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Abstract
A right module M over an associative ring with unity is a quasi-torsion Abelian group-like-module (QTAG-module, for short)
if every finitely generated submodule of any homomorphic image of M is a direct sum of uniserial modules. The main goal
of this article is to produce a concrete class of QTAG-modules in which every h-pure submodule is an isotype submodule.

Keywords: QTAG-modules; h-pure submodules; isotype submodules.

2020 Mathematics Subject Classification: 06F25, 13C05, 16K20.

1. Introduction, terminology and definitions

Let R be any ring. A module M is of finite length if it has a composition series; that is, a sequence of (k + 1) submodules

0 = M0 ⊆M1 ⊆ · · · ⊆Mk = M

such that Mr/Mr−1 is a simple module for 1 ≤ r ≤ k. If the length of a module M is k, then we write d(M) = k.
The study of Abelian groups advanced significantly during the second half of the twentieth century. Many researchers

with an interest in module theory have made attempts to generalize the theory of Abelian groups. In fact, the theory of
Abelian groups is one of the primary motivations for conducting new research in module theory. Nearly all concepts in the
theory of Abelian groups have been generalized for modules over Dedekind rings, prime rings, Noetherian rings, Artinian
rings, hereditary Noetherian prime rings, etc. Along this direction, a particular approach was developed in the 1970s; over
an arbitrary associative ring with unity, a class of modules was defined by Singh [15] using the following two conditions
related to uniserial modules:

(I). Every finitely generated submodule of any homomorphic image of M is a direct sum of uniserial modules.

(II). Given any two uniserial submodules U and V of a homomorphic image of M , for any submodule W of U , any non-
zero homomorphism f : W → V can be extended to a homomorphism g : U → V , provided that the inequality
d(U/W ) ≤ d(V/f(W )) holds.

In 1987, Singh [16] studied the modules satisfying only Condition (I) and named them as quasi-torsion Abelian groups-
like-modules (QTAG-modules, for short). Numerous researchers have conducted studies on different notions as well as
on properties of QTAG-modules, characterized their different submodules, and developed the theory of these modules by
introducing several concepts. Unsurprisingly, a lot of these advancements are similar to the earlier developments made in
the theory of torsion Abelian groups. The present paper is a natural generalization of the research conducted in [1] and
contributes to the existing knowledge on the structure of QTAG-modules.

We consider only rings with unity. Also, the modules that we consider are unital QTAG-modules. The notations and
terminology that we use in this paper are standard, which may be found in the books [2, 3]. A module M over a ring R
is said to be uniserial if it has a unique decomposition series of finite length. A module M is said to be uniform if the
intersection of any two of its non-zero submodules is non-zero. An element x in M is called uniform if xR is a non-zero
uniform (hence uniserial) module. For any module M with a unique decomposition series, d(M) denotes its decomposition
length. For any uniform element x of M , its exponent e(x) is the decomposition length d(xR). For any 0 6= x ∈ M , the
height of x in M is denoted by HM (x) and is defined by

HM (x) = sup{d(yR/xR) : y ∈M, x ∈ yR and y uniform}.
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For k ≥ 0, Hk(M) = {x ∈M | HM (x) ≥ k} denotes the submodule of M generated by the elements of height at least k and
Hk(M) denotes the submodule of M generated by the elements of exponents at most k. The sum of all simple submodules
of M is called the socle of M , denoted by Soc(M). For any k ≥ 0, Sock(M) is defined inductively as follows:

Soc0(M) = 0 and Sock+1(M)/Sock(M) = Soc
(
M/Sock(M)

)
.

Now, we state some definitions given in [6,7]. A module M is said to be elementary if Hk−1(0) ≤ H1(M) provided that
Hk(0) * H1(M), and Hk(0) = M , for every k ≥ 0. A module M is said to be bounded if there exists an integer k such that
HM (x) ≤ k for all uniform elements x ∈M . Also, M is called h-divisible if H1(M) = M and it is called h-reduced if it does
not contain any h-divisible submodule; in other words, it is free from the elements of infinite height. A submodule N of M
is h-pure in M if N ∩Hk(M) = Hk(N) for every integer k ≥ 0. A submodule N of M is h-neat in M if N ∩H1(M) = H1(N).
A submodule N ⊆ M is said to be high if it is a complement of M1 i.e., M = N ⊕M1, where M1 is the submodule of M
generated by uniform elements of M of infinite height.

A submodule B of M is said to be a basic submodule of M if B is an h-pure submodule of M , B is a direct sum of
uniserial modules and M/B is h-divisible. A submodule N of M is K-high [9] in M , if it is maximal with the property
of being disjoint from K. A submodule N of M is said to be essential in M if N ∩ K = 0 for every non-zero submodule
K of M , and M is said to be the essential extension of N . According to [10], the submodules Hk(M) with k ≥ 0, form a
neighborhood system of zero, and thus a topology known as h-topology arises. Closed modules are also closed with respect
to this topology. Thus, the closure of N ⊆M is defined as

N̄ =

∞⋂
k=0

(N +Hk(M)) .

Therefore, the submodule N ⊆M is closed with respect to h-topology if N̄ = N .

2. Main results

This section is concerned with finding those classes F of QTAG-modules in which every h-pure submodule is an isotype
submodule. For a QTAG-module M and for an ordinal σ, Hσ(M) is defined as Hσ(M) =

⋂
ρ<σHρ(M) in [11], by using

transfinite induction. Then
M1 =

∞⋂
k=1

Hk(M) = Hω(M),

where ω is the first infinite ordinal. According to [12], a submodule N of M is said to be σ-pure if Hβ(M) ∩N = Hβ(N) for
all β ≤ σ, and a submodule N of M is said to be isotype in M if it is σ-pure for every ordinal σ. It is worthwhile to notice
that some of the results related to these concepts have already been reported in [5]. For some crucial properties of h-pure
submodules, we refer the interested reader to [14].

In order to develop the main results, we need to prove first some elementary but crucial lemmas.

Lemma 2.1. Let N be an h-pure submodule of a QTAG-moduleM . If Socn(M) is a direct sum of an h-divisible module and
a bounded module for some natural number n, then N is σ-pure in M for every ordinal σ.

Proof. Clearly, Socn(N) is h-pure in Socn(M) for some n. By [4, Theorem 2.1], Socn(N) = M1⊕M2, where M1 is h-divisible
and M2 is bounded. Now, N = Socn(N)⊕K for some h-pure submodule K of M . Therefore,

Hω(N) = Hω (Socn(N))⊕Hω(K) = M1 ⊕Hω(K)

and hence Hω(N) is h-divisible. Consequently, Hβ(N) = Hβ(M) ∩N for all β ≤ σ, and we are done.

Lemma 2.2. Let M be a QTAG-module and let n be a natural number. If Socn (Hω+n(M)) is not essential in Socn (Hω(M))

and if either Socn (Hω+n+1(M)) is nonzero or Hω+n+1(M) is not closed module, then M /∈ F.

Proof. By hypotheses of the lemma, there is a nonzero uniform element x ∈ Soc (Hω(M)) such that xR∩Socn (Hω+n(M)) = 0

for some n. Take y ∈ Hω+n(M) such that y′ ∈ Socn(M) where d (yR/y′R) = 1 and e(y) =∞. Let

K = 〈Soc (Hω+n(M)) , y′, x+ y〉

be any h-pure submodule of M such that xR ∩K = 0. Now, if x = z + t1y
′ + t2(x+ y) such that d (yR/y′R) = 1, where t1, t2

are integers and z ∈ Soc (Hω+n(M)), then (1− t2)x = z+ t1y
′+ t2y ∈ xR∩Hω+n(M) = 0, where d (yR/y′R) = 1. Hence, we

have (t1 + t2) y′ = 0, a contradiction. This substantiates our claim.
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Let L be any xR-high submodule of M containing K. Since xR ⊂ Hω(M), L is h-pure in M (see [8]). Thus,

y′ ∈ Hω+n+1(M) ∩ L\Hω+n+1(L),

where d (yR/y′R) = 1. Now, y′ = u′ such that d (yR/y′R) = 1 and d (uR/u′R) = 1 for some u ∈ Hω+n(L). Therefore, we have
y − u ∈ Soc (Hω+n(M)) ⊂ L, y ∈ L and x ∈ L, a contradiction. Consequently, we conclude that M /∈ F.

Lemma 2.3. Let M be a QTAG-module. Then M ∈ F if and only if either M is a direct sum of an h-divisible module and a
bounded module or M1 is elementary.

Proof. If M is a direct sum of an h-divisible module and a bounded module then M ∈ F by Lemma 2.1. If M1 is elementary
and N is an h-pure submodule of M then Hω(N) = N ∩Hω(M) and Hω+1(N) = N ∩Hω+1(M) = 0. Hence M ∈ F.

Conversely, we suppose that M ∈ F. Let M1 = X ⊕ Y , where X is h-divisible and Y is h-reduced. If both X and Y are
nonzero then we write Y = xR ⊕ Z, where e(x) = n for some n > 0. Now, Hn

(
M1
)

is not essential in M1, Hn+1

(
M1
)
6= 0.

This is a contradiction because of Lemma 2.2. If M1 is h-reduced but not bounded, then M1 = xR ⊕ yR ⊕ Z, where
e(x) = n, e(y) = t and t − n ≥ 2. Now, Hn

(
M1
)

is not essential in M1, Hn+1

(
M1
)
6= 0 and again Lemma 2.2 implies a

contradiction. Henceforth, M1 is either h-divisible or bounded. Let M1 be nonzero h-divisible; we write M = M1 ⊕K for
some submodule K of M . Now, if K is not bounded then for any nonzero uniform element x ∈ Soc

(
M1
)
, there is an h-pure

submodule L of M such that L ∩M1 = xR. Clearly, L is not isotype in M , and hence M is a direct sum of an h-divisible
module and a bounded module. Let M1 be bounded and suppose that H1

(
M1
)
6= 0. If K is any high submodule of M

then K is not bounded. Finally, if x is a nonzero uniform element of Soc
(
H1

(
M1
))

, then there is an h-pure submodule L
of M such that L ∩M1 = xR. Thus, L is not isotype in M and hence M1 is elementary. The proof of the lemma is now
completed.

Lemma 2.4. Let M be a closed QTAG-module. Then M ∈ F if and only if Socn(M) ∈ F for some n.

Proof. The result follows from Lemmas 2.2 and 2.3.

Now, we are ready to prove our first main result.

Theorem 2.1. Let M be a QTAG-module. The following statements are equivalent:

(i). Every h-pure submodule of M is isotype in M .

(ii). For some n ∈ N either Socn(M) is a direct sum of an h-divisible module and a bounded module, or Socn(M) is
unbounded such that (Socn(M))

1 is elementary and Hω(M) is a closed module.

Proof. (ii)⇒ (i). Let N be an h-pure submodule of M . By Lemmas 2.3 and 2.4, N̄ is isotype in M̄ , where M̄ and N̄ are the
closures of M and N , respectively. If Hω(M) is closed and β is an ordinal, with β ≥ ω, then

Hβ(N) = Hβ(N̄) = N̄ ∩Hβ(M̄) = N ∩Hβ(M̄) = N ∩Hβ(M).

If Socn(M) is a direct sum of an h-divisible module and a bounded module then by Lemma 2.1, Hβ(N) = N ∩Hβ(M) for
every ordinal β. Thus, by definition, N is isotype in M .

(i) ⇒ (ii). Suppose that M ∈ F. By Lemma 2.3, for some n ∈ N either Socn(M) is a direct sum of an h-divisible module
and a bounded module or (Socn(M))

1 is elementary. If (Socn(M))
1 is a nonzero elementary module and Hω(M) is not a

closed module, then H1 (Socn(M))
1 is not essential in (Socn(M))

1. Thus, Lemma 2.2 implies that Hω+2(M) is not a closed
module, which is a contradiction. Hence, it consequently follows that Hω(M) is a closed module.

In order to complete the proof, it is sufficient to show that if Socn(M) is unbounded, (Socn(M))
1

= 0 and Hω(M) is
not closed module, then M /∈ F. Therefore, there is a linearly independent set {x1, x2, . . .} ∈ M such that e (xt) = t. Let
y ∈ Hω(M) be an element of infinite order; there are elements y1, y2, . . ., such that d (ytR/yR) = t−1 for every t ∈ {1, 2, 3, . . .}.
LetK = 〈y′, x1 + y1, x2 + y2, . . .〉 be a submodule ofM such that d (yR/y′R) = 1. Suppose that y ∈ K and it can be expressed
as

y = r0y
′ + r1 (x1 + y1) + · · ·+ rs (xs + ys) ,

where d (yR/y′R) = 1 and r0, . . . , rs are integers. Then

− (r1x1 + · · ·+ rsxs) = r0y
′ − y + r1y1 + · · ·+ rsys,
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where d (yR/y′R) = 1. Thus, it follows that

−Hs−1 (rsxsR) = Hs−1 ((r0y
′ − y + r1y1 + · · ·+ rsys)R) ∈ Socn(M) ∩Hω(M) = 0,

where d (yR/y′R) = 1 and hence

−Hs−2 (rs−1xs−1R)−Hs−2 (rsxsR) = Hs−2 ((r0y
′ − y + · · ·+ rsys)R) ∈ Socn(M) ∩Hω(M) = 0.

By continuing this process, we arrive at

(r1x1 + · · ·+ rsxs) ∈ Socn(M) ∩Hω(M) = 0,

a contradiction. Let L be a submodule of M such that K ⊂ L, y /∈ L. Since L is h-pure in M,Ht(M) ∩ L ⊂ Ht(L) for some
t. Let u′ ∈ L where d (uR/u′R) = t + 1 for any uniform element u ∈ M . Consider u′ /∈ L such that d (uR/u′R) = t. Then
y ∈ 〈u′, L〉 and y = ku′ + v, where d (uR/u′R) = t, v ∈ L and k is an integer.

Furthermore, ku′ ∈ 〈y, L〉, u′′ ∈ L, where d (uR/u′R) = t and d (u′R/u′′R) = 1. Therefore, u′ ∈ 〈y, L〉, where d (uR/u′R) =

t and thus u′ = sy + w for some w ∈ L, s ≥ 0 and d (uR/u′R) = t. Hence, u′ − sHt (yt+1R) = w ∈ Ht(M) ∩ L, where
d (uR/u′R) = t. By our hypothesis, we have w = a′, where d (aR/a′R) = t for some a ∈ L. Now,

u′ = sy′ + a′ = Ht+1 ((a+ sxt+1 + syt+1)R) ,

where d (uR/u′R) = t + 1, d (yR/y′R) = 1 and d (aR/a′R) = t + 1. Hence, u′ ∈ Ht+1(L), where d (uR/u′R) = t + 1. Finally,
since L is not isotype inM provided that d(yR/vR) = 1 for some v ∈ Hω(L). Thus, we arrive at y−v ∈ Socn(M)∩Hω(M) = 0,
a contradiction; hence, y′ ∈ L ∩Hω+1(M)\Hω+1(L), where d (yR/y′R) = 1. Consequently, we conclude that M /∈ F.

By utilizing Theorem 2.1, we now prove the next result.

Theorem 2.2. Let M be a QTAG-module. The following statements are equivalent:

(i). Every isotype submodule of M is a direct summand of M .

(ii). Every h-pure submodule of M is a direct summand of M .

Proof. (i)⇒ (ii). Let M̄ be the closure of M and let N̄ be the closure of the h-pure submodule N in M . Since N̄ is isotype
in M , the closure N̄ of N is a direct summand of M . Choose M = M1 ⊕M2 ⊕M3, where M1 is h-reduced closed, M2 is
h-divisible and M3 is a direct sum of uniserial modules. Now, suppose that Socn (M1) is bounded for some non-negative
integer n. Then, Socn (M1) contains a proper basic submodule B of M (see [13]). Therefore, B is isotype in Socn (M1) and
hence in M . Consequently, B is a direct summand of Socn (M1), say

Socn (M1) = B ⊕M4,

where M4 is h-divisible; this is a contradiction. Thus, in view of Theorem 2.1, every h-pure submodule N of M is isotype
in M and hence a direct summand of M .

The implication (ii)⇒ (i) is obvious.

The following result shows that Theorem 2.2 can slightly be extended.

Theorem 2.3. Let M be a QTAG-module. The following statements are equivalent:

(i). Every isotype submodule of M is an absolute direct summand of M .

(ii). Every h-pure (h-neat) submodule of M is an absolute direct summand of M .

Proof. (i)⇒ (ii). Let N be an isotype submodule of M . We observe that N is an absolute direct summand of M . However,
each isotype submodule N of M is a direct summand of M and it follows that every direct summand of M is an absolute
direct summand of M , as desired.

The implication (ii)⇒ (i) is trivial.

Next, we prove a result concerning h-neatness.

Theorem 2.4. Let M be a QTAG-module. The following statements are equivalent:

(i). Every h-neat submodule of M is isotype in M .

(ii). Every h-neat submodule of M is h-pure in M .
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Proof. The implication (i)⇒ (ii) is obvious.

(ii)⇒ (i). Suppose that N is an h-neat submodule of M . We know that N is h-pure in M . Thus, by virtue of Theorem 2.1,
N is isotype in M , which allows us to infer that M ∈ F, as desired.

Now, we give an example to show that there exists an h-neat submodule N of M , which is not h-pure in M .

Example 2.1. Let M = xR ⊕ yR, where x and y are the uniform elements in M such that e(x) = 3 and e(y) = 1. Then, we
get an uniform element z ∈ N such that z = (x′ + y)R and d (xR/x′R) = 1.
Now, for n ≥ 0, n (x′ + y) = a′ where d (xR/x′R) = d (aR/a′R) = 1 for some uniform element a ∈ M such that a = ux + vy

and u, v ∈ N . Then
nx′ + ny = u′x+ v′y = u′x,

where d (xR/x′R) = d (uR/u′R) = d (vR/v′R) = 1 and e(y) = 1.
Notice that

ny = (u′ − nv)x ∈ xR ∩ yR = 0.

Moreover, by the same argument, for another r ≥ 0, we have

n (x′ + y) = r (x′ + y) ,

where d (xR/x′R) = 1. It is readily checked that N is h-divisible in M , and thus, N is h-neat submodule of M .
Since N is a direct sum of uniserial modules such that d (H2(N)) = 1, we get x′ = b′, where d (xR/x′R) = 2, d (bR/b′R) = 1.
Indeed, b = x′ + 0 ∈ N ∩H2(M) and we see that H2(N) 6= N ∩H2(M), which insures that N is not h-pure in M .

We end this section with the following result.

Corollary 2.1. Let M be a QTAG-module. Every h-pure submodule N of M is isotype in M if and only if M is elementary.

Proof. This result can be proved by using the same idea as used in the proofs of Lemma 2.3 and Theorem 2.1.

3. Open problems

In this section, we pose the following three problems related to the present study.

Problem 3.1. Let F be a class of QTAG-modules. If N ⊆ M is h-neat and M is a QTAG-module, does it follow that
M ∈ F⇔M/N ∈ F ?

Problem 3.2. Let M be a direct sum of uniserial modules and assume that k ≥ 0. What are the conditions under which
any h-pure submodule between M and Sock(M) is uniserial?

Problem 3.3. Is the following statement true? If M is a QTAG-module with an isotype submodule N such that (M/N)1 is
a direct sum of uniserial modules, then Soc(M/N) is the direct sum of an h-divisible module and a bounded module.
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