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Abstract

Given a graph G, many of its topological descriptors have the additive form Dp(G) =
∑

i c
p
i , where the cis are positive

parameters associated with G, and p is an arbitrary real number. Sometimes these expressions are generalizations of
descriptors with the simpler form D(G) =

∑
i ci. It is shown how Radon’s inequality and its refinements can be used to find

a variety of bounds among members of these families of generalized descriptors. The particular case of sums of powers of
normalized Laplacian eigenvalues is thoroughly discussed.
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1. Introduction

Let G = (V,E) be a simple, connected, undirected graph where V = {v1, ..., vn} is the set of vertices and E is the set of
edges. We denote by di the degree of the vertex vi and assume that ∆ = d1 ≥ d2 ≥ ... ≥ dn = δ. It is well known that∑n
i=1 di = 2|E|. Let A(G) be the adjacency matrix of G and D(G) be the diagonal matrix of vertex degrees of G. The matrix

L(G) = D(G)−A(G) is called the Laplacian matrix of G, with eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn = 0, while the matrix
L(G) = D(G)−1/2L(G)D(G)−1/2 is known as the normalized Laplacian matrix, with eigenvalues λ1 ≥ · · · ≥ λn−1 > λn = 0.
The Aα matrix of G was defined in [11] as Aα(G) = αD(G) + (1 − α)A(G), for 0 ≤ α ≤ 1. If we denote its eigenvalues
by γ1(α) ≥ γ2(α) ≥ · · · ≥ γn(α) and we restrict ourselves to 1

2 < α < 1, we can guarantee that all these eigenvalues are
non-negative. For more details on graph theory, we refer the reader to [5].

In this article, we are interested in topological descriptors of a graph G with the form

Dp(G) =

N∑
i=1

cpi , (1)

where the cis are some positive parameters associated with G and p is an arbitrary real number. Sometimes these de-
scriptors arise as generalizations of other descriptors which were originally thought of as particular cases of p. Examples
of these, without attempting to be exhaustive, are: the general first Zagreb index

Mp
1 (G) =

n∑
i=1

dpi ,

which generalizes the first Zagreb index, obtained when p = 2; also, the general Randić index (see [6]) as

Rp(G) =
∑
ij∈E

(didj)
p;

and also, the general sum-connectivity index
Hp(G) =

∑
ij∈E

(di + dj)
p,

introduced in [17], which can be seen as another way to generalize M2
1 (G), since H1(G) = M2

1 (G). We direct the reader to
the survey [4] where these three and other general indices are discussed.
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Another example is the general atom-bond connectivity (ABC), considered in [15], as

ABCp(G) =
∑
ij∈E

(
di + dj − 2

didj

)p
,

which is a generalization of the original ABC index, where p = 1
2 , introduced in [3].

To the best of our knowledge, no general Kirchhoff index has been defined, but we could do so with the formula

Kp(G) =
∑
i<j

Rpij , (2)

where Rij is the effective resistance, computed with Ohm’s laws, between vertices vi and vj . In addition to the original
Kirchhoff indexK(G), obtained when p = 1 in (2), we will be working in this article with the multiplicative degree-Kirchhoff
index:

K∗(G) =
∑
i<j

didjRij .

Sometimes the descriptors that we look at, do not generalize former descriptors, but still have the form (1); for example:

sp(G) =

n−1∑
i=1

µpi ,

where the µis are the non-zero Laplacian eigenvalues of G, and

s∗p(G) =

n−1∑
i=1

λpi ,

where the λis are the non-zero normalized Laplacian eigenvalues of G. These latter descriptors were introduced in [16].
Also, worth mentioning is the following recently defined descriptor (see [8]):

sαp (G) =

n∑
i=1

γi(α)p,

where the γi(α)s are the eigenvalues of Aα(G) and 1
2 < α < 1.

We see that the index of the summation in (1) can run in one of the sets {1, 2, . . . , n}, or {1, 2, . . . , n−1}, or the set of edges
E, or all the pairs of indices i, j such that i < j, conveniently ordered. Thus, N can be n, n− 1, |E| or

(
n
2

)
, and the context

will make clear which case is being considered. We exhibit a variety of relations among members of the above-mentioned
families of descriptors by applying Radon’s inequality to Dp(G) and then we focus on some particular cases.

2. Radon’s inequalities

We begin with the main tool of this article, Radon’s inequalities, found in [13]:

Lemma 2.1. If a1, a2, . . . , aN and b1, b2, . . . , bN are positive real numbers and p ≥ 1 or p ≤ 0, then

N∑
i=1

api
bp−1i

≥

(∑N
i=1 ai

)p
(∑N

i=1 bi

)p−1 . (3)

The opposite inequality holds whenever 0 ≤ p ≤ 1. The equality is attained in case p = 0 or p = 1, or if a1b1 = a2
b2

= · · · = aN
bN
.

Now, we can prove the following result.

Theorem 2.1. For any descriptor Dp(G) of the form given in (1), α and β arbitrary real numbers, and p ≥ 1 or p ≤ 0, the
inequality

Dpα−(p−1)β(G) ≥ (Dα(G))
p

(Dβ(G))
p−1 (4)

holds; the opposite inequality holds whenever 0 ≤ p ≤ 1. The equality in (4) is attained in case p = 0 or p = 1 or if
cα−β1 = cα−β2 = · · · = cα−βN .
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Proof. Take ai = cαi and bi = cβi in (3). We get that

Dαp−β(p−1)(G) =
∑
i

(cαi )p

(cβi )(p−1)
≥

(
∑
i c
α
i )
p(∑

i c
β
i

)p−1 =
(Dα(G))

p

(Dβ(G))
p−1 .

The statement about the equality follows because in this case ai
bi

= cα−βi .

The next is an almost trivial observation that helps us identify extremal graphs involving Dp-type descriptors.

Corollary 2.1. For all the descriptors of the type Dp defined above, where the cis are degrees, effective resistances, Lapla-
cian or normalized Laplacian eigenvalues, the complete graph satisfies the equality in (4). For those descriptors where the
summation runs over all edges, and the cis can be described in terms of a function of sums and products of degrees over the
edges, the star graph Sn satisfies the equality in (4).

Proof. For the complete graph Kn with n vertices, all degrees, all effective resistances and all non-zero Laplacian and
normalized Laplacian eigenvalues are equal. Therefore, for all descriptors using these parameters, the values cα−βi in
Theorem 2.1 are all equal, and the equality in (4) is attained for Kn. For the star graph Sn, sums and products of degrees
are constants: di + dj = n and didj = n− 1 for all edges ij ∈ E, and a similar argument applies.

We illustrate Theorem 2.1 and Corollary 2.1 with three simple applications. Consider first Mp
1 (G) =

∑
v∈V d

p
v, then

M0
1 (G) = n and M1

1 (G) = 2|E| and therefore, applying (4) with α = 1 and β = 0, we get

Mp
1 (G) ≥ (2|E|)p

np−1
, (5)

for p ≥ 1 or p ≤ 0, and with the opposite inequality in case 0 ≤ p ≤ 1. The equality in (5) is attained by the complete graph
Kn, in view of Corollary 2.1. In fact, it is easy to see that the equality in (5) is attained by any d-regular graph, for which
the bound becomes ndp. In the recent article [10], the following bound was obtained for Mp

1 (G) in terms of the largest and
smallest degrees, ∆ and δ, respectively, when ∆(δ + 1) is even:

Mp
1 (G) ≥ ∆δp + ∆p. (6)

We notice that the bound (6) is worse than (5) in case the graph G is d-regular, with d < n− 1, because it only attains the
value (d+ 1)dp < ndp.

For another simple application, consider the general sum-connectivity index

Hp(G) =
∑
xy∈E

(dx + dy)p.

Note that H0(G) = |E| and H1(G) = M2
1 (G). Again, taking α = 1 and β = 0 in (4) we have

Hp(G) ≥
(
M2

1 (G)
)p

|E|p−1
, (7)

for p ≥ 1 or p ≤ 0, and with the opposite inequality in case 0 ≤ p ≤ 1. The equality in (7) is attained by the star graph Sn

in view of Corollary 2.1. In fact, the equality in (7) is attained by any graph for which di + dj is a constant value over all
ij ∈ E. This result can be found as Proposition 1 in [17].

For another application of (4), consider sαp (G) with 1
2 < α < 1. It is well-known that sα0 (G) = n and sα1 (G) = 2α|E|.

Then, with the same choices of α and β as before in (4), for the sαp (G) descriptor, we obtain

sαp (G) ≥ [sα1 (G)]p

[sα0 (G)]p−1
=

(2α|E|)p

np−1
, (8)

in case p ≤ 0 or p ≥ 1, with the opposite inequality if 0 ≤ p ≤ 1. This was shown in Theorem 4.1 of [8].
The power of Theorem 2.1 and Corollary 2.1 resides both in the variety of indices to which they apply, and also in the

flexibility for the choices of α and β. As a rule, the more particular cases of the valuesDp(G) that are known in closed form,
the more significant bounds that we can get. We illustrate this idea in the next section for the case of the index s∗p(G), the
sum of the p powers of the normalized Laplacian eigenvalues.

32



J. L. Palacios / Contrib. Math. 8 (2023) 30–37 33

3. Sums of powers of normalized Laplacian eigenvalues

As mentioned in [2], the following particular cases of the descriptor s∗p(G) are known:

s∗0(G) = n− 1, (9)

s∗1(G) = n, (10)

s∗2(G) = n+ 2R−1(G), (11)

where R−1(G) is the generalized Randić index with α = −1, and

s∗−1(G) =
1

2|E|
K∗(G).

From (4) we get
s∗pα−(p−1)β(G) ≥ (s∗α(G))p

(s∗β(G))p−1
(12)

for p ≥ 1 or p ≤ 0. If 0 ≤ p ≤ 1, the opposite inequality in (12) is valid. Choosing α = 1 and β = 0 in (12), we obtain:

s∗p(G) ≥ np

(n− 1)p−1
(13)

for p ≤ 0 or p ≥ 1; with the opposite inequality if 0 ≤ p ≤ 1. We remark that by Corollary 2.1 and (13),

s∗p(Kn) =
np

(n− 1)p−1

and thus s∗p(G) attains its minimum for G = Kn, when p ≤ 0 or p ≥ 1, and its maximum for the same G = Kn when
0 ≤ p ≤ 1. In particular, when p = 2 then from (13) we get

R−1(G) ≥ n

2(n− 1)
,

and when p = −1 we get
K∗(G) ≥ 2|E| (n− 1)2

n
;

the last two bounds for the indicesR−1(G) andK∗(G) are well known in the literature (see Theorem 3.2 in [7] and Corollary
4 in [12]), both are attained by Kn.

In (12), choosing α = 2, β = 0, and using q instead of p, we get:

s∗2q(G) ≥ (n+ 2R−1(G))q

(n− 1)q−1
.

Changing variables, p = 2q, we obtain

s∗p(G) ≥

√
(n+ 2R−1(G))p

(n− 1)p−2
(14)

for p ≤ 0 or p ≥ 2. With the opposite inequality if 0 ≤ p ≤ 2.
In (12), choosing α = 2, β = 1, and using q instead of p, we obtain

s∗q+1(G) ≥ (n+ 2R−1(G))q

nq−1
.

Changing variables, p = q + 1, we obtain
s∗p(G) ≥ (n+ 2R−1(G))p−1

np−2
(15)

for p ≤ 1 or p ≥ 2. For 1 ≤ p ≤ 2 the opposite inequality holds.
All inequalities (13), (14) and (15) become equalities for the complete graph Kn. Putting together all these bounds, and

selecting the best of them, we obtain the next theorem.
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Theorem 3.1. For any graph G we have the lower bounds

s∗p(G) ≥ np

(n− 1)η−1
for p ≤ 0 and 1 ≤ p ≤ 2,

s∗p(G) ≥ (n+ 2R−1(G))p−1

np−2
for 0 ≤ p ≤ 1 and p ≥ 2,

and the upper bounds
s∗p(G) ≤ np

(n− 1)p−1
for 0 ≤ p ≤ 1,

s∗p(G) ≤ (n+ 2R−1(G))p−1

np−2
for 1 ≤ p ≤ 2.

The equalities are attained by the complete graph Kn.

Proof. From the fact that
R−1(G) ≥ n

2(n− 1)
,

it can be verified that
np

(n− 1)p−1
≤

√
(n+ 2R−1(G))p

(n− 1)p−2
(16)

for p ≥ 0, with the opposite inequality when p ≤ 0. Likewise,√
(n+ 2R−1(G))p

(n− 1)p−2
≤ (n+ 2R−1(G))p−1

np−2
, (17)

for p ≥ 2, with the opposite inequality when p ≤ 2.
For lower bounds we obtain the following: in the interval p ≤ 0, all three bounds (13), (14) and (15) apply, but (13) is

the best by (16) and (17); likewise, in the interval p ≥ 2, all three bounds hold but the best is (15); finally, in the interval
0 ≤ p ≤ 1, only (15) applies.

In the case of the upper bounds, the opposites of (13) and (14) apply in the interval 0 ≤ p ≤ 1, but the opposite of (13)
is the best, and in the interval 1 ≤ p ≤ 2, both the opposites of (14) and (15) apply, but the opposite of (15) is the best.

In [2], it was shown with majorization methods that

s∗p(G) ≥W p +
(n−W )p

(n− 2)p−1
, (18)

where

W = 1 +

√
2R−1(G)

n(n− 1)

if p < 0 or p > 1, with the opposite inequality holding when 0 < p < 1. The equality is attained when G = Kn. We remark,
for the sake of comparison, that Theorem 3.1 gives lower bounds for any real value of p, while in the inequality (18), p is
restricted to be less than 0 or greater than 1. Likewise, we provide upper bounds for 0 ≤ p ≤ 2, whereas according to [2]
the opposite in (18) holds when 0 ≤ p ≤ 1. Also, in the interval p ≥ 2, our lower bound performs better: For example, in the
case of the n-cycle Cn, for which R−1(Cn) = n

4 , our lower bound is roughly equal to 1.5n when n is large; whereas, when n

grows, W approaches to 1 and so the bound in (18) is roughly equal to n.
In [1], one can find the following bound when G is a non-bipartite graph:

s∗p(G) ≥ 2p +

(
1− 2R−1

n

)p
+

(n− 3 + 2R−1

n )p

(n− 2)p−1
, (19)

for p ≤ 0 or p ≥ 1, with the opposite inequality holding if 0 ≤ p ≤ 1.
The previous example of Cn (now with n odd, to make it non-bipartite) also shows that our bound performs asymptoti-

cally better for fixed p ≥ 2, because (19) yields a lower bound roughly equal to n, while ours is roughly equal to 1.5n.
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4. Refinements

Radon’s inequalities have undergone some refinements through the years, improving the inequalities in certain cases. For
instance, we quote from [9] the following result:

Lemma 4.1. For p ≥ 1, N ≥ 2, ai ≥ 0, bi > 0 we have

N∑
i=1

api
bp−1i

≥

(∑N
i=1 ai

)p
(∑N

i=1 bi

)p−1 + max
1≤i<j≤N

(
api
bp−1i

+
apj

bp−1j

− (ai + aj)
p

(bi + bj)p−1

)
.

With the help of Lemma 4.1, we can prove the following refinement of Theorem 2.1, using the same ideas, that will be
the source of several lower and upper bounds shown after it:

Theorem 4.1. For any descriptor defined as in (1) and p ≥ 1, it holds that

Dαp−β(p−1)(G) ≥ Dα(G)p

Dβ(G)p−1
+ max

1≤i<j≤N

(
c
αp−β(p−1)
i + c

αp−β(p−1)
j −

(cαi + cαj )p

(cβi + cβj )p−1

)
. (20)

The particular case α = 1 and β = 0, treated in the previous section, when applied to (20) yields the following result:

Corollary 4.1. For any descriptor defined as in (1) and p ≥ 1, it holds that

Dp(G) ≥ D1(G)p

D0(G)p−1
+ max

1≤i<j≤N

(
cpi + cpj −

(ci + cj)
p

2p−1

)
. (21)

If we take Dp(G) to be Mp
1 (G) in (21), then we obtain

Mp
1 (G) ≥ (2|E|)p

np−1
+ ∆p + δp − (∆ + δ)p

2p−1
,

where the equality is attained by all d-regular graphs and by all n-vertex unicyclic graphs Un consisting of a cycle with
a linear graph of any length between 1 and n − 3 attached to any of the vertices of the cycle. In this case, it holds that
Mp

1 (Un) = 2pn+ 3p + 1− 2p+1, which is also the value of the lower bound.
Applying Corollary 4.1 now to sαp (G), we obtain

sαp (G) ≥ (2α|E|)p

np−1
+ γ1(α)p + γn(α)p − (γ1(α) + γn(α))p

2p−1
, (22)

for p ≥ 1, which improves (8). Applying the Corollary 4.1 yet again, this time to s∗p(G), we obtain

s∗p(G) ≥ np

(n− 1)p−1
+ λp1 + λpn−1 −

(λ1 + λn−1)p

2p−1
, (23)

for p ≥ 1, which improves (14). The particular case p = 2 yields

R−1(G) ≥ n

2(n− 1)
+

(λ1 − λn−1)2

4
. (24)

This bound improves (3).
If we consider Dp(G) to be sp(G) =

∑n−1
i=1 µ

p, it is well known (see [2]) that s0(G) = n−1, s1(G) = 2|E|, s−1(G) = nK(G),
and s1/2(G) = LEL(G), where LEL(G) is usually called the Laplacian energy-like descriptor. Taking α = 0, β = 1 and
p = 2 in (20) we obtain

K(G) ≥ n
[

(n− 1)2

2|E|
+ max

1≤i<j≤n−1

(
1

µi
+

1

µj
− 4

µi +mj

)]
,

or
K(G) ≥ n

[
(n− 1)2

2|E|
+

(µ1 − µn−1)2

µ1µn−1(µ1 + µn−1)

]
. (25)

Also, taking α = 1
2 , β = 0 and p = 2 in (20) for the descriptor sp(G), we get

LEL(G) ≤

√√√√(n− 1)

[
2|E| −

(µ
1/2
1 − µ1/2

n−1)

2

]
. (26)

The bounds (22), (23), (24), (25) and (26) could be expressed in terms of other parameters of the graphs in question, using
bounds for the largest and smallest Aα eigenvalues and the largest and smallest Laplacian and normalized Laplacian
eigenvalues, of which many can be found in the literature, but we will not pursue here that matter.

35



J. L. Palacios / Contrib. Math. 8 (2023) 30–37 36

When it comes to upper bounds, there are also refinements to Radon’s inequality. Quoting [14], we have the next lemma.

Lemma 4.2. For p ≥ 1, n ≥ 2, ai ≥ 0, bi > 0 the following inequality holds

N∑
i=1

api
bp−1i

≤

(∑N
i=1 ai

)p
(∑N

i=1 bi

)p−1 +

[
Mp +mp − (M +m)p

2p−1

] N∑
i=1

bi,

where m ≤ ai
bi
≤M .

Lemma 4.2 translates immediately into the next result.

Theorem 4.2. For any descriptor defined as in (1) and p ≥ 1, it holds that

Dαp−β(p−1)(G) ≤ Dα(G)p

Dβ(G)p−1
+

[
Mp +mp − (M +m)p

2p−1

]
Dβ(G), (27)

where m ≤ cα−βi ≤M .

The particular case of (27), when α = 1 and β = 0, yields the compact formula

Dp(G) ≤ D1(G)p

D0(G)p−1
+

[
Mp +mp − (M +m)p

2p−1

]
D0(G), (28)

where m ≤ ci ≤M .
In the case of Mp

1 (G), (28) implies

Mp
1 (G) ≤ (2|E|)p

np−1
+

[
∆p + δp − (∆ + δ)p

2p−1

]
n,

for all p ≥ 1, where the equality holds for all d-regular graphs.
In the case of Hp(G), the general sum-connectivity index, (28) yields

Hp(G) ≤
[
M2

1 (G)
]p

|E|p−1
+

[
Mp +mp − (M +m)p

2p−1

]
|E|, (29)

for p ≥ 1, and where M = maxij∈E(di + dj) and m = minij∈E(di + dj). The equality in (29) is attained by all graphs in
which di + dj is a constant value for every ij ∈ E.

In the case of sαp (G), by (28) we get

sαp (G) ≤ (2α|E|)p

np−1
+

[
γ1(α)p + γn(α)p − (γ1(α) + γn(α))p

2p−1

]
n,

for p ≥ 1.
If we take Dp(G) = s∗p(G), α = 2 and β = 1, and use q instead of p in (27) we obtain

s∗q+1 ≤
(n+ 2R−1(G))

q

nq−1
+

[
Mq +mq − (M +m)q

2q−1

]
n (30)

for q ≥ 1. Performing the necessary changes in (30), we arrive at the following inequality

s∗p(G) ≤ (n+ 2R−1(G))p−1

np−2
+

[
λp−11 + λp−1n−1 −

(λ1 + λn−1)p−1

2p−2

]
n,

this adds an upper bound, which is attained by Kn, to those in Theorem 3.1, for p ≥ 2.

5. Final remarks

We have shown that Radon’s inequalities can be applied to large families of topological descriptors in order to find numerous
upper and lower bounds, some known in the literature and many others, which are new. Using refinements of Radon’s
inequalities, we have improved lower bounds and produced new upper bounds, typically involving additional parameters.
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