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Abstract

The second-smallest eigenvalue of the Laplacian matrix of a graph G is called the algebraic connectivity of G, which is one of
the most-studied parameters in spectral graph theory and network science. In this paper, we obtain some new lower bounds
of the algebraic connectivity by rank-one perturbation matrix and compare them with known results.
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1. Introduction
Let G be a simple graph with the vertex set V (G) and edge set E(G). The maximum degree, the minimum degree, the
diameter and the edge connectivity of a graph G are denoted by ∆, δ, d and κ′, respectively. Other undefined notations and
terminologies can be found in [6].

The Laplacian matrix of G, denoted by L(G), is given by L(G) = D(G) − A(G), where D(G) is the diagonal matrix of
the vertex degrees of G and A(G) is the adjacency matrix. The eigenvalues of the matrix L(G) are known as Laplacian
eigenvalues ofG. Let µ1, µ2, . . . , µn−1, µn be the Laplacian eigenvalues of a graphG of order n arranged in a non-increasing
way. The Laplacian eigenvalue µn−1 is often referred to as the algebraic connectivity of G (see [9]) and is denoted as a(G).
The algebraic connectivity is sometimes referred to as the Fiedler value, see for example [5]. It is a well-known fact that 0

is always a Laplacian eigenvalue with e, the all-ones vector, as an associated eigenvector; whose multiplicity corresponds
to the number of connected components of G.

Algebraic connectivity has been a hot topic in spectral graph theory and network science in recent decades; hundreds
of research articles have been published on this topic, for example, see [1–4, 8, 15, 16, 20, 25, 28]. However, the results on
lower bounds of the algebraic connectivity are still relatively little known. For a graph G with n vertices and m edges,
Fiedler [9] obtained the following lower bounds on the algebraic connectivity a(G):

a(G) ≥ 2δ − n+ 2, (1)
a(G) ≥ 2κ′

(
1− cos

π

n

)
, (2)

a(G) ≥ 2κ′
(

cos
π

n
− cos

2π

n

)
− 2 cos

π

n

(
1− cos

π

n

)
∆. (3)

In 1991, Mohar [23] found the following lower bound involving diameter on a(G):

a(G) ≥ 4

nd
. (4)

In 2007, Lu et al. [19] presented another lower bound on a(G) which involves diameter:

a(G) ≥ 2n

2 + n(n− 1)d− 2md
. (5)

In this paper, we obtain some new lower bounds of the algebraic connectivity in terms of the maximum degree, the first
Zagreb index, and the numbers of vertices, edges, and spanning trees. The obtained results enrich the existing research
on the lower bounds of the algebraic connectivity of graphs.
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The rest of the paper is organized as follows. In Section 2, we give some preliminaries that are needed in the subsequent
sections. The main results of this paper are given in Section 3. Section 4 gives three examples, which illustrate that the
obtained bounds are better than some of the existing bounds in certain cases.

2. Preliminaries
The sum of resistance distances between all pairs of vertices of a graph G is known as the Kirchhoff index [14] of G and is
denoted byKf(G). The following useful formula for calculating the Kirchhoff index of G is due to Gutman and Mohar [12]:

Kf(G) =

n−1∑
i=1

1

µi
.

This index is used often to measure how well connected a given network is [10, 14]. Lipman et al. [18] introduced the
biharmonic distance d2

B(u, v) between two vertices u and v of a graph G:

d2
B(u, v) = L2+

uu + L2+
vv − 2L2+

uv ,

where L2+
uv is the (u, v)-entry of the matrix obtained from the square of the Moore-Penrose inverse of L(G). In [18], it

was noted that the biharmonic distance has some advantages over the resistance distance and geodesic distance in com-
puter graphics, geometric processing, shape analysis, etc. Based on the concept of the biharmonic distance, Yi et al. [27]
introduced the biharmonic index; this index for a graph G is defined as

Bh(G) =
1

2

∑
u∈V (G)

∑
v∈V (G)

d2
B(u, v) = n

n−1∑
i=1

1

µ2
i (G)

.

Lemma 2.1 (see [7]). Let M be an arbitrary n × n matrix with the eigenvalues λ1, λ2, . . . , λn. Let uk be an eigenvector of
M associated with the eigenvalue λk, and let w be an arbitrary n-dimensional vector. Then the matrix M + ukw

T has the
following eigenvalues: λ1, λ2, . . . , λk−1, λk + uTkw, λk+1, . . . , λn.

Lemma 2.2 (see [21]). Let M be a symmetric positive definite matrix. Then the minimum eigenvalue of M satisfies

λmin(M) ≥
(
n− 1

tr(M)

)n−1

det(M),

where tr(M) is trace of the matrix M .

Lemma 2.3 (see [11]). Let G be a connected graph with n vertices and at least one edge. Then

µ1(G) ≥ ∆ + 1.

with equality if and only if ∆ = n− 1.

Lemma 2.4 (see [9]). If G is not a complete graph Kn with n vertices, then µn−1(G) ≤ δ.

Lemma 2.5 (see [17]). Let M be an n× n complex matrix and let

lk+1 = |detM |
(

n− 1

||M ||2F − l2k

)n−1
2

, k = 1, 2, 3, . . . ,

with

l1 = |detM |
(
n− 1

||M ||2F

)n−1
2

.

Then the smallest singular value of M satisfies
σmin ≥ lim

k→∞
lk.

Lemma 2.6 (see [29]). Let G be a bipartite graph with at least one edge. Then

µ1 ≥
Z1

m
,

where Z1 is called the first Zagreb index [13], which is equal to the sum of squares of the degrees of the vertices in G.
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Lemma 2.7 (see [26]). Let M be an n × n real symmetric positive definite matrix. Then the minimum eigenvalue of M
satisfies

λmin(M) ≥ 2tr(M−1)

[tr(M−1)]2 + tr(M−2)
,

λmin(M) ≥ 1

tr(M−1)

{
3

2
− 1

2

tr(M−2)

[tr(M−1)]2

}
,

λmin(M) ≥ 1

tr(M−1)
· n

{
1 +

√
(n− 1)

[
n · tr(M−2)

[tr(M−1)]2
− 1

]}−1

.

Lemma 2.8 (see [22]). Let G be a connected graph with n vertices, and let G be the complement of G. Then

µi(G) = n− µn−i(G) for i = 1, 2, . . . , n− 1.

Lemma 2.9 (see [24,30]). Let G be a graph with the vertex-degree sequence ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ. Then

µ1(G) ≤ δ +
1

2
+

√√√√ n∑
i=1

di(di − δ) +

(
δ − 1

2

)2

,

and equality holds if and only if G is a regular graph with at least one bipartite component, or G is the disjoint union of a
star graph and (possibly) K2’s.

3. Main results
Theorem 3.1. Let G be a connected graph with n vertices, m edges, τ spanning trees and maximum degree ∆. Then

a(G) ≥



(
n− 1

2m+ ∆ + 1

)n−1

(∆ + 1)nτ, if ∆ ≤ 2m

n− 2
− 1;

(
n− 2

2m

)n−2

nτ, if ∆ >
2m

n− 2
− 1.

(6)

Proof. We consider the matrix M = L(G) + ξJ , where µn−1 ≤ nξ ≤ µ1 and J is the all-ones matrix. Then

mij =


di + ξ, if i = j;

−1 + ξ, if vivj ∈ E(G);

ξ, if vivj /∈ E(G).

Thus tr(M) =
∑n
i=1(di + ξ) = 2m + nξ. Note that M = L(G) + ξJ = L(G) + ξeeT . By Lemma 2.1, the eigenvalues of M

are µ1, µ2, . . . , µn−1, nξ. Since µn−1 ≤ nξ ≤ µ1, the matrix M is a symmetric positive definite matrix. By the matrix-tree
theorem (see [23]), we have

∏n−1
i=1 µi = nτ . By Lemma 2.2, we have

a(G) = λmin(M)

≥
(
n− 1

tr(M)

)n−1

det(M)

=

(
n− 1

2m+ nξ

)n−1

nξ · nτ

=

(
n− 1

2m+ nξ

)n−1

n2ξτ.

Let f(x) =
(

n−1
2m+nx

)n−1

n2xτ . A simple calculation yields

f ′(x) = n2τ

(
n− 1

2m+ nξ

)n−1(−n2x+ 2nx+ 2m

2m+ nx

)
.

Thus, f(x) is increasing for x ≤ 2m
n(n−2) and decreasing for x ≥ 2m

n(n−2) .
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If G 6= Kn, then by Lemmas 2.3 and 2.4, we consider

I =

[
δ

n
,

∆ + 1

n

] (
notice that δ

n
<

2m

n(n− 2)

)
.

It is immediate that f(∆+1
n ) ≥ f(x) for δ

n ≤ x ≤
∆+1
n ≤ 2m

n(n−2) , or f( 2m
n(n−2) ) ≥ f(x) for δ

n ≤ x ≤
2m

n(n−2) ≤
∆+1
n . Thus we have

a(G) ≥



(
n− 1

2m+ ∆ + 1

)n−1

(∆ + 1)nτ, if ∆ ≤ 2m

n− 2
− 1;

(
n− 2

2m

)n−2

nτ, if ∆ >
2m

n− 2
− 1.

If G = Kn, then

a(G) = n >

(
n− 1

n

)n−1

n

for ∆ = n− 1 < 2m
n−2 − 1.

By combining the above arguments, we arrive at the required result.

Theorem 3.2. Let G be a connected graph with n vertices, m edges, τ spanning trees and the first Zagreb index Z1. Then

a(G) ≥ lim
k→∞

lk,

where

lk+1 = (n2ξτ)

(
n− 1

2m+ Z1 + n2ξ2 − l2k

)n−1
2

, k = 1, 2, 3, . . . ,

with

l1 = (n2ξτ)

(
n− 1

2m+ Z1 + n2ξ2

)n−1
2

,

and µn−1 ≤ nξ ≤ µ1.

Proof. Let M = L(G) + ξJ . By the proof of Theorem 3.1, we have

||M ||2F = 2m+ Z1 + n2ξ2,

detM = n2ξτ.

By Lemma 2.5, we have
a(G) = σmin ≥ lim

k→∞
lk,

where

lk+1 = (n2ξτ)

(
n− 1

2m+ Z1 + n2ξ2 − l2k

)n−1
2

, k = 1, 2, 3, . . . ,

with

l1 = (n2ξτ)

(
n− 1

2m+ Z1 + n2ξ2

)n−1
2

.

Corollary 3.1. Let G be a connected r-regular graph with n vertices and τ spanning trees. Then

a(G) ≥ (nrτ)

 n− 1

nr + nr2 + r2 − n2r2τ2
(

n−1
nr+nr2+r2

)n−1


n−1
2

. (7)

Proof. By taking ξ = r
n and k = 2 in Theorem 3.2, we get the required result.

Corollary 3.2. Let G be a connected bipartite graph with n vertices, m edges, τ spanning trees and the first Zagreb index
Z1. Then

a(G) ≥
(
nZ1τ

m

) (n− 1)m2

2m3 +m2Z1 + Z2
1 − n2Z2

1τ
2
(

(n−1)m2

2m3+m2Z1+Z2
1

)n−1


n−1
2

. (8)
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Proof. We get the result by taking ξ = Z1

nm and k = 2 in Theorem 3.2 and using Lemma 2.6.

The next result also trivially holds.

Corollary 3.3. Let T be a tree with n vertices and the first Zagreb index Z1. Then

a(T ) ≥
(
nZ1

n− 1

) (n− 1)3

2(n− 1)3 + (n− 1)2Z1 + Z2
1 − n2Z2

1

(
(n−1)3

2(n−1)3+(n−1)2Z1+Z2
1

)n−1


n−1
2

.

Theorem 3.3. Let G be a connected graph with n vertices, m edges and τ spanning trees. If there is α such that a(G) ≤ α,
then

a(G) ≥
(

n− 1

2m+ α

)n−1

nατ.

Proof. We consider the matrix M = L(G) + ewT , where wT = α
2 (1, 1, 0, . . . , 0)T . Then tr(M) = α +

∑n
i=1 di = 2m + α. By

Lemma 2.1, the eigenvalues of M are µ1, µ2, . . . , µn−1, α. Since a(G) ≤ α, the matrix M is a symmetric-positive definite
matrix. By the matrix-tree theorem (see [23]), we have

∏n−1
i=1 µi = nτ . By Lemma 2.2, we have

a(G) = λmin(M) ≥
(
n− 1

tr(M)

)n−1

det(M) =

(
n− 1

2m+ α

)n−1

α · nτ =

(
n− 1

2m+ α

)n−1

nατ.

Corollary 3.4. Let G 6= Kn be a connected graph with n vertices, m edges and τ spanning trees. Then

a(G) ≥
(
n− 1

2m+ δ

)n−1

nδτ. (9)

Proof. From Lemma 2.4 and Theorem 3.3, the result follows.

Theorem 3.4. Let G be a connected graph with n vertices. If there is α such that a(G) ≤ α, then

a(G) ≥
2
(

1
nKf(G) + 1

α

)(
1
nKf(G) + 1

α

)2
+ 1

nBh(G) + 1
α2

,

a(G) ≥ 1
1
nKf(G) + 1

α

{
3

2
− 1

2

1
nBh(G) + 1

α2(
1
nKf(G) + 1

α

)2
}
,

a(G) ≥ n2

Kf(G) + n
α

1 +

√√√√(n− 1)

[
Bh(G) + n

α2(
1
nKf(G) + 1

α

)2 − 1

]
−1

.

Proof. Let M = L(G) + ewT , where wT = α
2 (1, 1, 0, . . . , 0)T . By the proof of Theorem 3.3, we have

tr(M−1) =
1

n
Kf(G) +

1

α
,

tr(M−2) =
1

n
Bh(G) +

1

α2
.

By using Lemma 2.7, we get the required result.

Corollary 3.5. Let G 6= Kn be a connected graph with n vertices and the minimum degree δ. Then

a(G) ≥
2
(

1
nKf(G) + 1

δ

)(
1
nKf(G) + 1

δ

)2
+ 1

nBh(G) + 1
δ2

,

a(G) ≥ 1
1
nKf(G) + 1

δ

{
3

2
− 1

2

1
nBh(G) + 1

δ2(
1
nKf(G) + 1

δ

)2
}
,

a(G) ≥ n2

Kf(G) + n
δ

1 +

√√√√(n− 1)

[
Bh(G) + n

δ2(
1
nKf(G) + 1

δ

)2 − 1

]
−1

.

Proof. From Lemma 2.4 and Theorem 3.4, the result follows.
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Problem 3.1. Find the graphs satisfying the equality in Theorems 3.1, 3.2, 3.3 and 3.4.

Theorem 3.5. Let G be a connected graph with n vertices,m edges, maximum degree ∆ and the first Zagreb index Z1. Then

a(G) ≥ ∆ +
1

2
− 1

2

√
4Z1 + (2n− 2∆− 3)

2
+ 4(n− 1)(n∆− 2m)− 8m∆ (10)

with equality if and only if G is a regular graph with at least one bipartite component, or G is the disjoint union of a star
graph and (possibly) K2’s.

Proof. Let d1(G) ≥ d2(G) ≥ · · · ≥ dn(G) be the vertex-degree sequence of G. Denote by m(G) the number of edges in G.
Then

m(G) =
n(n− 1)

2
−m, di(G) = n− 1− dn−i+1(G).

By Lemmas 2.8 and 2.9, we have

a(G) = n− µ1(G)

≥ n−

δ(G) +
1

2
+

√√√√ n∑
i=1

di(G)(di(G)− δ(G)) +

(
δ(G)− 1

2

)2


= n− (n− 1−∆)− 1

2
−

√√√√ n∑
i=1

(n− 1− dn−i+1(G))(∆− dn−i+1(G)) +

(
n−∆− 3

2

)2

= ∆ +
1

2
−

√√√√n(n− 1)∆− (n− 1 + ∆)

n∑
i=1

dn−i+1(G) +

n∑
i=1

d2
n−i+1(G) +

(
n−∆− 3

2

)2

= ∆ +
1

2
−

√
n(n− 1)∆− 2m(n− 1 + ∆) + Z1 +

(
n−∆− 3

2

)2

= ∆ +
1

2
− 1

2

√
4Z1 + (2n− 2∆− 3)

2
+ 4(n− 1)(n∆− 2m)− 8m∆

with equality if and only if G is a regular graph with at least one bipartite component, or G is the disjoint union of a star
graph and (possibly) K2’s.

Corollary 3.6. Let G 6= Kn be a connected r-regular graph with n vertices. Then a(G) ≥ 2r − n+ 2 .

4. Examples
In this section, we give some examples of the bounds on the algebraic connectivity given in (1)–(10). Based on our calcula-
tions, we believe that these bounds are incomparable.

Example 4.1. Let G = K9 + e be the graph obtained by attaching a pendant vertex to exactly one of the vertices of
the complete graph K9. By (6) and (10), we have a(G) ≥ 0.8924 and a(G) = 1. However, by (1)–(5), we get a(G) ≥ −10,
a(G) ≥ 0.0979, a(G) ≥ −0.5538, a(G) ≥ 0.2, a(G) ≥ 0.5882, respectively. In fact, the exact value is a(G) = 1.

Example 4.2. Let G be the Petersen graph. Applying (6), (7) and (9), we have a(G) ≥ 0.5114, a(G) ≥ 0.3773 and a(G) ≥
0.5009, respectively. However, using (1)–(5), we get a(G) ≥ −2, a(G) ≥ 0.2937, a(G) ≥ 0.5729, a(G) ≥ 0.2 and a(G) ≥ 0.1639,
respectively. On the other hand, the exact value is a(G) = 2.

Example 4.3. Let G be the complete bipartite graph K5, 5. By (6), (8), (9) and (10), we have a(G) ≥ 1.6765, a(G) ≥ 1.5404,
a(G) ≥ 1.6430 and a(G) ≥ 2, respectively. However, by (1)–(5), we get a(G) ≥ 2, a(G) ≥ 0.4894, a(G) ≥ 0.9549, a(G) ≥ 0.2

and a(G) ≥ 0.2439, respectively. Also, note that the exact value is a(G) = 5.
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