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Abstract
A numbering f of a graph G of order n is a labeling that assigns distinct elements of the set {1, 2, . . . , n} to the vertices of G.
The strength strf (G) of a numbering f : V (G) → {1, 2, . . . , n} of G is defined by strf (G) = max {f (u) + f (v) | uv ∈ E (G)},
that is, strf (G) is the maximum edge label of G. The strength str(G) of G is str (G) = min {strf (G) | f is a numbering of G} .
In this paper, we present sharp lower bounds for the strength of a graph in terms of its domination number as well as its
(edge) covering and (edge) independence numbers. We also provide a necessary and sufficient condition for the strength of
a graph to attain an earlier bound in terms of its subgraph structure. In addition, we establish a sharp lower bound for the
domination number of a graph under certain conditions.

Keywords: strength; (edge) covering number; (edge) independence number; graph labeling; combinatorial optimization;
domination number.
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1. Introduction

We refer to the book by Chartrand and Lesniak [5] for graph-theoretical notation and terminology not described in this
paper. In particular, the vertex set of a graph G is denoted by V (G), while the edge set of G is denoted by E (G). The graph
with n vertices and no edges is referred to as the empty graph.

We will use the notation [a, b] for the interval of integers x such that a ≤ x ≤ b. For a graph G of order n, a numbering
f of G is a labeling that assigns distinct elements of the set [1, n] to the vertices of G, where each uv ∈ E (G) is labeled
f (u) + f (v). The strength strf (G) of a numbering f : V (G)→ [1, n] of G is defined by

strf (G) = max {f (u) + f (v) | uv ∈ E (G)} ,

that is, strf (G) is the maximum edge label of G and the strength str(G) of a graph G itself is

str (G) = min {strf (G) | f is a numbering of G} .

A numbering f of a graph G for which strf (G) = str (G) is called a strength labeling of G. Since empty graphs nK1 do not
have edges, this definition does not apply to such graphs. Consequently, we may define str (nK1) = +∞ for every positive
integer n. This type of numberings was introduced in [11] as a generalization of the problem of finding whether a graph
is super edge-magic or not (see [6] for the definition of a super edge-magic graph, and also consult either [1] or [7] for
alternative and often more useful definitions of the same concept).

There are other related parameters that have been studied in the area of graph labelings. Excellent sources for more
information on this topic are found in the extensive survey by Gallian [8], which also includes information on other kinds
of graph labeling problems as well as their applications.

Several bounds for the strength of a graph have been found in terms of other parameters defined on graphs (see [9,11,
15, 16]). Among others, the following result established in [11] that provides a lower bound for the strength of a graph G

in terms of its order and minimum degree δ (G) is particularly useful.

Lemma 1.1. For every graph G of order n with δ (G) ≥ 1,

str (G) ≥ n+ δ (G) .
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It is worth mentioning that the lower bound given in Lemma 1.1 is sharp in the sense that there are infinitely many
graphs G for which str (G) = |V (G)|+ δ (G) (see [9,11,12,15] for a detailed list of such graphs and other sharp bounds).

For every nonempty graph G of order n, it is clear that 3 ≤ str (G) ≤ 2n− 1. In fact, it was shown in [13] that for every
k ∈ [1, n− 1], there exists a graph G of order n satisfying δ (G) = k and str (G) = n+ k.

In the process of settling the problem (proposed in [11]) of finding sufficient conditions for a graph G of order n with
δ (G) ≥ 1 to ensure that str (G) = n + δ (G), an equivalent definition of the following class of graphs was defined in [14].
For integers k ≥ 2, let Fk be the graph with V (Fk) = {vi |i ∈ [1, k]} and

E (Fk) = {vivj |i ∈ [1, bk/2c] and j ∈ [1 + i, k + 1− i]} .

Let G denote the complement of a graph G. The following result found in [14] provides a necessary and sufficient condition
for a graph G of order n to hold the inequality str (G) ≤ 2n− k, where k ∈ [2, n− 1].

Theorem 1.1. Let G be a graph of order n. Then str (G) ≤ 2n − k if and only if G contains Fk as a subgraph, where
k ∈ [2, n− 1].

Theorem 1.1 plays an important role in the study of the strength of graphs (see [17,18] for instance).

2. Results

In this section, we present some results involving the domination number of a graph and a new sharp lower bound for the
strength of a graph without isolated vertices. The following result provides a lower bound for the strength of a graph in
terms of its domination number.

Lemma 2.1. For every graph G of order n,
str (G) ≥ 2n− 2γ (G) + 1.

Proof. LetG be a graph with V (G) = {vi | i ∈ [1, n]}, and consider a strength labeling f ofG. Since 1 ≤ γ (G) ≤ n, it follows
that the set

S = [n− γ (G) , n]

contains at least two integers. By the pigeonhole principle, at least two integers in S are assigned to two adjacent vertices,
say f (vs) and f (vt), where s, t ∈ [1, n]. Now, assume, without loss of generality, that f (vs) > f (vt). Then

min {f (vs) + f (vt) | s, t ∈ [1, n]} ≥ (n− γ (G)) + (n− γ (G) + 1)

= 2n− 2γ (G) + 1.

Thus,

str (G) = strf (G) ≥ 2n− 2γ (G) + 1,

completing the proof.

The bound given in Lemma 2.1 is sharp in the sense that there are infinitely many graphs G for which

str (G) = 2 |V (G)| − 2γ (G) + 1.

To see this, it suffices to consider the complete graph Kn of order n. It is straightforward to see that str (Kn) = 2n− 1 and
γ (Kn) = 1 (n ≥ 2). This implies that str (Kn) = 2n − 2γ (Kn) + 1 (n ≥ 2). The following result provides a necessary and
sufficient condition for a graph G of order n to hold for str (G) = 2n− 2γ (G) + 1.

Theorem 2.1. Let G be a graph of order n with γ (G) = k, where k ∈ [2, dn/2e]. Then

str (G) = 2n− 2γ (G) + 1

if and only if G contains F2k−1 as a subgraph.

Proof. First, suppose that str (G) = 2n − 2k + 1, where γ (G) = k (k ∈ [2, dn/2e]). Let V (G) = {vi | i ∈ [1, n]}, and assume,
without loss of generality, that there exists a strength labeling ofG that assigns i to vi (i ∈ [1, n]). Since str (G) = 2n−2k+1,
every two vertices vi and vj for which i+ j > 2n− 2k + 1 are not adjacent in G. This means that every two vertices vi and
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vj for which i+ j > 2n− 2k+ 1 are adjacent in G. Let vi = wn+1−i (i ∈ [1, n]) so that V
(
G
)

= {wi | i ∈ [1, n]}. Then if wn+1−i

and wn+1−j are adjacent in G, it follows that

(n+ 1− i) + (n+ 1− j) = 2n+ 2− (i+ j)

< 2n+ 2− (2n− 2k + 1) = 2k + 1.

Thus, G contains F2k−1 as a subgraph.
Next, suppose that G contains F2k−1 as a subgraph, where γ (G) = k (k ∈ [2, dn/2e]). It follows from Theorem 1.1 that

str (G) ≤ 2n− (2k − 1) = 2n− 2γ (G) + 1.

It also follows from Lemma 2.1 that str (G) ≥ 2n− 2γ (G) + 1 and therefore str (G) = 2n− 2γ (G) + 1.

The following result found in [16] provides a necessary and sufficient condition for a graph G of order n to hold for
str (G) = 2n− 2β (G) + 1, where β (G) denotes the independence number of G.

Theorem 2.2. Let G be a graph of order n with β (G) = k, where k ∈ [2, dn/2e]. Then str (G) = 2n− 2β (G) + 1 if and only if
G contains F2k−1 as a subgraph.

The next result follows from Theorems 2.1 and 2.2, which shows a connection between the domination number and
independence number.

Corollary 2.1. Let G be a graph of order n with γ (G) = k, where k ∈ [2, dn/2e], and assume that G contains F2k−1 as a
subgraph. Then γ (G) = β (G).

The following result is an immediate consequence of Lemma 2.1.

Corollary 2.2. Let G be a graph of order n with str (G) = n+ δ (G), where δ (G) ≥ 1. Then

γ (G) ≥ d(n− δ (G) + 1) /2e.

There are infinitely many graphs attaining the bound given in Corollary 2.2. For instance, if G = Kn (n ≥ 2), then
str (G) = 2n− 1. Also, we have

|V (G)| = n and δ (G) = n− 1.

This implies that |V (G)| − δ (G) = 1. On the other hand, we have

γ (G) = 1 and d(|V (G)| − δ (G) + 1) /2e = 1.

It is known that the domination number of a graph without isolated vertices is bounded above by all of the covering
and independence numbers (see [5, p. 307] for instance). Note that we denote α (G), α1 (G) and β1 (G) to be the covering,
edge covering and edge independence numbers of G, respectively.

Theorem 2.3. If G is a graph without isolated vertices, then

γ (G) ≤ min {α (G) , α1 (G) , β (G) , β1 (G)} .

Theorem 2.3 together with Lemma 2.1 provides the lower bound, given in the following corollary, for the strength of a
graph without isolated vertices.

Corollary 2.3. For every graph G without isolated vertices,

str (G) ≥ 2n− 2 min {α (G) , α1 (G) , β (G) , β1 (G)}+ 1.

It is known from [11] that str (C2n+1) = 2n+ 3 (n ≥ 1). Also, note that

α (C2n+1) = α1 (C2n+1) = n+ 1 and β (C2n+1) = β1 (C2n+1) = n (n ≥ 1) .

By means of these, it indicates that the bound given in Corollary 2.3 is sharp.
McCuaig and Shepherd [20] showed that if G is a connected graph of order n with δ (G) ≥ 2 and is not one of the

seven exceptional graphs illustrated in Figure 1, then γ (G) ≤ 2n/5. Reed [23] showed that if G is a graph of order n with
δ (G) ≥ 3, then γ (G) ≤ 3n/8. These results together with Lemma 2.1 provide us the lower bounds, given in the next two
corollaries, for the strength of a graph.
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Figure 1: The seven exceptional graphs for Corollary 2.4.

Corollary 2.4. If G is a connected graph of order n with δ (G) ≥ 2 and is none of the graphs of Figure 1, then

str (G) ≥ 6n/5 + 1.

Corollary 2.5. If G is a graph of order n with δ (G) ≥ 3, then

str (G) ≥ 5n/4 + 1.

To close this section, we mention some general results providing upper bounds for the domination of a graph. Combining
these results with Lemma 2.1, we can obtain new lower bounds for the strength of a graph.

The following upper bound for the domination number of a graph was independently proved by Alon and Spencer [2],
Arnautov [3], Lovász [19], and Payan [21].

Theorem 2.4. For any graph G of order n with δ (G) ≥ 2,

γ (G) ≤ 1 + ln(1 + δ (G))

1 + δ (G)
n.

In [4] and [10], McCaro and Roditty provided the following upper bound for the domination number of a graph.

Theorem 2.5. For any graph G of order n with δ (G) ≥ 1,

γ (G) ≤

(
1− δ (G)

(1 + δ (G))1+ 1
δ(G)

)
n.

The preceding two upper bounds were recently improved by Rad [22] as the next two results indicate.

Theorem 2.6. If G is a graph of order n with minimum degree δ ≥ 2 and maximum degree ∆, then for any integer k ≥ 1,

γ (G) ≤ n

1 + δ

[
ln(1 + δ) + 1− (δ − ln(1 + δ))

k∑
i=1

(
ln(1 + δ)

1 + δ

)i(1+∆)
]

.

Theorem 2.7. If G is a graph of order n with minimum degree δ ≥ 2 and maximum degree ∆, then for any integer k ≥ 1,

γ (G) ≤

[
1− δ

(1 + δ)1+ 1
δ

− δ

(1 + δ)1+ 1
δ

k∑
i=1

(
1− 1

(1 + δ)
1
δ

)i(1+∆)
]
n.

With the aid of the preceding four theorems and Lemma 2.1, it is possible to provide the lower bounds, given in the next
four corollaries, for the strength of a graph.

Corollary 2.6. For any graph G of order n with δ (G) ≥ 2,

str (G) ≥ 2

(
1− 1 + ln(1 + δ (G))

1 + δ (G)

)
n+ 1.

Corollary 2.7. For any graph G of order n with δ (G) ≥ 1,

str (G) ≥ 2

(
δ (G)

(1 + δ (G))1+ 1
δ(G)

)
n+ 1.
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Corollary 2.8. If G is a graph of order n with minimum degree δ ≥ 2 and maximum degree ∆, then for any integer k ≥ 1,

str (G) ≥ 2

[
1− 1

1 + δ

(
ln(1 + δ) + 1− (δ − ln(1 + δ))

k∑
i=1

(
ln(1 + δ)

1 + δ

)i(1+∆)
)]

n+ 1.

Corollary 2.9. If G is a graph of order n with minimum degree δ ≥ 2 and maximum degree ∆, then for any integer k ≥ 1,

str (G) ≥ 2

[
δ

(1 + δ)1+ 1
δ

− δ

(1 + δ)1+ 1
δ

k∑
i=1

(
1− 1

(1 + δ)
1
δ

)i(1+∆)
]
n+ 1.

The preceding four corollaries (and Corollaries 2.4 and 2.5) provide just a few examples of various lower bounds for the
strength of a graph that can be deduced from Lemma 2.1.

Acknowledgement

The authors would like to thank the anonymous referees for the careful reading of this paper and for the useful comments
that they made, which helped to increase its quality.

References
[1] B. D. Acharya, S. M. Hegde, Strongly indexable graphs, Discrete Math. 93 (1991) 123–129.
[2] N. Alon, J. Spencer, The Probabilistic Method, Wiley, Chichester, 2000.
[3] V. I. Arnautov, Estimations of the external stability number of a graph by means of the minimal degree of vertices, Prikl. Mat. Programm. 11 (1974) 3–8.
[4] Y. Caro, Y. Roditty, On the vertex-independence number and star decomposition of graphs, Ars Combin. 20 (1985) 167–180.
[5] G. Chartrand, L. Lesniak, Graphs & Digraphs, 3rd Edition, CRC Press, Boca Raton, 1996.
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