
Contributions to Mathematics
www.shahindp.com/locate/cm

Contrib. Math. 8 (2023) 16–23
DOI: 10.47443/cm.2023.037

Research Article

Asymptotic enumeration of binary contingency tables and comparison with independence
heuristic

Da Wu∗

Department of Mathematics, David Rittenhouse Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA

(Received: 27 June 2023. Received in revised form: 30 July 2023. Accepted: 1 August 2023. Published online: 2 August 2023.)

© 2023 the author. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract
For parameters n, δ,B,C, a sharp asymptotic formula for the number of (n+ bnδc)2-dimensional binary contingency tables
with non-uniform margins taking values of bBCnc and bCnc is obtained. The obtained sharp asymptotics is compared with
the classical independence heuristic estimate and it is proved that the independence heuristic overestimates by a factor of
eΘ(n2δ). The comparison is based on the analysis of the correlation ratio. An explicit bound for the constant in Θ is also
obtained.
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1. Introduction

Overview
This paper studies the asymptotic enumeration of binary contingency tables and its connection with the classical indepen-
dence heuristic introduced by I. J. Good 70 years ago [4]. A binary contingency table is a set of 0-1 matrices with fixed
row and column sums. Let r = (r1, . . . , rm) and c = (c1, . . . , cn) be two positive integer vectors with the same total sum of
entries, i.e.,

∑m
i=1 ri =

∑n
j=1 cj = N . Let

M(r, c) =

{
X = (Xij) :

n∑
k=1

Xik = ri,

m∑
k=1

Xkj = cj for all 1 ≤ i ≤ m, 1 ≤ j ≤ n

}

be the set of binary contingency tables with row margin r and column margin c. Since Xij ∈ {0, 1}, it is easy to see
that ri ≤ n, cj ≤ m for all i, j. A binary contingency table has close connections with bipartite graphs with fixed degree
sequence; e.g., see [8] for a historical review. It also arises as the structural constants in the ring of symmetric functions
and representation theory of general linear groups (see [6]).

Estimating the cardinality ofM(r, c) is a fundamental problem in analytic combinatorics; for instance, see [1,4]. At the
very beginning, we have the following effortless estimate based on the so-called independence heuristic. Precisely speaking,
fix r = (r1, . . . , rm) and c = (c1, . . . , cn) with N = r1 + . . .+ rm = c1 + . . .+ cn, and letMN be the set of m× n 0-1 matrices
with total sum of entries N . Let X be the uniform sample fromMN and consider the following two events:

Rr = {X has row sum r} and Rc = {X has column sum c}.

It follows from the definition that
P (Rr) =

|Rr|
|MN |

and P (Rc) =
|Rc|
|MN |

.

Assume that Rr and Rc are independent, then

|Rr|
|MN |

· |Rc|
|MN |

= P (Rr)P (Rc) = P(Rr ∩Rc) =
|M(r, c)|
|MN |

.

Therefore,

|M(r, c)| = |Rr| · |Rc|
|MN |

=

(
mn

N

)−1 m∏
i=1

(
n

ri

) n∏
j=1

(
m

cj

)
. (1)
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We call
I(r, c) =

(
mn

N

)−1 m∏
i=1

(
n

ri

) n∏
j=1

(
m

cj

)
. (2)

the independence heuristic estimate corresponding to margins r and c.
In 1969, O’Neil [7] solved the problem for the case of large sparse binary matrices with ri, cj ≤ (log n)

1
4−ε for all 1 ≤ i, j ≤

n. In 2010, Barvinok [1] used permanents and the van der Waerden bound for doubly-stochastic matrix to obtain an estimate
for generic r and c. This estimate has recently been improved in [3] using the techniques of Lorentzian polynomials. Later
on, Barvinok and Hartigan [2] used the Maximal Entropy Principle and local central limit theorem to obtain a more precise
asymptotic formula under certain regularity conditions.

Our main focus is to first derive the asymptotics of |M(r, c)| when both r and c take two different linear values of n; see
the precise definition in the next subsection. After that, we compared the results with the independence heuristic estimate
(2) and showed that the independence heuristic estimate leads to a large overestimate by a factor of eΘ(n2δ). Our derivation
of asymptotics follows closely the spirit of [5] and is mainly based on Barvinok’s asymptotic formula in [1] and the author’s
recent work [9] on the limiting distribution of Random Binary Contingency Tables. Similar asymptotics for the uniform
margin case can also be obtaned with the same techniques and the limiting distribution derived in [10].

Setup and statements of main results
For 0 < δ < 1, 0 < B ≤ 1

C and 0 < C < 1, let

r̃ = c̃ := (bBCnc, . . . , bBCnc︸ ︷︷ ︸
bnδc entries

, bCnc . . . , bCnc︸ ︷︷ ︸
n entries

) ∈ N[nδ]+n,

and let
Mn,δ(B,C) :=M(r̃, c̃).

Namely, Mn,δ(B,C) is the set of (bnδc + n)2-dimensional binary matrices whose first bnδc rows and columns have sum
bBCnc and remaining n rows and columns have sum bCnc.

The first main result of this paper is the sharp asymptotics of |Mn,δ(B,C)|.

Theorem 1.1. Fix 0 < δ < 1, n ≥ 1, 0 < C < 3
4 and 0 < B ≤ 1

C , and let

f(x) := x log
1

x
+ (1− x) log

1

1− x
.

Then

log |Mn,δ(B,C)| = f(C)n2 +

[
2f(BC)− (BC) log

(
1− C
C

)]
n1+δ

+

[
f(z∗11) + z∗11 log

(
1− C
C
· (BC)2

(1−BC)2

)
− B2C

2(1− C)

]
n2δ +O(n3δ−1 + n log n),

where
z∗11 =

B2(1− C)

B2 − 2B + 1/C
.

Theorem 1.1 is proved in Section 2. For now, we remark that the proof is based on the Maximum Entropy Principle
and the function f(x) is Shannon-Boltzmann entropy of Bernoulli random variable with mean x; the coefficients in front
of n2, n1+δ, n2δ all come from the Bernoulli entropy.

Next, we study the relationship between |Mn,δ(B,C)| and its corresponding independence heuristic. Recall that for
margins r = (r1, . . . , rm) and c = (c1, . . . , cn), the independence heuristic estimate is the following quantity,

I(r, c) =

(
mn

N

)−1 m∏
i=1

(
n

ri

) n∏
j=1

(
m

cj

)
,

where N =
∑m
i=1 ri =

∑n
j=1 cj is the total sum of entries. We denote

In,δ(B,C) := I(r̃, c̃).

To study the relation between In,δ(B,C) and |Mn,δ(B,C)|, we consider their Correlation Ratio ρn,δ(B,C). It is defined as

ρn,δ(B,C) :=
|Mn,δ(B,C)|
In,δ(B,C)

.
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Our next main result is on the asymptotic behavior of ρn,δ(B,C).

Theorem 1.2. Fix 0 < δ < 1, n ≥ 1, 0 < C < 3
4 and 0 < B ≤ 1

C , we have

lim
n→∞

1

n2
log ρn,δ(B,C) = 0 and lim

n→∞

1

n1+δ
log ρn,δ(B,C) = 0.

Furthermore, let
∆B,C := lim

n→∞

1

n2δ
log ρn,δ(B,C),

and we have the following explicit formula for ∆B,C :

∆B,C = 1− B2C − 2BC + 1

1− C
− log

(
1− C

B2C − 2BC + 1

)
.

Moreover,

0 ≥ ∆B,C >


− 1

C
+ log

1

C
+ 1 when 0 < C ≤ 1

2 ,

− 1

1− C
+ log

1

1− C
+ 1 when 1

2 < C < 3
4 ,

with ∆B,C = 0 if and only if B = 1.

The behavior of ∆B,C tells us that the independence heuristic overestimates the number of tables inMn,δ(B,C). This
matches Barvinok’s arguments on cloned margins; see [1] for details. Probabilistically speaking, the events

Rn,δ(B,C) = {0-1 matrices has row sums r̃}

and
Cn,δ(B,C) = {0-1 matrices has column sums c̃}

are asymptotically negatively correlated instead of being asymptotically independent. The ∆B,C quantifies how far they
are away from being independent. In fact, when B = 1, i.e., all row sums and columns sums are equal, the independence
heuristic provides the best estimate. As B moves away from 1, meaning that the margins become less and less uniform,
the independence heuristic overestimates by a factor of eΘ(n2δ).

It is really interesting for the readers to compare our results with the recent work of [5] on non-negative integer case.
When the contingency tables are non-negative integer valued, the independence heuristic leads to a large undercounting,
which is opposite to our binary case. The reason behind this phenomenon remains mysterious. It would be nice if we can
obtain the intermediate results on the contingency tables whose entries take values from {0, 1, . . . , k} for finite k.

2. Proof of Theorem 1.1

Let r = (r1, . . . , rm) ∈ Nm and c = (c1, . . . , cn) ∈ Nn be two positive integer vectors with total sum of entries. The binary
transportation polytope P(r, c) is defined as

P(r, c) :=

{
X = (Xij) ∈ [0, 1]mn :

n∑
k=1

Xik = ri,

m∑
k=1

Xkj = cj ,∀i, j

}
.

Barvinok introduced the following notion of Typical Table in [1].

Definition 2.1 (Typical Table). Let r = (r1, . . . , rm), c = (c1, . . . , cn) be two positive integer vectors with total sum of entries.
For each X = (Xij) ∈ P(r, c), let

g(X) =
∑
i,j

f(Xij),

where
f(x) = x log

1

x
+ (1− x) log

1

1− x
for x ∈ (0, 1). The Typical Table Z = (zij) is defined as the unique maximizer of g on P(r, c).

Remark 2.1. The function g is strictly concave so it attains a unique maximum in the interior of the binary transportation
polytope. Hence typical table is well-defined.
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Figure 1: Plot of ∆B,C = limn→∞
1
n2δ log ρn,δ(B,C) as a function of B ∈ [0, 4] for 4 different fixed values of C. For each

0 < C < 3
4 , B is allowed to take value from 0 to 1

C .

Remark 2.2. The function f(x) = x log 1
x + (1−x) log 1

1−x is the Shannon-Boltzmann entropy of Bernoulli random variable
with mean x. Therefore, g(X) can be viewed as the Bernoulli entropy of X and Z is the maximal entropy matrix on the
polytope P(r, c).

Remark 2.3. By symmetry, two entries in a typical table are equal if they have the same margin conditions, i.e., zij = zi′j′

if ri = ri′ , cj = cj′ .

It turns out that typical table has close connection to the cardinality of M(r, c). The following theorem proved by
Barvinok in [1] plays a key role in our proof.

Theorem 2.1. Fix row margins r = (r1, . . . , rm) and column margins c = (c1, . . . , cn) and let Z = (zij) be the typical table
associated with P(r, c). There exists some absolute constant γ > 0 such that

(mn)−γ(m+n)eg(Z) ≤ |M(r, c)| ≤ eg(Z). (3)

Next, by [9, (2.3)] and [9, Lemma 2.4], we have the following lemma on the asymptotics of entries of typical table
Z = (zij).

Lemma 2.1. Fix 0 ≤ δ < 1, 0 < C < 3
4 and 0 < B ≤ 1

C . Let Z = (zij) be the typical table forMn,δ(B,C). Then there exists
constants γ1(B,C) and γ2(B,C) such that the followings hold:

1.
∣∣∣z11 − B2(1−C)

B2−2B+1/C

∣∣∣ ≤ γ1(B,C)nδ−1,

2. |z1,n+1 −BC| ≤ γ2(B,C)nδ−1,

3. |zn+1,n+1 − C| ≤ BCnδ−1.

Next, we derive the asymptotics of g(Z), which is the entropy for the typical table. Our proof is almost identical to
the [5, Proposition 3.4], except that we plug in different limits of the typical table. Notice that in the binary case, there is
no sharp phase transition for the value of B with respect to C; see [9, Remark 1.4] for more discussions on this aspect.
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Proposition 2.1. Fix 0 < δ < 1, 0 < C < 3
4 and 0 < B ≤ 1

C . Let Z = (zij) be the typical table forMn,δ(B,C). Then

g(Z) = n2f(zn+1,n+1) + 2n[nδ]f(z1,n+1) + [nδ]2f(z11)

= f(C)n2 +

[
2f(BC)− (BC) log

(
1− C
C

)]
n1+δ

+

[
f(z∗11) + z∗11 log

(
1− C
C
· (BC)2

(1−BC)2

)
− B2C

2(1− C)

]
n2δ +O(n3δ−1) +O(n),

where
z∗11 =

B2(1− C)

B2 − 2B + 1/C
.

Proof. By symmetry of typical table and marginal condition,[nδ]z11 + nz1,n+1 = [BCn]

[nδ]z1,n+1 + nzn+1,n+1 = [Cn]
.

Therefore, ([nδ]/n)z11 + z1,n+1 = [BCn]/n = BC +O(n−1)

([nδ]/n)z1,n+1 + zn+1,n+1 = [Cn]/n = C +O(n−1)

Let z∗11 = B2(1−C)
B2−2B+1/C , then

C − zn+1,n+1 = z1,n+1([nδ]/n) +O(n−1)

= (BC)([nδ]/n)− (BC − z1,n+1)([nδ]/n) +O(n−1)

= (BC)([nδ]/n)− z11([nδ]/n)2 +O(n−1)

= (BC)([nδ]/n)− z∗11([nδ]/n)2 − (z11 − z∗11)([nδ]/n)2 +O(n−1)

= (BC)([nδ]/n)− z∗11([nδ]/n)2 +O(n3δ−3 + n−1).

Similarly,

BC − z1,n+1 = ([nδ]/n)z11 +O(n−1)

= z∗11([nδ]/n) + (z11 − z∗11)([nδ]/n) +O(n−1)

= z∗11([nδ]/n) +O(n2δ−2 + n−1).

Taylor expansion of f(x) around a has the following form,

f(x) = f(a) + log

(
1− a
a

)
(x− a) +

1

2(a− 1)a
(x− a)2 +O

(
|x− a|3

)
.

Hence,

f(zn+1,n+1) = f(C)− log

(
1− C
C

)
(BC)([nδ]/n) + log

(
1− C
C

)
z∗11([nδ]/n)2

+
B2C

2(C − 1)
([nδ]/n)2 +O

(
n3δ−3

)
+O

(
nδ−1

)
f(z1,n+1) = f(BC)− log

(
1−BC
BC

)
z∗11([nδ]/n) +

1

2(BC − 1)BC
(z∗11)

2
([nδ]/n)2

+O
(
n2δ−2

)
+O

(
n−1

)
f(z11) = f (z∗11) +O

(
nδ−1

)
+O

(
n−1

)
.
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Therefore, we have that

g(Z) = n2f(zn+1,n+1) + 2n[nδ]f(z1,n+1) + [nδ]2f(z11)

= f(C)n2 +

[
2f(BC)− (BC) log

(
1− C
C

)]
n1+δ

+

[
f(z∗11) + z∗11 log

(
1− C
C
· (BC)2

(1−BC)2

)
− B2C

2(1− C)

]
n2δ +O(n3δ−1) +O(n).

Proof of Theorem 1.1. Notice that for margins r̃ and c̃, by Theorem 2.1,

g(Z)− γ′n log n ≤ log |Mn,δ(B,C)| ≤ g(Z) (4)

Now, Theorem 1.1 follows from Proposition 2.1.

3. Independence heuristic estimate

Using Stirling formula, we can deduce the asymptotics of independence heuristic estimation. Similar asymptotics of inde-
pendence heuristic for non-negative integer-valued contingency tables can be found in [5, Lemma 4.1].

Lemma 3.1. Fix 0 < δ < 1, 0 < C < 1 and 0 < B ≤ 1
C ,

log In,δ(B,C) = f(C)n2 +

[
2f(BC)−BC log

(
1− C
C

)]
n1+δ

+

[
B2C − 4BC + 2C

2(1− C)
+ log(1− C)− 2 log(1−BC)

]
n2δ +O

(
n3δ−1 + n log n

)
.

Proof. By Stirling formula, we have that

log

(
a+ b

a

)
= (a+ b) log(a+ b)− a log a− b log b+O (log(a+ b)) .

Recall that for general margins r and c, the independence heuristic estimate takes the form

I(r, c) =

(
mn

N

)−1 m∏
i=1

(
n

ri

) n∏
j=1

(
m

cj

)
.

Therefore,

log I(r, c) = N logN + (mn−N) log(mn−N)−
m∑
i=1

ri log ri −
m∑
i=1

(n− ri) log(n− ri)

−
n∑
j=1

cj log cj −
n∑
j=1

(m− cj) log(m− cj) +O ((m+ n) log(mn)) .

In our setup, when r = r̃ and c = c̃, the dimension is n + nδ and the total sum of entries N = BCn1+δ + Cn2. By Taylor
expansion

log(x+ y) = log y +
x

y
− x2

2y2
+O

(
x3

y3

)
,

we have that

log(N) = log(Cn2 +BCn1+δ) = log(Cn2) +Bnδ−1 − B2

2
n2δ−2 +O

(
n3δ−3

)
,

log(mn−N) = log
(
(1− C)n2 + (2−BC)n1+δ + n2δ

)
= log

[
(1− C)n2

]
+

(
2−BC
1− C

)
nδ−1 +

−2− 2C + 4BC −B2C2

2(1− C)2
n2δ−2 +O

(
n3δ−3

)
,

log
[
(1− C)n+ nδ

]
= log[(1− C)n] +

nδ−1

1− C
− n2δ−2

2(1− C)2
+O

(
n3δ−3

)
,
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log
[
(1−BC)n+ nδ

]
= log [(1−BC)n] +

nδ−1

1−BC
− n2δ−2

2(1−BC)2
+O

(
n3δ−3

)
.

Therefore, log In,δ(B,C) has the following expansion,

log In,δ(B,C) =
(
Cn2 +BCn1+δ

) [
log(Cn2) +Bnδ−1 − B2

2
n2δ−2

]

+
[
(1− C)n2 + (2−BC)n1+δ + n2δ

]
×
[
log((1− C)n2) +

(
2−BC
1− C

)
nδ−1 +

−2− 2C + 4BC −B2C2

2(1− C)2
n2δ−2

]

− 2BCn1+δ log(BCn)− 2nδ
[
(1−BC)n+ nδ

] [
log((1−BC)n) +

nδ−1

1−BC
− n2δ−2

2(1−BC)2

]

− 2Cn2 log(Cn)− 2n
[
(1− C)n+ nδ

]
·
[
log((1− C)n) +

nδ−1

1− C
− n2δ−2

2(1− C)2

]
+O

(
n3δ−1 + n log n

)
.

After reorganizing terms, we have that

log In,δ(B,C) = f(C)n2 +

[
2f(BC)−BC log

(
1− C
C

)]
n1+δ

+

[
B2C − 4BC + 2C

2(1− C)
+ log(1− C)− 2 log(1−BC)

]
n2δ +O

(
n3δ−1 + n log n

)
.

Proof of Theorem 1.2. By Theorem 1.1,

log |Mn,δ(B,C)| = f(C)n2 +

[
2f(BC)− (BC) log

(
1− C
C

)]
n1+δ

+

[
f(z∗11) + z∗11 log

(
1− C
C
· (BC)2

(1−BC)2

)
− B2C

2(1− C)

]
n2δ +O(n3δ−1 + n log n).

On the other hand, by Lemma 3.1,

log In,δ(B,C) = f(C)n2 +

[
2f(BC)−BC log

(
1− C
C

)]
n1+δ

+

[
B2C − 4BC + 2C

2(1− C)
+ log(1− C)− 2 log(1−BC)

]
n2δ +O

(
n3δ−1 + n log n

)
.

From this, we can easily deduce that

lim
n→∞

1

n2
log
|Mn,δ(B,C)|
In,δ(B,C)

= 0, lim
n→∞

1

n1+δ
log
|Mn,δ(B,C)|
In,δ(B,C)

= 0

and

lim
n→∞

1

n2δ
log
|Mn,δ(B,C)|
In,δ(B,C)

= ∆B,C ,

where

−∆B,C =
B2C − 4BC + 2C

2(1− C)
+ log

(
1− C

(1−BC)2

)
− f(z∗11)− z∗11 log

(
1− C

(1−BC)2

)
− z∗11 log(B2C) +

B2C

2(1− C)
.

Notice that
1− z∗11 =

(BC − 1)2

B2C − 2BC + 1
,

By direct computation,

−∆B,C =
2B2C − 4BC + 2C

2(1− C)
+

(BC − 1)2

B2C − 2BC + 1
log

[
1− C

B2C − 2BC + 1

]
+

B2(1− C)

B2 − 2B + 1/C
log

[
1− C

B2C − 2BC + 1

]

=
B2C − 2BC + 1

1− C
+ log

[
1− C

B2C − 2BC + 1

]
− 1

≥ 0,

where the last step is based on the simple fact that x− log x ≥ 1 for all x > 0. For fixed C, the explicit bound of ∆B,C follows
from the elementary analysis.
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