Research Article

New extensions of the Hermite-Hadamard inequality

Paulo M. Guzmán ${ }^{1,2}$, Juan E. Nápoles Valdés ${ }^{2,3}$, Vuk Stojiljkovićc ${ }^{4, *}$
${ }^{1}$ Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sargento Cabral 2131, Corrientes, Argentina
${ }^{2}$ Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5450, Corrientes, Argentina
${ }^{3}$ Facultad Regional Resistencia, Universidad Tecnologica Nacional, French 414, Resistencia, Chaco, Argentina
${ }^{4}$ Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, Serbia

(Received: 12 June 2023. Received in revised form: 26 June 2023. Accepted: 1 July 2023. Published online: 4 July 2023.)
(c) 2023 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

Some new results related to generalized Hermite-Hadamard-type inequalities are established. For obtaining new inequalities, various approaches are utilized, including boundedness, convexity, and concavity. Considering special values of the parameters, it is demonstrated how the obtained inequalities reduce to the known ones.

Keywords: weighted integral operators; Hermite-Hadamard integral inequality; convex functions.
2020 Mathematics Subject Classification: 26D10, 26A51, 39B62, 26A33.

1. Introduction

In recent decades, there has been a lot of research done on the concept of convexity and integral inequalities. The classic book [14] on inequalities - by Hardy, Littlewood, and Pólya - serves as the basis for research on this topic. After the appearance of the book [14], researchers obtained various variations of the inequalities concerning convexity and boundedness properties; these variations include Hermite-Hadamard-type inequalities [1-13,15-17], Simpson-type inequalities [18-32] and Ostrowski-type inequalities [33-40, 43-45].

Definition 1.1. A function $\phi: I \rightarrow \mathbb{R}$ is said to be convex if

$$
\phi(\lambda x+(1-\lambda) y) \leq \lambda \phi(x)+(1-\lambda) \phi(y)
$$

holds for all $x, y \in I$ and $\lambda \in[0,1]$, where $I:=[a, b]$. If the above inequality is reversed, then the function ϕ is called a concave function.

The idea of a convex function has been extended in various directions; these extensions include m-convex functions, n-convex functions, r-convex functions, h-convex functions, (h, m)-convex functions, s-convex functions (for example, see [29, 41, 42, 46-51], where a fairly complete panorama of the current development of these concepts is presented).

In this paper, some new results related to generalized Hermite-Hadamard-type inequalities are established. For obtaining new inequalities, various approaches are utilized, including boundedness, convexity, and concavity. Considering special values of the parameters, it is demonstrated how the obtained inequalities reduce to the known ones.

2. Main results

Theorem 2.1. Let $\gamma: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function on I° such that $\gamma^{\prime \prime} \in L[a, b]$ where $a, b \in I^{\circ}$ with $a<b$. If $\left|\gamma^{\prime \prime}\right|$ is convex function on $[a, b]$, then

$$
\begin{align*}
|P(a, b, n, x, w, \gamma)| \leq & \frac{\left(\frac{x-a}{n+1}\right)^{3}}{2(b-a)} \int_{0}^{1}|w(\delta)|\left[\frac{\delta}{n+1}\left|\gamma^{\prime \prime}(a)\right|+\frac{n+1-\delta}{n+1}\left|\gamma^{\prime \prime}(x)\right|\right] d \delta \\
& +\frac{\left(\frac{b-x}{n+1}\right)^{3}}{2(b-a)} \int_{0}^{1}|w(\delta)|\left[\frac{\delta}{n+1}\left|\gamma^{\prime \prime}(b)\right|+\frac{n+1-\delta}{n+1}\left|\gamma^{\prime \prime}(x)\right|\right] d \delta \tag{1}
\end{align*}
$$

[^0]where $P(a, b, n, x, w, \gamma)$ is given by
\[

$$
\begin{align*}
P(a, b, n, x, w, \gamma)= & \frac{1}{2(b-a)}\left\{\left[w(0) \gamma^{\prime}(x)-w(1) \gamma^{\prime}\left(\frac{a+n x}{n+1}\right)\right]\left(\frac{x-a}{n+1}\right)^{2}-\left[w^{\prime}(1) \gamma\left(\frac{a+n x}{n+1}\right)-w^{\prime}(0) \gamma(x)\right]\left(\frac{x-a}{n+1}\right)\right. \\
& +\int_{x}^{\frac{a+n x}{n+1}} w^{\prime \prime}\left[\frac{(n+1)(u-x)}{a-x}\right] \gamma(u) d u+\left[w(1) \gamma^{\prime}\left(\frac{b+n x}{n+1}\right)-w(0) \gamma^{\prime}(x)\right]\left(\frac{b-x}{n+1}\right)^{2} \\
& \left.-\left[w^{\prime}(1) \gamma\left(\frac{b+n x}{n+1}\right)-w^{\prime}(0) \gamma(x)\right]\left(\frac{b-x}{n+1}\right)+\int_{x}^{\frac{b+n x}{n+1}} w^{\prime \prime}\left[\frac{(n+1)(u-x)}{b-x}\right] \gamma(u) d u\right\} \tag{2}
\end{align*}
$$
\]

Proof. Integrating by parts gives

$$
\begin{aligned}
& \frac{\left(\frac{x-a}{n+1}\right)^{3}}{2(b-a)} \int_{0}^{1} w(\delta) \gamma^{\prime \prime}\left(\frac{\delta}{n+1} a+\frac{n+1-\delta}{n+1} x\right) d \delta+\frac{\left(\frac{b-x}{n+1}\right)^{3}}{2(b-a)} \int_{0}^{1} w(\delta) \gamma^{\prime \prime}\left(\frac{\delta}{n+1} b+\frac{n+1-\delta}{n+1} x\right) d \delta \\
& =\frac{\left(\frac{x-a}{n+1}\right)^{3}}{2(b-a)}\left[\left.\frac{w(\delta) \gamma^{\prime}\left(\frac{\delta}{n+1} a+\frac{n+1-\delta}{n+1} x\right)}{\frac{a-x}{n+1}}\right|_{0} ^{1}-\int_{0}^{1} \frac{w^{\prime}(\delta) \gamma^{\prime}\left(\frac{\delta}{n+1} a+\frac{n+1-\delta}{n+1} x\right)}{\frac{a-x}{n+1}} d \delta\right] \\
& +\frac{\left(\frac{b-x}{n+1}\right)^{3}}{2(b-a)}\left[\left.\frac{w(\delta) \gamma^{\prime}\left(\frac{\delta}{n+1} b+\frac{n+1-\delta}{n+1} x\right)}{\frac{b-x}{n+1}}\right|_{0} ^{1}-\int_{0}^{1} \frac{w^{\prime}(\delta) \gamma^{\prime}\left(\frac{\delta}{n+1} b+\frac{n+1-\delta}{n+1} x\right)}{\frac{b-x}{n+1}} d \delta\right] \\
& =\frac{\left(\frac{x-a}{n+1}\right)^{3}}{2(b-a)}\left[\frac{w(1) \gamma^{\prime}\left(\frac{a+n x}{n+1}\right)-w(0) \gamma^{\prime}(x)}{\frac{a-x}{n+1}}-\int_{0}^{1} \frac{w^{\prime}(\delta) \gamma^{\prime}\left(\frac{\delta}{n+1} a+\frac{n+1-\delta}{n+1} x\right)}{\frac{a-x}{n+1}} d \delta\right] \\
& +\frac{\left(\frac{b-x}{n+1}\right)^{3}}{2(b-a)}\left[\frac{w(1) \gamma^{\prime}\left(\frac{b+n x}{n+1}\right)-w(0) \gamma^{\prime}(x)}{\frac{b-x}{n+1}}-\int_{0}^{1} \frac{w^{\prime}(\delta) \gamma^{\prime}\left(\frac{\delta}{n+1} b+\frac{n+1-\delta}{n+1} x\right)}{\frac{b-x}{n+1}} d \delta\right] \\
& =\frac{\left(\frac{x-a}{n+1}\right)^{3}}{2(b-a)}\left\{\frac{w(1) \gamma^{\prime}\left(\frac{a+n x}{n+1}\right)-w(0) \gamma^{\prime}(x)}{\frac{a-x}{n+1}}-\left[\left.\frac{w^{\prime}(\delta) \gamma\left(\frac{\delta}{n+1} a+\frac{n+1-\delta}{n+1} x\right)}{\left(\frac{a-x}{n+1}\right)^{2}}\right|_{0} ^{1}-\int_{0}^{1} \frac{w^{\prime \prime}(\delta) \gamma\left(\frac{\delta}{n+1} a+\frac{n+1-\delta}{n+1} x\right)}{\left(\frac{a-x}{n+1}\right)^{2}} d \delta\right]\right\} \\
& +\frac{\left(\frac{b-x}{n+1}\right)^{3}}{2(b-a)}\left\{\frac{w(1) \gamma^{\prime}\left(\frac{b+n x}{n+1}\right)-w(0) \gamma^{\prime}(x)}{\frac{b-x}{n+1}}-\left[\left.\frac{w^{\prime}(\delta) \gamma\left(\frac{\delta}{n+1} b+\frac{n+1-\delta}{n+1} x\right)}{\left(\frac{b-x}{n+1}\right)^{2}}\right|_{0} ^{1}-\int_{0}^{1} \frac{w^{\prime \prime}(\delta) \gamma\left(\frac{\delta}{n+1} b+\frac{n+1-\delta}{n+1} x\right)}{\left(\frac{b-x}{n+1}\right)^{2}} d \delta\right]\right\} \\
& =\frac{\left(\frac{x-a}{n+1}\right)^{3}}{2(b-a)}\left\{\frac{w(1) \gamma^{\prime}\left(\frac{a+n x}{n+1}\right)-w(0) \gamma^{\prime}(x)}{\frac{a-x}{n+1}}-\left[\frac{w^{\prime}(1) \gamma\left(\frac{a+n x}{n+1}\right)-w^{\prime}(0) \gamma(x)}{\left(\frac{a-x}{n+1}\right)^{2}}-\int_{x}^{\frac{a+n x}{n+1}} \frac{w^{\prime \prime}\left[\frac{(n+1)(u-x)}{a-x}\right] \gamma(u) d u}{\left(\frac{a-x}{n+1}\right)^{2}\left(\frac{a-x}{n+1}\right)}\right]\right\} \\
& +\frac{\left(\frac{b-x}{n+1}\right)^{3}}{2(b-a)}\left\{\frac{w(1) \gamma^{\prime}\left(\frac{b+n x}{n+1}\right)-w(0) \gamma^{\prime}(x)}{\frac{b-x}{n+1}}-\left[\frac{w^{\prime}(1) \gamma\left(\frac{b+n x}{n+1}\right)-w^{\prime}(0) \gamma(x)}{\left(\frac{b-x}{n+1}\right)^{2}}-\int_{x}^{\frac{b+n x}{n+1}} \frac{w^{\prime \prime}\left[\frac{(n+1)(u-x)}{b-x}\right] \gamma(u) d u}{\left(\frac{b-x}{n+1}\right)^{2}\left(\frac{b-x}{n+1}\right)}\right]\right\} .
\end{aligned}
$$

Thus,

$$
\begin{align*}
P(a, b, n, x, w, \gamma)= & \frac{1}{2(b-a)}\left\{\left[w(0) \gamma^{\prime}(x)-w(1) \gamma^{\prime}\left(\frac{a+n x}{n+1}\right)\right]\left(\frac{x-a}{n+1}\right)^{2}-\left[w^{\prime}(1) \gamma\left(\frac{a+n x}{n+1}\right)-w^{\prime}(0) \gamma(x)\right]\left(\frac{x-a}{n+1}\right)\right. \\
& +\int_{x}^{\frac{a+n x}{n+1}} w^{\prime \prime}\left[\frac{(n+1)(u-x)}{a-x}\right] \gamma(u) d u+\left[w(1) \gamma^{\prime}\left(\frac{b+n x}{n+1}\right)-w(0) \gamma^{\prime}(x)\right]\left(\frac{b-x}{n+1}\right)^{2} \\
& \left.-\left[w^{\prime}(1) \gamma\left(\frac{b+n x}{n+1}\right)-w^{\prime}(0) \gamma(x)\right]\left(\frac{b-x}{n+1}\right)+\int_{x}^{\frac{b+n x}{n+1}} w^{\prime \prime}\left[\frac{(n+1)(u-x)}{b-x}\right] \gamma(u) d u\right\} \\
= & \frac{\left(\frac{x-a}{n+1}\right)^{3}}{2(b-a)} \int_{0}^{1} w(\delta) \gamma^{\prime \prime}\left(\frac{\delta}{n+1} a+\frac{n+1-\delta}{n+1} x\right) d \delta+\frac{\left(\frac{b-x}{n+1}\right)^{3}}{2(b-a)} \int_{0}^{1} w(\delta) \gamma^{\prime \prime}\left(\frac{\delta}{n+1} b+\frac{n+1-\delta}{n+1} x\right) d \delta \tag{3}
\end{align*}
$$

Using the well-known triangular inequality of real numbers and the definition of convexity in (3), we get

$$
\begin{aligned}
|P(a, b, n, x, w, \gamma)| \leq & \frac{\left(\frac{x-a}{n+1}\right)^{3}}{2(b-a)} \int_{0}^{1}|w(\delta)|\left|\gamma^{\prime \prime}\left(\frac{\delta}{n+1} a+\frac{n+1-\delta}{n+1} x\right)\right| d \delta+\frac{\left(\frac{b-x}{n+1}\right)^{3}}{2(b-a)} \int_{0}^{1}|w(\delta)|\left|\gamma^{\prime \prime}\left(\frac{\delta}{n+1} b+\frac{n+1-\delta}{n+1} x\right)\right| d \delta \\
\leq & \frac{\left(\frac{x-a}{n+1}\right)^{3}}{2(b-a)} \int_{0}^{1}|w(\delta)|\left[\frac{\delta}{n+1}\left|\gamma^{\prime \prime}(a)\right|+\frac{n+1-\delta}{n+1}\left|\gamma^{\prime \prime}(x)\right|\right] d \delta \\
& +\frac{\left(\frac{b-x}{n+1}\right)^{3}}{2(b-a)} \int_{0}^{1}|w(\delta)|\left[\frac{\delta}{n+1}\left|\gamma^{\prime \prime}(b)\right|+\frac{n+1-\delta}{n+1}\left|\gamma^{\prime \prime}(x)\right|\right] d \delta .
\end{aligned}
$$

Remark 2.1. The choices $n=0$ and $w(\delta)=1-\delta^{2}$ in Theorem 2.1 yield Theorem 4 of [19].
Corollary 2.1. With the assumptions made in the statement of Theorem 2.1, the following inequality holds:

$$
\begin{align*}
|P(a, b, n, w, \gamma)| & \leq \frac{(b-a)^{2}}{16(n+1)^{3}} \int_{0}^{1}|w(\delta)|\left[2 \frac{n+1-\delta}{n+1}\left|\gamma^{\prime \prime}\left(\frac{a+b}{2}\right)\right|+\frac{\delta}{n+1}\left(\left|\gamma^{\prime \prime}(a)\right|+\left|\gamma^{\prime \prime}(b)\right|\right)\right] d \delta \\
& \leq \frac{(b-a)^{2}}{16(n+1)^{3}} \int_{0}^{1}|w(\delta)|\left[\left|\gamma^{\prime \prime}(a)\right|+\left|\gamma^{\prime \prime}(b)\right|\right] d \delta \tag{4}
\end{align*}
$$

Proof. Taking $x=\frac{a+b}{2}$ in (1) we obtain the first inequality of (4) and then making use of the convexity of the function $\left|\gamma^{\prime \prime}\right|$, we arrive at the other inequality of (4).

Theorem 2.2. Let $\gamma: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function on I° and $a, b \in I^{\circ}$ with $a<b$. If $\gamma^{\prime \prime} \in L[a, b]$ and $\left|\gamma^{\prime \prime}\right|^{q}$ is convex on $[a, b]$ for some fixed $q>1$ such that $p^{-1}+q^{-1}=1$, then

$$
\begin{align*}
|P(a, b, n, x, w, \gamma)| \leq & \left(\int_{0}^{1} w^{p}(\delta) d \delta\right)^{\frac{1}{p}}\left[\frac{\left(\frac{x-a}{n+1}\right)^{3}}{2(b-a)}\left(\frac{\left|\gamma^{\prime \prime}(a)\right|^{q}}{2(n+1)}+\left(1-\frac{1}{2(n+1)}\right)\left|\gamma^{\prime \prime}(x)\right|^{q}\right)^{\frac{1}{q}}\right. \\
& \left.+\frac{\left(\frac{b-x}{n+1}\right)^{3}}{2(b-a)}\left(\frac{\left|\gamma^{\prime \prime}(b)\right|^{q}}{2(n+1)}+\left(1-\frac{1}{2(n+1)}\right)\left|\gamma^{\prime \prime}(x)\right|^{q}\right)^{\frac{1}{q}}\right] \tag{5}
\end{align*}
$$

Proof. Considering Equation (3) and then making use of the Hölder's inequality, we get

$$
\begin{align*}
|P(a, b, n, x, w, \gamma)| \leq & \frac{\left(\frac{x-a}{n+1}\right)^{3}}{2(b-a)}\left(\int_{0}^{1} w^{p}(\delta) d \delta\right)^{\frac{1}{p}}\left(\int_{0}^{1}\left|\gamma^{\prime \prime}\left(\frac{\delta}{n+1} a+\frac{n+1-\delta}{n+1} x\right)\right|^{q} d \delta\right)^{\frac{1}{q}} \\
& +\frac{\left(\frac{b-x}{n+1}\right)^{3}}{2(b-a)}\left(\int_{0}^{1} w^{p}(\delta) d \delta\right)^{\frac{1}{p}}\left(\int_{0}^{1}\left|\gamma^{\prime \prime}\left(\frac{\delta}{n+1} b+\frac{n+1-\delta}{n+1} x\right)\right|^{q} d \delta\right)^{\frac{1}{q}} . \tag{6}
\end{align*}
$$

Using the convexity of $\left|\gamma^{\prime \prime}\right|^{q}$, we get

$$
\begin{aligned}
\int_{0}^{1}\left|\gamma^{\prime \prime}\left(\frac{\delta}{n+1} a+\frac{n+1-\delta}{n+1} x\right)\right|^{q} d \delta & \leq \int_{0}^{1}\left(\frac{\delta}{n+1}\left|\gamma^{\prime \prime}(a)\right|^{q}+\frac{n+1-\delta}{n+1}\left|\gamma^{\prime \prime}(x)\right|^{q}\right) d \delta \\
& =\frac{\left|\gamma^{\prime \prime}(a)\right|^{q}}{2(n+1)}+\left(1-\frac{1}{2(n+1)}\right)\left|\gamma^{\prime \prime}(x)\right|^{q}
\end{aligned}
$$

Similarly,

$$
\begin{align*}
\int_{0}^{1}\left|\gamma^{\prime \prime}\left(\frac{\delta}{n+1} b+\frac{n+1-\delta}{n+1} x\right)\right|^{q} d \delta & \leq \int_{0}^{1}\left(\frac{\delta}{n+1}\left|\gamma^{\prime \prime}(b)\right|^{q}+\frac{n+1-\delta}{n+1}\left|\gamma^{\prime \prime}(x)\right|^{q}\right) d \delta \\
& =\frac{\left|\gamma^{\prime \prime}(b)\right|^{q}}{2(n+1)}+\left(1-\frac{1}{2(n+1)}\right)\left|\gamma^{\prime \prime}(x)\right|^{q} \tag{7}
\end{align*}
$$

The desired inequality follows from (6) and (7).

Corollary 2.2. Under the same conditions as given in the statement of Theorem 2.2, it holds that

$$
\begin{align*}
& |P(a, b, n, w, \gamma)| \\
\leq & \frac{\left(\int_{0}^{1} w^{p}(\delta) d \delta\right)^{\frac{1}{p}}}{\frac{16(n+1)^{3}}{(b-a)^{2}}}\left[\left(\frac{\left|\gamma^{\prime \prime}(a)\right|^{q}}{2(n+1)}+\left(1-\frac{1}{2(n+1)}\right)\left|\gamma^{\prime \prime}\left(\frac{a+b}{2}\right)\right|^{q}\right)^{\frac{1}{q}}+\left(\frac{\left|\gamma^{\prime \prime}(b)\right|^{q}}{2(n+1)}+\left(1-\frac{1}{2(n+1)}\right)\left|\gamma^{\prime \prime}\left(\frac{a+b}{2}\right)\right|^{q}\right)^{\frac{1}{q}}\right] \\
\leq & \frac{\left(\int_{0}^{1} w^{p}(\delta) d \delta\right)^{\frac{1}{p}}}{\frac{16(n+1)^{3}}{(b-a)^{2}}}\left[\left(1-\frac{1}{2(n+1)}\right)^{\frac{1}{q}}+(2(n+1))^{-\frac{1}{q}}\right]\left(\left|\gamma^{\prime \prime}(a)\right|+\left|\gamma^{\prime \prime}(b)\right|\right) \tag{8}
\end{align*}
$$

Proof. The first inequality of (8) is established by putting $x=\frac{a+b}{2}$ in (5). The second inequality of (8) is derived by making use of the convexity of the function $\left|\gamma^{\prime \prime}\right|^{q}$.

Theorem 2.3. Let $\gamma: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function on I° and $a, b \in I^{\circ}$ with $a<b$. If $\gamma^{\prime \prime} \in L[a, b]$ and $\left|\gamma^{\prime \prime}\right|^{q}$ is concave function on $[a, b]$ for some fixed $q>1$ and $p=\frac{q}{q-1}$, then

$$
\begin{equation*}
|P(a, b, n, x, w, \gamma)| \leq \frac{\left(\int_{0}^{1} w^{p}(\delta) d \delta\right)^{\frac{1}{p}}}{2(b-a)}\left[\left(\frac{x-a}{n+1}\right)^{3}\left|\gamma^{\prime \prime}\left(\frac{x}{2}+\frac{a}{2(n+1)}\right)\right|+\left(\frac{b-x}{n+1}\right)^{3}\left|\gamma^{\prime \prime}\left(\frac{x}{2}+\frac{b}{2(n+1)}\right)\right|\right] \tag{9}
\end{equation*}
$$

Proof. Considering the Equation (3) and then making use of the Hölder's inequality for $q>1$ and $p=\frac{q}{q-1}$, we get

$$
\begin{aligned}
|P(a, b, n, x, w, \gamma)| \leq & \frac{\left(\frac{x-a}{n+1}\right)^{3}}{2(b-a)}\left(\int_{0}^{1} w^{p}(\delta) d \delta\right)^{\frac{1}{p}}\left(\int_{0}^{1}\left|\gamma^{\prime \prime}\left(\frac{\delta}{n+1} a+\frac{n+1-\delta}{n+1} x\right)\right|^{q} d \delta\right)^{\frac{1}{q}} \\
& +\frac{\left(\frac{b-x}{n+1}\right)^{3}}{2(b-a)}\left(\int_{0}^{1} w^{p}(\delta) d \delta\right)^{\frac{1}{p}}\left(\int_{0}^{1}\left|\gamma^{\prime \prime}\left(\frac{\delta}{n+1} b+\frac{n+1-\delta}{n+1} x\right)\right|^{q} d \delta\right)^{\frac{1}{q}} .
\end{aligned}
$$

Since, the function $\left|\gamma^{\prime \prime}\right|^{q}$ is concave, by making use of Jensen's integral inequality, we get

$$
\begin{aligned}
\int_{0}^{1}\left|\gamma^{\prime \prime}\left(\frac{\delta}{n+1} a+\frac{n+1-\delta}{n+1} x\right)\right|^{q} d \delta & \leq\left|\gamma^{\prime \prime}\left[\int_{0}^{1}\left(\frac{\delta}{n+1} a+\frac{n+1-\delta}{n+1} x\right) d \delta\right]\right|^{q} \\
& =\left|\gamma^{\prime \prime}\left(\frac{x}{2}+\frac{a}{2(n+1)}\right)\right|^{q}
\end{aligned}
$$

Similarly,

$$
\int_{0}^{1}\left|\gamma^{\prime \prime}\left(\frac{\delta}{n+1} b+\frac{n+1-\delta}{n+1} x\right)\right|^{q} d \delta \leq\left|\gamma^{\prime \prime}\left(\frac{x}{2}+\frac{b}{2(n+1)}\right)\right|^{q}
$$

Consequently, we get

$$
|P(a, b, n, x, w, \gamma)| \leq \frac{\left(\int_{0}^{1} w^{p}(\delta) d \delta\right)^{\frac{1}{p}}}{2(b-a)}\left[\left(\frac{x-a}{n+1}\right)^{3}\left|\gamma^{\prime \prime}\left(\frac{x}{2}+\frac{a}{2(n+1)}\right)\right|+\left(\frac{b-x}{n+1}\right)^{3}\left|\gamma^{\prime \prime}\left(\frac{x}{2}+\frac{b}{2(n+1)}\right)\right|\right]
$$

Corollary 2.3. Under the assumptions of Theorem 2.3, it holds that

$$
\begin{align*}
|P(a, b, n, w, \gamma)| & \leq \frac{\left(\int_{0}^{1} w^{p}(\delta) d \delta\right)^{\frac{1}{p}}}{2(b-a)}\left(\frac{b-a}{2(n+1)}\right)^{3}\left[\left|\gamma^{\prime \prime}\left(\frac{(a+b)(n+1)+2 a}{4(n+1)}\right)\right|+\left|\gamma^{\prime \prime}\left(\frac{(a+b)(n+1)+2 b}{4(n+1)}\right)\right|\right] \\
& \leq \frac{\left(\int_{0}^{1} w^{p}(\delta) d \delta\right)^{\frac{1}{p}}}{8(b-a)}\left(\frac{b-a}{n+1}\right)^{3}\left|\gamma^{\prime \prime}\left(\frac{(a+b)(n+2)}{4(n+1)}\right)\right| \tag{10}
\end{align*}
$$

Proof. The first inequality of (10) is deduced by substituting $x=\frac{a+b}{2}$ in (9). The second inequality of (10) is established by making use of the concavity of the function $\left|\gamma^{\prime \prime}\right|^{q}$.

Theorem 2.4. Let $\gamma: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function on I° and $a, b \in I^{\circ}$ with $a<b$. If $\gamma^{\prime \prime} \in L[a, b]$ and $\left|\gamma^{\prime \prime}\right|^{q}$ is convex function on $[a, b]$ for some fixed $q>1$, then

$$
\begin{align*}
|P(a, b, n, x, w, \gamma)| \leq & \frac{\left(\int_{0}^{1} w(\delta) d \delta\right)^{1-\frac{1}{q}}}{2(b-a)}\left[\left(\frac{x-a}{n+1}\right)^{3}\left(\frac{\left|\gamma^{\prime \prime}(a)\right|^{q}}{n+1} \int_{0}^{1} \delta w(\delta) d \delta+\frac{\left|\gamma^{\prime \prime}(x)\right|^{q}}{n+1} \int_{0}^{1}(n+1-\delta) w(\delta) d \delta\right)^{\frac{1}{q}}\right. \\
& \left.+\left(\frac{b-x}{n+1}\right)^{3}\left(\frac{\left|\gamma^{\prime \prime}(b)\right|^{q}}{n+1} \int_{0}^{1} \delta w(\delta) d \delta+\frac{\left|\gamma^{\prime \prime}(x)\right|^{q}}{n+1} \int_{0}^{1}(n+1-\delta) w(\delta) d \delta\right)^{\frac{1}{q}}\right] \tag{11}
\end{align*}
$$

Proof. Considering Equation (3) again and then making use of the power-mean inequality for $q>1$, we get

$$
\begin{align*}
|P(a, b, n, x, w, \gamma)| \leq & \frac{\left(\frac{x-a}{n+1}\right)^{3}}{2(b-a)} \int_{0}^{1} w(\delta)\left|\gamma^{\prime \prime}\left(\frac{\delta}{n+1} a+\frac{n+1-\delta}{n+1} x\right)\right| d \delta \\
& +\frac{\left(\frac{b-x}{n+1}\right)^{3}}{2(b-a)} \int_{0}^{1} w(\delta)\left|\gamma^{\prime \prime}\left(\frac{\delta}{n+1} b+\frac{n+1-\delta}{n+1} x\right)\right| d \delta \\
\leq & \frac{\left(\frac{x-a}{n+1}\right)^{3}}{2(b-a)}\left(\int_{0}^{1} w(\delta) d \delta\right)^{1-\frac{1}{q}}\left(\int_{0}^{1} w(\delta)\left|\gamma^{\prime \prime}\left(\frac{\delta}{n+1} a+\frac{n+1-\delta}{n+1} x\right)\right|^{q} d \delta\right)^{\frac{1}{q}} \\
& +\frac{\left(\frac{b-x}{n+1}\right)^{3}}{2(b-a)}\left(\int_{0}^{1} w(\delta) d \delta\right)^{1-\frac{1}{q}}\left(\int_{0}^{1} w(\delta)\left|\gamma^{\prime \prime}\left(\frac{\delta}{n+1} b+\frac{n+1-\delta}{n+1} x\right)\right|^{q} d \delta\right)^{\frac{1}{q}} . \tag{12}
\end{align*}
$$

By making use of the fact that the function $\left|\gamma^{\prime \prime}\right|^{q}$ is convex, we get

$$
\begin{align*}
\int_{0}^{1} w(\delta)\left|\gamma^{\prime \prime}\left(\frac{\delta}{n+1} a+\frac{n+1-\delta}{n+1} x\right)\right|^{q} d \delta & \leq \int_{0}^{1} w(\delta)\left[\frac{\delta}{n+1}\left|\gamma^{\prime \prime}(a)\right|^{q}+\frac{n+1-\delta}{n+1}\left|\gamma^{\prime \prime}(x)\right|^{q}\right] d \delta \\
& =\frac{\left|\gamma^{\prime \prime}(a)\right|^{q}}{n+1} \int_{0}^{1} \delta w(\delta) d \delta+\frac{\left|\gamma^{\prime \prime}(x)\right|^{q}}{n+1} \int_{0}^{1}(n+1-\delta) w(\delta) d \delta \tag{13}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\int_{0}^{1} w(\delta)\left|\gamma^{\prime \prime}\left(\frac{\delta}{n+1} b+\frac{n+1-\delta}{n+1} x\right)\right|^{q} d \delta \leq \frac{\left|\gamma^{\prime \prime}(b)\right|^{q}}{n+1} \int_{0}^{1} \delta w(\delta) d \delta+\frac{\left|\gamma^{\prime \prime}(x)\right|^{q}}{n+1} \int_{0}^{1}(n+1-\delta) w(\delta) d \delta . \tag{14}
\end{equation*}
$$

Using (13) and (14) in (12), we get the inequality (11).
Corollary 2.4. Under the assumptions of Theorem 2.4, the following inequality holds:

$$
\begin{align*}
|P(a, b, n, w, \gamma)| \leq & \frac{\left(\int_{0}^{1} w(\delta) d \delta\right)^{1-\frac{1}{q}}}{16} \frac{(b-a)^{2}}{(n+1)^{3}}\left[\left(\frac{\left|\gamma^{\prime \prime}(a)\right|^{q}}{n+1} \int_{0}^{1} \delta w(\delta) d \delta+\frac{\left|\gamma^{\prime \prime}\left(\frac{a+b}{2}\right)\right|^{q}}{n+1} \int_{0}^{1}(n+1-\delta) w(\delta) d \delta\right)^{\frac{1}{q}}\right. \\
& \left.+\left(\frac{\left|\gamma^{\prime \prime}(b)\right|^{q}}{n+1} \int_{0}^{1} \delta w(\delta) d \delta+\frac{\left|\gamma^{\prime \prime}\left(\frac{a+b}{2}\right)\right|^{q}}{n+1} \int_{0}^{1}(n+1-\delta) w(\delta) d \delta\right)^{\frac{1}{q}}\right] \\
\leq & \frac{\left(\int_{0}^{1} w(\delta) d \delta\right)^{1-\frac{1}{q}}}{16} \frac{(b-a)^{2}}{(n+1)^{3+\frac{1}{q}}}\left[\left(\int_{0}^{1} \delta w(\delta) d \delta\right)^{\frac{1}{q}}+\left(2^{q-1} \int_{0}^{1}(n+1-\delta) w(\delta) d \delta\right)^{\frac{1}{q}}\right]\left[\left|\gamma^{\prime \prime}(a)\right|+\left|\gamma^{\prime \prime}(b)\right|\right] \tag{15}
\end{align*}
$$

Proof. The first inequality of (15) is established by putting $x=\frac{a+b}{2}$ in (11). The second inequality of (15) is deduced by making use of the convexity of the function $\left|\gamma^{\prime \prime}\right|^{q}$.

Theorem 2.5. Let $\gamma: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function on I° and $a, b \in I^{\circ}$ with $a<b$. If $\gamma^{\prime \prime} \in L[a, b]$ and if there exist constants $\zeta<\eta$ with $\eta>0$ such that $-\infty<\zeta \leq \gamma^{\prime \prime} \leq \eta<+\infty$, then

$$
\begin{equation*}
\left|P\left(a, b, n, \frac{a+b}{2}, w, \gamma\right)\right| \leq \frac{(b-a)^{2}}{8(n+1)^{3}} \eta \int_{0}^{1}|w(\delta)| d \delta \tag{16}
\end{equation*}
$$

Proof. Considering Equation (3) and setting $x=\frac{a+b}{2}$, while taking the absolutely value, we obtain

$$
\left|P\left(a, b, n, \frac{a+b}{2}, w, \gamma\right)\right| \leq \frac{(b-a)^{2}}{8(n+1)^{3}}\left|\int_{0}^{1} w(\delta) \gamma^{\prime \prime}\left(\frac{\delta}{n+1} b+\frac{n+1-\delta}{n+1} x\right) d \delta\right| .
$$

Adding and subtracting $\frac{\eta+\zeta}{2}$ to $\gamma^{\prime \prime}$, we obtain

$$
\left|P\left(a, b, n, \frac{a+b}{2}, w, \gamma\right)\right| \leq \frac{(b-a)^{2}}{8(n+1)^{3}}\left|\int_{0}^{1} w(\delta)\left(\gamma^{\prime \prime}\left(\frac{\delta}{n+1} b+\frac{n+1-\delta}{n+1} x\right)-\frac{\eta+\zeta}{2}\right) d \delta+\frac{\eta+\zeta}{2} \int_{0}^{1} w(\delta) d \delta\right| .
$$

Since

$$
\left|\gamma^{\prime \prime}\left(\frac{\delta}{n+1} b+\frac{n+1-\delta}{n+1} x\right)-\frac{\eta+\zeta}{2}\right| \leq \frac{\eta-\zeta}{2}
$$

which holds because of the boundedness of $\gamma^{\prime \prime}$, therefore we obtain

$$
\left|P\left(a, b, n, \frac{a+b}{2}, w, \gamma\right)\right| \leq \frac{(b-a)^{2}}{8(n+1)^{3}}\left(\frac{\eta-\zeta}{2} \int_{0}^{1}|w(\delta)| d \delta+\frac{\eta+\zeta}{2} \int_{0}^{1}|w(\delta)| d \delta\right)
$$

which (after simplification) gives the desired inequality.

3. Applications

Proposition 3.1. If $0<a<b, n \in \mathbb{Z},|n(n-1)| \geq 3$ and $q>1$ such that $\frac{1}{p}+\frac{1}{q}=1$, then

$$
\begin{aligned}
& \left|A\left(a^{n}, b^{n}\right)-L_{n}^{n}(a, b)\right| \leq \frac{\left(\int_{0}^{1} w^{p}(\delta) d \delta\right)^{\frac{1}{p}}}{\frac{8(n+1)^{3}}{(b-a)^{2}}}\left[\left(1-\frac{1}{2(n+1)}\right)^{\frac{1}{q}}+(2(n+1))^{-\frac{1}{q}}\right] A\left(a^{n-2}, b^{n-2}\right), \\
& \left|A\left(a^{n}, b^{n}\right)-L_{n}^{n}(a, b)\right| \leq \frac{\left(\int_{0}^{1} w(\delta) d \delta\right)^{1-\frac{1}{q}}}{\frac{8(n+1)^{3+\frac{1}{q}}}{(b-a)^{2}}}\left[\left(\int_{0}^{1} \delta w(\delta) d \delta\right)^{\frac{1}{q}}+\left(2^{q-1} \int_{0}^{1}(n+1-\delta) w(\delta) d \delta\right)^{\frac{1}{q}}\right] A\left(a^{n-2}, b^{n-2}\right) .
\end{aligned}
$$

Proof. Let $\gamma(x)=x^{n}$ with $x>0,|n(n-1)| \geq 3$ and $n \in \mathbb{Z}$. Since the function γ satisfies all the conditions of Theorem 2.2, the desired inequalities follow from Corollaries 2.2 and 2.4.

Proposition 3.2. Let $0<a<b$ and $q>1$ such that $\frac{1}{p}+\frac{1}{q}=1$, then

$$
\begin{aligned}
& \left|A\left(a^{-1}, b^{-1}\right)-L^{-1}(a, b)\right| \leq \frac{\left(\int_{0}^{1} w^{p}(\delta) d \delta\right)^{\frac{1}{p}}}{\frac{4(n+1)^{3}}{(b-a)^{2}}}\left[\left(1-\frac{1}{2(n+1)}\right)^{\frac{1}{q}}+(2(n+1))^{-\frac{1}{q}}\right] A\left(a^{-3}, b^{-3}\right), \\
& \left|A\left(a^{-1}, b^{-1}\right)-L^{-1}(a, b)\right| \leq \frac{\left(\int_{0}^{1} w(\delta) d \delta\right)^{1-\frac{1}{q}}}{\frac{4(n+1)^{3+\frac{1}{q}}}{(b-a)^{2}}}\left[\left(\int_{0}^{1} \delta w(\delta) d \delta\right)^{\frac{1}{q}}+\left(2^{q-1} \int_{0}^{1}(n+1-\delta) w(\delta) d \delta\right)^{\frac{1}{q}}\right] A\left(a^{-3}, b^{-3}\right)
\end{aligned}
$$

Proof. Consider the function $\gamma(x)=\frac{1}{x}$ with $x>0$. Since the function γ satisfies all the conditions of Theorem 2.2, the desired inequalities follow from Corollaries 2.2 and 2.4.

4. Conclusion

Various inequalities have been obtained using the integral inequality given in Theorem 2.1. Variations concerning the convexity and boundedness of the function involved are investigated, which resulted in the new inequalities obtained in this paper. As noted in Remark 2.1, the settings $n=0$ and $w(\delta)=1-\delta^{2}$ of specific parameters reduce to a known integral inequality derived by the authors of [19]. Applications of the obtained results to special means have also been given (in Section 3), which further verify the obtained results.

References

 (2020) 5-16.
 Math. 41 (2010) 353-359.
[3] B. Bayraktar, Some integral inequalities of Hermite-Hadamard type for differentiable (s, m)-convex functions via fractional integrals, TWMS J. App. Eng. Math. 10 (2020) 625-637.
[4] B. Bayraktar, Some new inequalities of Hermite-Hadamard type for differentiable Godunova-Levin functions via fractional integrals, Konuralp J. Math. 8 (2020) $91-96$.
[5] B. Bayraktar, S. I. Butt, S. Shaokat, J. E. Nápoles Valdés, New Hadamard-type inequalities via (s, m_{1}, m_{2})-convex functions, Vestn. Udmurt. Univ. Mat. Mekh. Kompyut. Nauki 31 (2021) 597-612
[6] B. Bayraktar, J. E. Nápoles Valdés, F. Rabossi, On generalizations of integral inequalities, Probl. Anal. Issues Anal. 11 (2022) 3-23.
[7] M. Bohner, A. Kashuri, P. O. Mohammed, J. E. Nápoles Valdés, Hermite-Hadamard-type inequalities for integrals arising in conformable fractional calculus, Hacet. J. Math. Stat. 51 (2022) 775-786
[8] P. Burai, A. Hazy, T. Juhasz, On approximately Breckner s-convex functions, Control Cybernet. 40 (2011) 91-99.
[9] F. X. Chen, On the generalization of some Hermite-Hadamard inequalities for functions with convex absolute values of the second derivatives via fractional integrals, Ukrainian Mathe. J. 70 (2019) 1953-1965.
[10] R. Díaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 15 (2007) 179-192.
[11] S. S. Dragomir, S. Fitzpatrik, The Hadamard's inequality for s-convex functions in the second sense, Demonstration Math. 32 (1999) 687-696.
[12] S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities, RGMIA Monographs, Victoria University, Melbourne, 2000.
[13] J. Galeano Delgado, J. Lloreda, J. E. Nápoles Valdés, E. Pérez Reyes, Certain integral inequalities of Hermite-Hadamard type for h-convex functions, J. Math. Control Sci. Appl. 7 (2021) 129-140.
[14] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1934.
[15] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math. 48 (1994) 100-111.
[16] S. Hussain, A. Ali, G. Gulshan, A. Latif, K. Rauf, Hermite-Hadamard type inequalities for k-Riemann Liouville fractional integrals via two kinds of convexity, Aus. J. Math. Anal. Appl. 13 (2016) \#17.
[17] S. Hussain, M. Bhatti, M. Iqbal, Hadamard-type inequalities for s-convex functions I, Punjab Univ. J Math. 41 (2009) 51-60.
[18] A. Kashuri, J. E. Nápoles Valdés, M. A. Ali, G. M. Din, New integral inequalities using quasi-convex functions via generalized integral operators and their applications, Appl. Math. E-Notes 22 (2022) 221-231.
[19] M. A. Khan, T. Ali, T. U. Khan, Hermite-Hadamard type inequalities with applications, Fasciculi Math. 59 (2017) 57-74.
[20] U. Kirmaci, M. Bakula, M. Ozdemir, J. Pecaric, Hadamard-tpye inequalities for s-convex functions, Appl. Math. Comput. 193 (2007) 26-35.
[21] P. Kórus, J. E. Nápoles Valdés, On some integral inequalities for (h, m)-convex functions in a generalized framework, Carpathian J. Math., To appear.
[22] S. Mehmood, J. E. Nápoles Valdés, N. Fatima, W. Aslam, Some integral inequalities via fractional derivatives, Euro-Tbilisi Math. J. 15 (2022) 31-44.
[23] V. G. Mihesan, A generalization of the convexity, Seminar on Functional Equations, Approx. and Convex., Cluj-Napoca, 1993.
[24] P. O. Mohammed, Inequalities of type Hermite-Hadamard for fractional integrals via differentiable convex functions, Turkish J. Anal. Number Theory 4 (2016) 135-139.
[25] J. E. Nápoles Valdés, On the Hermite-Hadamard type inequalities involving generalized integrals, Contrib. Math. 5 (2022) 45-51.
[26] J. E. Nápoles Valdés, B. Bayraktar, On the generalized inequalities of the Hermite-Hadamard type, Filomat 35 (2021) 4917-4924.
[27] J. E. Nápoles Valdés, B. Bayraktar, S. I. Butt, New integral inequalities of Hermite-Hadamard type in a generalized context, Punjab Univ. J. Math. 53 (2021) 765-777.
[28] J. E. Nápoles Valdés, F. Rabossi, H. Ahmad, Inequalities of the hermite-hadamard type, for functions (h,m)-convex modified of the second type, 6th Int. Confer. Combin. Cryptogr. Computer Sci. Comput., 2021, 533-542.
[29] J. E. Nápoles Valdés, F. Rabossi, A. D. Samaniego, Convex functions: Ariadne's thread or Charlotte's spiderweb?, Adv. Math. Models Appl. 5 (2020) $176-191$.
[30] J. E. Nápoles Valdés, J. M. Rodríguez, J. M. Sigarreta, On Hermite-Hadamard type inequalities for non-conformable integral operators, Symmetry 11 (2019) \#1108.
[31] M. A. Noor, K. I. Noor, M. U. Awan, Generalized fractional Hermite-Hadamard inequalities, Miskolc Math. Notes 21 (2020) $1001-1011$.
[32] M. E. Özdemir, M. Avci, H. Kavurmaci, Hermite-Hadamard-type inequalities via (α, m)-convexity, Comput. Math. Appl. 61 (2011) $2614-2620$.
[33] M. E. Özdemir, A. Ekinci, A. O. Akdemir, Generalizations of integral inequalities for functions whose second derivatives are convex and m-convex, Miskolc Math. Notes 13 (2012) 441-457
[34] M. E. Özdemir, M. Gürbüz, Ç. Yildiz, Inequalities for mappings whose second derivatives are quasi-convex or h-convex functions, Miskolc Math. Notes 15 (2014) 635-649.
[35] M. E. Özdemir, C. Yildiz, A. O. Akdemir, E. Set, On some inequalities for s-convex functions and applications, J. Inequal. Appl. 2013 (2013) \#333.
[36] M. Sarikaya, M. Kiris, Some new inequalities of Hermite-Hadamard type for s-convex funcctions, Miskolc Math. Notes 16 (2015) $491-201$.
[37] M. Sarikaya, A. Saglam, H. Yildirim, New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are convex and quasi-convex, Int. J. Open Problems Comput. Math. 5 (2012) 1-14.
[38] M. Sarikaya, E. Set, M. E. Ozdemir, On new inequalities of Simpson's type for s-convex functions, Comput. Math. Appl. 60 (2010) $2191-2199$.
[39] E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comput. Math. Appl. 63 (2012) 1147-1154.
[40] E. Set, A. Gözpinar, J. Choi, Hermite-Hadamard type inequalities for twice differentiable m-convex functions via conformable fractional integrals, Far East J. Math. Sci. 101 (2017) 873-891.
[41] V. Stojiljković, Hermite-Hadamard-type fractional-integral inequalities for (p, h)-convex fuzzy-interval-valued mappings, Electron. J. Math. 5 (2023) 18-28.
[42] V. Stojiljković, Hermite Hadamard type inequalities involving (k-p) fractional operator with (α, h-m)-p convexity, Eur. J. Pure Appl. Math. 16 (2023) $503-522$.
[43] M. Tomar, E. Set, M. Z. Sarıkaya, Hermite-Hadamard type Riemann-Liouville fractional integral inequalities for convex functions, AIP Conf. Proc. 1726 (2016) \#020035.
[44] M. Tunç, On some integral inequalities via h-convexity, Miskolc Math. Notes 14 (2013) 1041-1057.
[45] M. Tunç, Some Hadamard like inequalities via convex and s-convex functions and their applications for special means, Mediterr. J. Math. 11 (2014) $1047-1059$.
[46] S. Varosanec, On h-convexity, J. Math. Anal. Appl. 326 (2007) 303-311.
[47] M. Vivas-Cortez, S. Kermausuor, J. E. Nápoles Valdés, Hermite-Hadamard type inequalities for coordinated quasi-convex functions via generalized fractional integrals, In: P. Debnath, H. M. Srivastava, P. Kumam, B. Hazarika (Eds.), Fixed Point Theory and Fractional Calculus: Recent Advances and Applications, Springer, Singapore, 2022, 275-296
[48] M. Vivas-Cortez, P. Kórus, J. E. Nápoles Valdés, Some generalized Hermite-Hadamard-Fejér inequality for convex functions, Adv. Difference Eq. 2021 (2021) \#199.
[49] M. Vivas-Cortez, J. E. Nápoles Valdés, J. A. Guerrero, Some Hermite-Hadamard weighted integral inequalities for (h, m)-convex modified functions, Appl. Math. Inf. Sci. 16 (2022) 25-33.
[50] J. R. Wang, X. Li, M. Feckan, Y. Zhou, Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Appl. Anal. 92 (2012) 2241-2253.
[51] B. Y. Xi, D. D. Gao, F. Qi, Integral inequalities of Hermite-Hadamard type for (α, s)-convex and (α, s, m)-convex functions, Italian J. Pure Appl. Math. 44 (2020) $499-510$.

[^0]: *Corresponding author (vuk.stojiljkovic999@gmail.com).

