (y) . This
contradiction proves that y ≤ x , and thus x is a maximal element of X (S) .

Remark 6.3. By the corresponding statements of [74], we note that :

(1) if ϕ is injective and increasing, then ϕ is strictly increasing ;

(2) if ϕ is strictly increasing and S is total, then ϕ is injective and ϕ−1 is also strictly increasing.

7. Characterizations of ϕ –maximal elements

In this section, we prove two theorems about the characterization of ϕ– maximal elements.

Theorem 7.1. For any x ∈ X (S), the following assertions are equivalent:

(1) x is ϕ–maximal ; (2) ϕ [S (x) ] ⊆ ]−∞ , ϕ (x) ] ;

(3) ρ (x) ≤ ϕ (x) ; (4) ρ (x) = ϕ (x) .

Proof. If assertion (1) holds, then

y ∈ S (x) =⇒ xS y =⇒ ϕ (y) ≤ ϕ (x) =⇒ ϕ (y) ∈ ]−∞ , ϕ (x) ] .

Therefore, assertion (2) also holds.
If assertion (2) holds, then ϕ (y) ≤ ϕ (x) for all y ∈ S (x) , and thus ϕ (x) ∈ ub (ϕ [S (x) ] ) . Hence, by using the fact

that
ρ (x) = sup (ϕ [S (x) ] ) = min

(
ub
(
ϕ [S (x) ]

))
∈ lb ( ub (ϕ [S (x) ] )) ,
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we conclude that assertion (3) also holds.
If assertion (3) holds, then by Theorem 4.1, assertion (4) also holds; namely, by this theorem, the inequality ϕ (x) ≤ ρ (x)

is always true.
Finally, if assertion (4) holds, then

ϕ (x) = ρ (x) = sup (ϕ [S (x) ] ) = min
(

ub
(
ϕ [S (x) ]

))
∈ ub (ϕ [S (x) ] ) .

Therefore, for any y ∈ X,

xS y =⇒ y ∈ S (x) =⇒ ϕ (y) ∈ ϕ [S (x) ] =⇒ ϕ (y) ≤ ϕ (x) .

Thus, assertion (1) also holds.

Theorem 7.2. For any x ∈ X (S), the following assertions are equivalent :

(1) x is strongly ϕ–maximal ; (2) ϕ [S (x) ] ⊆ {ϕ (x)} ; (3) ϕ [S (x) ] = {ϕ (x)} .

Proof. If assertion (1) holds, then

y ∈ S (x) =⇒ xS y =⇒ ϕ (y) = ϕ (x) =⇒ ϕ (y) ∈ {ϕ (x)}.

Hence, assertion (2) also holds.
If assertion (2) holds, then by using the facts that x ∈ S (x) and ϕ (x) ∈ ϕ [S (x) ] , we conclude that assertion (3) also

holds.
Finally, if assertion (3) holds, then for any y ∈ X

xS y =⇒ y ∈ S (x) =⇒ ϕ (y) ∈ ϕ [S (x) ] =⇒ ϕ (y) ∈ {ϕ (x)} =⇒ ϕ (y) = ϕ (x) .

Therefore, assertion (1) also holds.

Remark 7.1. By taking O = Ordϕ , we note that :

(1) O is a total preorder relation on X;

(2) O is the largest relation on X making the function ϕ increasing;

(3) if x is a ϕ–maximal element of X (S) , then S (x) ⊆ O−1(x) ;

(4) if x is a strongly ϕ–maximal element of X (S) , then S (x) ⊆
(
O ∩O−1

)
(x) .

The induced preorder was formerly considered also by Wallace [95] and Patrone [49]. However, it is now more interesting
for us that, for the relation S , Patrone would define the corresponding irreflexive relation T on X by T (x) = S (x)\S−1(x)

instead of T (x) = S (x) \ {x} .

8. Relationships between maximal elements and fixed points

Definition 8.1. If T is a relation on X, then an element x of X is called a

(1) fixed point of T if x ∈ T (x) ; (2) strong fixed point of T if {x} = T (x) .

Remark 8.1. An element x of X is a fixed point of T if and only if T is reflexive at x . Moreover, x is a strong fixed
point of T if and only if x is both a fixed point of T and a strongly maximal element of X (T ) .
Our present terminology can only be motivated by the latter fact. In the existing literature, instead of “strong fixed point”
the terms “stationary point”, “invariant point” and “endpoint” are commonly used [3,37].

Because of the assumed reflexivity of S , we have the next result.

Theorem 8.1. For an element x of X (S) , the following assertions are equivalent :

(1) x is a strong fixed point of S ; (2) x is a strongly maximal element of X (S) .
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In addition to Definition 8.1, we also introduce the following:

Definition 8.2. A relation T on X (S) is called

(1) intensive if for each x ∈ X there exists y ∈ T (x) such that y S x ,

(2) extensive if for each x ∈ X there exists y ∈ T (x) such that xS y .

Remark 8.2. For a function f of the poset X (S) to itself, besides “extensive”, the terms “expansive”, “progressive”,
“inflationary” and “noncontractive” are also frequently used.
More curiously, Davey and Pristley [21, p. 186] would even call a function f of a goset X (S) to itself to be “increasing”
if each x ∈ X is a “post-fixpoint” of f in the sense that xS f (x) .

A simple reformulation of Property (2) in Definition 8.2 gives the next result.

Theorem 8.2. For a relation T on X (S) , the following assertions are equivalent :

(1) T is extensive ; (2) S−1◦ T is reflexive on X ; (3) S (x) ∩ T (x) 6= ∅ for all x ∈ X .

Remark 8.3. An extensive relation on X (S) is non-partial. Also, if T is a reflexive relation on X (S), then because of
the assumed reflexivity of S , the relation T is extensive.

The importance of strongly maximal elements is apparent from the following extension of a simple, but important
observation of Brondsted [13,14].

Theorem 8.3. If T is an extensive relation on a goset X (S) , then each strongly maximal element x of X (S) is a fixed
point of T .

Proof. Since T is extensive, there exists y ∈ T (x) such that xS y . Hence, x = y because x is strongly maximal.
Therefore, x ∈ T (x) , and thus x is a fixed point of T .

The next result is an immediate consequence of Theorem 8.3.

Corollary 8.1. If f is a extensive function of a goset X (S) to itself, then each strongly maximal element x of X (S) is a
fixed point of f .

By modifying an argument of Khamsi [40], we now prove the following result, which gives a partial converse to the
above theorem and also it does not need any particular property of the relation S .

Theorem 8.4. If every extensive function of a goset X (S) to itself has a fixed point, then X (S) has a strongly maximal
element.

Proof. Assume, on the contrary, that each x ∈ X is not a strongly maximal element of X (S) . Then, by Definition 6.1, for
each x ∈ X, there exists y ∈ X such that xS y , but y 6= x . Hence, we infer that y ∈ S (x) \ {x} . Define

T (x) = S (x) \ {x}

for all x ∈ X. Then, by the above observation, T is a non-partial relation on X. Thus, by the Axiom of Choice, there exists
a function f of X to itself such that

f (x) ∈ T (x) = S (x) \ {x} ⊆ S (x)

for all x ∈ X. Hence, by Definition 8.2, f is an extensive function of X (S) . Thus, by the assumption of the theorem,
there exists an x ∈ X such that f (x) = x . Hence, x = f (x) ∈ T (x) = S (x) \ {x} . Therefore, x /∈ {x} , and thus x 6= x ;
this contradiction proves the theorem.

As a slight generalization of the dual of [40, Theorem 1] of Khamsi, we also state the next result.

Corollary 8.2. For a goset X (S) , the following assertions are equivalent :

(1) X (S) has a strongly maximal element ;

(2) every extensive relation on X (S) has a fixed point ;

(3) every extensive function of X (S) to itself has a fixed point .

Remark 8.4. To further clarify the importance of extensive relations, we note that a closure operation on X (S) is, by
definition, an extensive function of P (X) to itself.
Moreover, a strictly increasing function f of a well-ordered set X (S) to itself is extensive. For this, by [74, Theorem 79],
we need only that S is antisymmetric and min–complete in the sense that minS(A) 6= ∅ whenever ∅ 6= A ⊆ X.
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9. Maximality principles

The following theorem is a generalization of the first part of Corollary 1.1 of Brézis and Browder.

Theorem 9.1. Suppose that a ∈ X such that

(1) ϕ is increasing and bounded above on S (a) ;

(2) each increasing sequence (xn)
∞
n=1 in X (S) , with x1 = a , is bounded above .

Then, there exists b ∈ S (a) such that b is a strongly ϕ–maximal element of X (S) .

Proof. By assumption (1), there exists β ∈ R such that β ∈ ub
(
ϕ [S (a) ]

)
. Hence, by using the fact that

ρ (a) = sup
(
ϕ [S (a) ]

)
= min

(
ub
(
ϕ [S (a) ]

))
∈ lb

(
ub
(
ϕ [S (a) ]

))
,

we infer that ρ (a) ≤ β < +∞ . Thus, by Theorem 5.1, there exists an increasing sequence (xn)
∞
n=1 in the proset X (S) ,

with x1 = a , such that
lim

n→∞
ρ (xn) = lim

n→∞
ϕ (xn) .

Hence, by using assumption (2), we infer that there exists b ∈ X such that

xnS b for all n ∈ N, and thus in particular aS b .

Moreover, by using assumption (1) and the fact that aS xn holds also for all n ∈ N , we have

ϕ (xn) ≤ ϕ (b) for all n ∈ N, and thus lim
n→∞

ϕ (xn) ≤ ϕ (b) .

While, by using Theorem 4.1, we quite similarly see that ϕ (b) ≤ ρ (b) ,

ρ (b) ≤ ρ (xn) for all n ∈ N, and thus ρ (b) ≤ lim
n→∞

ρ (xn) .

Therefore, we actually have
lim
n→∞

ϕ (xn) ≤ ϕ (b) ≤ ρ (b) ≤ lim
n→∞

ρ (xn) .

Hence, by using the equality of the above two limits, we infer that

ϕ (b) = ρ (b)

Now, by Theorem 7.1, we conclude that b is a ϕ–maximal element of X (S). Thus, by Remark 6.2, b is also a strongly
ϕ–maximal element of X (S) .

Remark 9.1. If (xn)
∞
n=1 is an increasing sequence in X (S) , with x1 = a , then we may also say that (xn)

∞
n=1 is an orbit

(trajectory) of S starting at a .
Thus, Condition (2) of Theorem 9.1 can also be nicely expressed by saying that, each S–orbit (xn)

∞
n=1 in X, starting at

a , is in some inverse image S−1(b) with b ∈ X.

From Theorem 9.1, by using Theorem 6.2, we derive the following generalization of the second part of Corollary 1.1 of
Brézis and Browder.

Corollary 9.1. Suppose that a ∈ X such that

(1) ϕ is bounded above on S (a) ;

(2) ϕ is either strictly increasing or injective and increasing on S (a) ;

(3) each increasing sequence (xn)
∞
n=1 in X (S) , with x1 = a , is bounded above .

Then, there exists b ∈ S (a) such that b is a strongly maximal element of X (S) .

Proof. From Theorem 9.1, we know that there exist b ∈ S (a) such that b is a strongly ϕ–maximal element of X (S) .
Hence, by Theorem 6.2, we conclude that b is also a strongly maximal element of X (S) .

Remark 9.2. To obtain a particular fixed point of an extensive relation T on X (S) , Theorem 8.3 can be applied.
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10. Some further consequences of Theorem 9.1

From Theorem 9.1, we also derive the following generalization of Theorem 1.1 of Brézis and Browder.

Theorem 10.1. Suppose that a ∈ X such that

(1) ϕ is an increasing on S (a) ;

(2) for each b ∈ S (a) , there exists c ∈ S (b) such that ϕ (b) < ϕ (c) ;

(3) if (xn)
∞
n=1 is an increasing sequence in X (S) , with x1 = a , such that the sequence (ϕ (xn))

∞
n=1 is bounded above,

then the sequence (xn)
∞
n=1 is also bounded above.

Then, the set ϕ [S (a) ] is not bounded above.

Proof. Assume, on the contrary, that ϕ is bounded above on S (a) . Then, for each increasing sequence (xn)
∞
n=1 in X (S) ,

with x1 = a , the sequence (ϕ (xn))
∞
n=1 is bounded above in R . Thus, by assumption (3) and Theorem 9.1, there exists

b ∈ S (a) such that b is a strongly ϕ–maximal element of X (S) . That is, for any c ∈ S (b) , we have ϕ (c) = ϕ (b) . Also,
by assumption (2) there exists c ∈ S (b) such that ϕ (b) < ϕ (c) , and thus ϕ (c) 6= ϕ (b) . This contradiction proves that
ρ (a) = +∞ .

By using Theorem 9.1, we also prove the following generalization of Corollary 1.2 of Brézis and Browder.

Theorem 10.2. Suppose that a ∈ X such that

(1) ϕ is increasing on S (a) ;

(2) for each b ∈ S (a) and ε > 0 , there exists c ∈ S (b) such that

ϕ (b) < ϕ (c) < ϕ (b) + ε ;

(3) if (xn)
∞
n=1 is an increasing sequence in X (S) , with x1 = a , such that the sequence (ϕ (xn))

∞
n=1 is bounded above,

then there exists y ∈ X such that

y ∈ S (xn) for all n ∈ N and lim
n→∞

ϕ (xn) = ϕ (y) .

Then, ϕ [S (a) ] = [ϕ (a) , +∞ [ .

Proof. Suppose that β ∈ [ϕ (a) , +∞ [ . Define

Y =
{
x ∈ S (a) : ϕ (x) ≤ β

}
.

Take
T = S ∩ Y 2 and ψ = ϕ ∩ (Y ×R) .

Then, a ∈ Y . Also, T is a preorder relation on Y and ψ is an increasing function of the proset Y (T ) to R which
is bounded above. Moreover, we note that if (xn)∞n=1 is an increasing sequence in Y (T ) , with x1 = a , then it is an
increasing sequence in X (S) such that the sequence (ϕ(xn))

∞
n=1 is bounded above. Thus, by assumption (3), there exists

y ∈ X such that
y ∈ S (xn) for all n ∈ N and lim

n→∞
ϕ (xn) = ϕ (y) .

Hence, by using the fact that xn ∈ Y , and thus

xn ∈ S (a) and ϕ (xn) ≤ β

for all n ∈ N , we infer that
y ∈ S (a) and ϕ (y) = lim

n→∞
ϕ (xn) ≤ β ,

and therefore y ∈ Y . Consequently, the sequence (xn)∞n=1 is bounded above in Y (T ) too.
Hence, it is clear that the counterparts of assumptions (1) and (2) of Theorem 9.1 hold for Y (T ) and ψ . Thus, by

Theorem 9.1, there exists b ∈ T (a) such that b is a strongly ψ–maximal element of Y (T ) . That is, for any c ∈ T (b) , we
have ψ (c) = ψ (b) . Since T and ψ are restrictions of S and ϕ , respectively, we infer that, for any c ∈ S (b) ∩ Y , we have
ϕ (c) = ϕ (b) .
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Now, we show that ϕ (b) = β . Because of b ∈ Y , we have b ∈ S (a) and ϕ (b) ≤ β . Also, if ϕ (b) < β , and thus
β − ϕ (b) > 0 , then by assumption (2) there exists c ∈ S (b) such that

ϕ (b) < ϕ (c) < ϕ (b) + 2−1
(
β − ϕ (b)

)
.

Hence, we infer that c ∈ S (a) and
ϕ (c) < 2−1

(
ϕ (b) + β

)
≤ β ,

and thus c ∈ Y . Therefore, c ∈ S (b) ∩ Y such that ϕ (c) 6= ϕ (b) . This contradiction proves that ϕ (b) = β .

11. Possibilities for some immediate continuations

First of all, it would be useful to know what more can be stated when S is a specific preorder on X. For instance, it is
reasonable to investigate the particular cases when :

(1) S = R∞ for some relation R on X ;

(2) S = A2∪
(
Ac × X

)
for some A ∈ P (X) ;

(3) S = ∆X ∪
∞⋃

n=1

(
An × Ac

n

)
for some increasing sequence (An)∞n=1 in P (X) ;

(4) S =
{

(x, y) ∈ X 2 : d (x, y) ≤ ϕ (y)− ϕ (x)
}

for some quasi-pseudo-metric d on X ;

(5) S =
{

(x, y) ∈ X 2 : y ∈ x + C
}

for some submonoid C of an additively written monoid X ;

(6) S is the divisibility relation on Z ;

(7) S is the subsequence relation on XN ;

(8) S is the refines or divides relation for covers, relations and relators [57].

Note that if R and S satisfy (1), then our definitions can be applied to R instead of S ; however, our statements can
only be applied to S . Some similar investigations have already been done in [69,89].

The relation S considered in (2) is just the Pervin preorder [51]. The relation S considered in (3) is a dual of the Cantor
order introduced by Park [46] (see also [32,39]). In this respect, it is also worth noticing that if R is only a reflexive relation
on X and An(x) = Rn(x) for all x ∈ X, then (An(x))∞n=1 is an increasing sequence in P (X) . Thus, definition (3) can
be applied.

The relation S considered in (4) is the Brøndsted preorder [12]. Its particular cases ϕ = 0 and d = 0 are the special-
ization and preference preorders, respectively; see [19,95]. Also, note that ϕ is automatically increasing. However, we still
need the important assumption that each increasing sequence in X (S) is bounded above.

For this, some analytical conditions are needed which will allow us to treat certain forms of Ekeland’s variational
principle, Caristi’s fixed point theorem and some other closely related basic theorems [17,44] in similar instructive ways.

Moreover, it would also be worth to carry on some similar investigations on Ursescu’s maximality principle [93] and its
applications for proving simpler forms of Lagrange-type inequalities [58,93]. Mean value theorems, via maximal elements
techniques, were formerly also proved by Turinici [84, 86], who published a great number of papers on generalizations
and applications of ordering and maximal principles [90–92].

Finally, we note that the relation S considered in (5) is the translation relation defined on X by C [60]. The particular
case, when X is a vector space and C is a pointed convex cone in X, has been frequently used in the literature. Moreover,
analogously to [15,62,75], Galois connections with respect to the above particular preorders (1)–(8) can also be investigated.
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[57] Á. Száz, Relations refining and dividing each other, Pure Math. Appl. 6 (1995) 385–394.
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