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Abstract
By means of the generating function method as well as Stirling and Lah inversion, several summation formulae involving
generalized harmonic-like numbers and other combinatorial numbers named after Stirling, Lah, Hal and Fubini are derived.
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1. Introduction and motivation

It is well-known that the classical harmonic numbers are defined by

H0 = 0 and Hn =

n∑
k=1

1

k
for n ∈ N,

where N is the set of positive integers. The generating function of Hn is given by
∞∑

n=1

Hnx
n =
− ln(1− x)

1− x
.

Harmonic numbers have wide applications in number theory, combinatorics, and computer science. Properties as well
as identities about them have already been explored extensively. In addition, many researchers also have studied other
harmonic-like numbers defined in various ways [1–5, 9–11], and obtained a number of interesting results. For instance,
Cheon and El-Mikkawy [1, 2] studied the following multiple harmonic-like numbers, which reduce, when ` = 1, to the
ordinary harmonic numbers:

Hn(`) =
∑

1≤k1+k2+···+k`≤n

1

k1k2 · · · k`
,

and obtained its generating function, given as follows:

∞∑
n=1

Hn(`)x
n =

{
− ln(1− x)

}`
1− x

. (1)

Assume that [xn]g(x) stands for the coefficient of xn in the formal power series g(x). Then, we get the following relation
between Hn(`) and Stirling numbers of the first kind:

n∑
m=`

(−1)m−`

m!
s(m, `) =

n∑
m=`

(−1)m−`[xm]
ln`(1 + x)

`!

=
1

`!

n∑
m=`

(−1)m[xm]
{− ln(1 + x)}`

1 + x
× (1 + x)

=
1

`!

n∑
m=`

(−1)m
m∑

k=0

[xm−k]
{− ln(1 + x)}`

1 + x
× [xk](1 + x)

=
1

`!

n∑
m=`

{
Hm(`)−Hm−1(`)

}
=

1

`!
Hn(`),
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where s(n, k) denotes the Stirling numbers of the first kind generated by

lnk(1 + x)

k!
=

∞∑
n=k

s(n, k)
xn

n!
. (2)

Instead, by extracting the coefficient of xn in the generating function (1), the above relation can also be obtained [8].
By means of Riordan arrays, Cheon and El-Mikkawy [2] proved the following summation formulae about the multiple

harmonic-like numbers Hn(`):

n∑
`=1

(±1)`

`!
Hn(`) =

n, “ + ”;

−1, “− ”,
and

n∑
`=1

B`
(−1)`

`!
Hn(`) = Hn+1 − 1,

where Bn denotes the Bernoulli numbers. By examining the structure of these summation formulae, Guo and Chu [8]
established, by making use of the following scheme [7, 8], seven classes of summation formulae involving the multiple
harmonic-like numbers and other combinatorial numbers named after Bernoulli, Euler, Bell, Genocchi and Stirling num-
bers.

Suppose that the double-indexed sequence {D(n, k)}n≥k, subject to D(n, k) = 0 when n < k, and the sequence {λk} have
generating functions

∞∑
n=k

D(n, k)xn = h(x)gk(x) and
∞∑
k=ε

λkx
k = f(x),

respectively, where ε is a non-negative integer. Then, we can evaluate the sum
n∑

k=ε

λkD(n, k) =
n∑

k=ε

λk[x
n]h(x)gk(x)

= [xn]h(x)

∞∑
k=ε

λkg
k(x) = [xn]h(x)f(g(x)). (3)

In particular, when h(x) ≡ 1, we have
n∑

k=ε

λkD(n, k) = [xn]f(g(x)).

In addition to the harmonic numbersHn andHn(`) mentioned above, in this paper, we also investigate their alternating
forms defined by

Hn =

n∑
k=1

(−1)k

k
and Hn(`) =

∑
1≤k1+k2+···+k`≤n

(−1)k1+k2+···+k`

k1k2 · · · k`
,

with generating functions

∞∑
n=1

Hnx
n =
− ln(1 + x)

1− x
and

∞∑
n=1

Hn(`)x
n =

{
− ln(1 + x)

}`
1− x

.

In the next section, by making use of the scheme mentioned above we establish some summation formulae involving the
numbers Hn(`) as well as Lah, Hal, and Fubini numbers. In Section 3, we provide several identities involving alternating
harmonic-like numbers Hn, Hn(`), and other combinatorial numbers.

2. Identities involving Hn(`)

Formulae concerning Hn(`), Lah, and Hal numbers
The Lah numbers L(n, k) was discovered by Ivo Lah in 1955. These numbers are coefficients expressing rising factorials
in terms of falling factorials [6, p.156]:

(−x)n = (−1)n〈x〉n =

n∑
k=0

L(n, k)(x)k,

where
〈x〉0 = 1 and 〈x〉n =

n∏
k=1

(x+ k − 1), for n ∈ N.
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The unsigned Lah numbers |L(n, k)| count the number of ways to partition a set of n elements into k nonempty linearly
ordered queues. Lah numbers L(n, k) are generated by

∞∑
n=k

L(n, k)
xn

n!
=

1

k!

(
− x

1 + x

)k

,

and have the explicit formula known as
L(n, k) = (−1)nn!

k!

(
n− 1

k − 1

)
.

The Hal numbers H(n, k) are generated similarly by
∞∑

n=k

H(n, k)
xn

n!
=

1

k!

(
x

x− 1

)k

.

By the generating functions of L(n, k) and H(n, k), we immediately obtain their relation

L(n, k) = (−1)n+kH(n, k). (4)

Theorem 2.1 (Identities involving Hn(`), L(n, k), and H(n, k)).
n∑

k=`

(−1)k k!
`!
L(n, k)Hk(`) = s(n− 1, `− 1) + s(n− 1, `), (5)

n∑
k=`

k!

`!
H(n, k)Hk(`) = (−1)n

{
s(n− 1, `− 1) + s(n− 1, `)

}
. (6)

Proof. First, we prove the formula (5). Letting D(n, k) = L(n, k) and λk = Hk(`). Then, from the generating functions of
Hn(`) and L(n, k), we have

n∑
k=`

(−1)k k!
`!
L(n, k)Hk(`) =

n∑
k=`

(−1)k k!
`!
Hk(`)[x

n]
n!

k!

(
− x

1 + x

)k
= n![xn]

(
ln`(1 + x)

`!
+
x ln`(1 + x)

`!

)
.

By the generating function of Stirling numbers of the first kind (2), we evaluate the coefficient

[xn]

(
ln`(1 + x)

`!
+
x ln`(1 + x)

`!

)
=
s(n, `)

n!
+
s(n− 1, `)

(n− 1)!
.

Keeping in mind the recurrence relation

s(n+ 1, k) = s(n, k − 1)− ns(n, k),

we get the desired result.
The formula (6) follows analogously, or from (4) directly.

By means of the Lah inversion

f(n) =

n∑
k=0

L(n, k)g(k)⇐⇒ g(n) =

n∑
k=0

L(n, k)f(k),

we get, from Theorem 2.1, the counterpart two formulae, given in the next theorem.

Theorem 2.2 (Inversion formulae of (5) and (6)).
n∑

k=`

L(n, k)
{
s(k − 1, `− 1) + s(k − 1, `)

}
= (−1)nn!

`!
Hn(`);

n∑
k=`

(−1)kH(n, k)
{
s(k − 1, `− 1) + s(k − 1, `)

}
=
n!

`!
Hn(`).
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Formulae concerning Hn(`) and Fubini numbers
The Fubini numbers (or the ordered Bell numbers) Fn, counting the number of weak orderings of a set with n elements [6,
p.228], are defined by

Fn =

n∑
k=0

k!S(n, k),

where S(n, k) denotes the Stirling numbers of the second kind with the generating function
∞∑

n=k

S(n, k)
xn

n!
=

(ex − 1)k

k!
.

Fubini numbers can be generated by the exponential generating function
∞∑

n=0

Fn
xn

n!
=

1

2− ex
,

and satisfy the recurrence relation

F0 = 1 and Fn =

n∑
j=1

(
n

j

)
Fn−j .

Theorem 2.3 (Identities involving Hn(`) and Fn).
n∑

`=1

F`

`!
Hn(`) = 2n − 1, (7)

n∑
`=1

(−1)`F`

`!
Hn(`) =

0, n ≡2 0;

−1, n ≡2 1,
(8)

where m ≡k n stands for “m is congruent to n modulo k”.

Proof. Choosing D(n, k) = Hn(k) and λk = Fk

k! in Scheme (3), and according to the generating functions of Hn(`) and Fn,
we get

n∑
`=1

F`

`!
Hn(`) =

n∑
`=1

F`

`!
[xn]
{− ln(1− x)}`

1− x
= [xn]

1

1− x

∞∑
`=1

F`

`!
{− ln(1− x)}`

= [xn]
1

1− x

{ 1

2− e− ln(1−x) −F0

}
= [xn]

{ 1

1− 2x
− 1

1− x

}
= 2n − 1.

Similarly, for the formula (8), we have
n∑

`=1

(−1)`F`

`!
Hn(`) = [xn]

{
1

1− x2
− 1

1− x

}
,

and the proof follows by extracting the coefficients.

3. Identities involving Hn and Hn(`)

In this section, we examine the alternating harmonic-like numbers Hn and Hn(`).

Theorem 3.1 (Identity involving Hn, S(n, k), and Fn).
n∑

k=1

k!HkS(n, k) = −nFn−1. (9)

Proof. From the generating functions of Hn, S(n, k), and Fn, by setting D(n, k) = S(n, k) and λk = Hk, we get
n∑

k=1

k!HkS(n, k) =

n∑
k=1

k!Hk[x
n]
n!(ex − 1)k

k!
= n![xn]

∞∑
k=1

Hk(e
x − 1)k

= n![xn]
−x

2− ex
= −n![xn−1] 1

2− ex
= −nFn−1.
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By means of the Stirling inversion

f(n) =

n∑
k=0

s(n, k)g(k)⇐⇒ g(n) =

n∑
k=0

S(n, k)f(k),

we have the summation formula given in the following theorem:

Theorem 3.2 (Inversion formula of (9)).
n∑

k=1

ks(n, k)Fk−1 = −n!Hn.

Similar to the relation between Hn(`) and Stirling numbers of the first kind mentioned in Section 1, we deduce another
relation between Hn(`) and s(n, k).

Theorem 3.3 (Identity involving Hn(`) and s(n, k)).
n∑

m=`

s(m, `)

m!
= (−1)` 1

`!
Hn(`). (10)

Proof. By the generating functions of Hn(`) and s(n, k), we have

n∑
m=`

s(m, `)

m!
=

n∑
m=`

[xm]
ln`(1 + x)

`!
= (−1)` 1

`!

n∑
m=`

[xm]

{
− ln(1 + x)

}`
1− x

× (1− x)

= (−1)` 1
`!

n∑
m=`

m∑
k=0

[xm−k]

{
− ln(1 + x)

}`
1− x

× [xk](1− x)

= (−1)` 1
`!

n∑
m=`

{
Hm(`)−Hm−1(`)

}
= (−1)` 1

`!
Hn(`).

In the next theorem, by using the scheme (3), we establish two transformation formulae involving the numbers Hn(`),
L(n, k), H(n, k), and s(n, k).

Theorem 3.4 (Identities involving Hn(`), L(n, k), H(n, k), and s(n, k)).

1

`!

n∑
k=`

k!L(n, k)Hk(`) = 2nn!

n−1∑
k=`

(−1)n−k

2k+1k!
s(k, `) + s(n, `), (11)

1

`!

n∑
k=`

(−1)kk!H(n, k)Hk(`) = 2nn!

n−1∑
k=`

(−1)k

2k+1k!
s(k, `) + (−1)ns(n, `). (12)

Proof. First, we prove the identity (11). From the generating functions of L(n, k) and Hn(`), we verify that

1

`!

n∑
k=`

k!L(n, k)Hk(`) =
1

`!

n∑
k=`

k!Hk(`)[x
n]
n!

k!

(
− x

x+ 1

)k
=
n!

`!
[xn]

∞∑
k=`

Hk(`)
(
− x

x+ 1

)k
=
n!

`!
[xn]
{− ln(1− x

x+1 )}
`

1 + x
x+1

= n![xn]
1 + x

1 + 2x

ln`(1 + x)

`!
= n!

n∑
k=`

[xk]
ln`(1 + x)

`!

(
[xn−k]

1 + x

1 + 2x

)
.

Note that

[xn]
1 + x

1 + 2x
=

1, n = 0;

(−1)n2n−1. n ≥ 1.
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Thus, we have

n∑
k=`

[xk]
ln`(1 + x)

`!

(
[xn−k]

1 + x

1 + 2x

)
=

n−1∑
k=`

(−1)n−k

k!
s(k, `)2n−k−1 + s(n, `)

= 2n
n−1∑
k=`

(−1)n−k

2k+1k!
s(k, `) + s(n, `).

By the same method as used in proving (11), or from (4), we prove the identity (12).

Finally, we prove two summation formulae involving numbers Hn(`) and Fn.

Theorem 3.5 (Identities involving Hn(`) and Fn).

n∑
`=1

(±1)`

`!
F`Hn(`) =


(−2)n − 1

3
, “ + ”

n, “− ”.

(13)

Proof. Using the generating functions of Fn and Hn(`), we evaluate the sum

n∑
`=1

(±1)`

`!
F`Hn(`) =

n∑
`=1

1

`!
F`[x

n]

{
∓ ln(1 + x)

}`
1− x

=


−[xn−1] 1

1− x
× 1

1 + 2x
, “ + ”;

[xn]

{
1

(1− x)2
− 1

1− x

}
, “− ”.

The proof follows extracting the coefficients

−
[
xn−1

] 1

1− x
× 1

1 + 2x
=

(−2)n − 1

3
and [xn]

{
1

(1− x)2
− 1

1− x

}
= n.
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